CD63

Gene Summary

Gene:CD63; CD63 molecule
Aliases: MLA1, ME491, LAMP-3, OMA81H, TSPAN30
Location:12q13.2
Summary:The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. The encoded protein is a cell surface glycoprotein that is known to complex with integrins. It may function as a blood platelet activation marker. Deficiency of this protein is associated with Hermansky-Pudlak syndrome. Also this gene has been associated with tumor progression. Alternative splicing results in multiple transcript variants encoding different protein isoforms. [provided by RefSeq, Apr 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:CD63 antigen
Source:NCBIAccessed: 10 March, 2017

Ontology:

What does this gene/protein do?
Show (21)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Immunohistochemistry
  • Membrane Proteins
  • Proto-Oncogene Proteins c-kit
  • Immunophenotyping
  • Down-Regulation
  • Precipitin Tests
  • Flow Cytometry
  • CD82
  • Twist-Related Protein 1
  • Melanoma
  • Biomarkers, Tumor
  • Oligonucleotide Array Sequence Analysis
  • Cell Movement
  • Restriction Mapping
  • CD9 Antigen
  • Mutation
  • Platelet Membrane Glycoproteins
  • Tumor Antigens
  • Signal Transduction
  • Regression Analysis
  • Disease Progression
  • Gene Expression
  • CD63
  • Gene Expression Profiling
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Membrane Glycoproteins
  • Messenger RNA
  • TIMP1
  • Neoplasm Invasiveness
  • CD Antigens
  • Thyroid Cancer
  • Lung Cancer
  • Angiogenesis
  • RTPCR
  • Neoplasm Proteins
  • Exosomes
  • Breast Cancer
  • Chromosome 12
  • MicroRNAs
Tag cloud generated 10 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD63 (cancer-related)

Li T, Lan W, Huang C, et al.
[Establishment and identification of the near-infrared fluorescence labeled exosomes in breast cancer cell lines].
Yi Chuan. 2016; 38(5):427-35 [PubMed] Related Publications
Exosomes, a population of extracellular membrane vesicles of 30-100 nm in diameter, play important roles in cell biological functions, intercellular signal transduction and especially in cancer diagnosis and therapy. To better apply exosomes in mechanistic study of breast cancer signal transduction, we constructed recombinant eukaryotic expression vector expressing the near-infrared fluorescence protein and CD63 fusion protein through cloning iRFP682 gene and exosomal marker protein CD63 gene into plasmid containing the ITR of AAV. The constructed plasmids were co-transfected with helper plasmid in AAV-293 cell lines and were packaged into rAAV. After titer measurement, the recombinant plasmids were transfected into breast cancer cell lines. The cell lines that stably expressing near-infrared fluorescence protein were selected by fluorescence. Through isolation, purification and identification, we finally obtained a new biomarker: iRFP682 labeled exosomes secreted by breast cancer cell lines, which could be used in further studies of the distribution and signal transduction of exosomes in breast cancer microenvironment.

Lewitowicz P, Bernaczyk P, Horecka-Lewitowicz A, et al.
Ancient cardiac myxomas - another point of view in the light of tetraspanins.
Pol J Pathol. 2016; 67(1):69-77 [PubMed] Related Publications
Myxomas are the most common non-invasive but life-threatening cardiac neoplasms due to obstruction of heart chambers and risk of embolism in a manner resembling thromboembolism as well. They can occasionally disseminate via their detached fragments into the bloodstream to seed and grow as secondary still benign tumors. In this study we evaluated morphological and clinical aspects of 14 ancient, degenerated left or right-sided cardiac atrial myxomas with expression of CD9 and CD63, which are found to contribute to platelet activation, aggregation and, as a result, intratumoral thrombosis or fragmentation. The appearance of tumors varied from sessile to polypoid revealing that a higher rate of endocardial thrombosis was associated with sessile compared to polypoid myxomas and left-sided tumors compared to right-sided ones in our study. In the general aspect of ancient calcifications, amorphous calcification with intra-tumor thrombosis was noted more frequently in sessile tumors, while well-formed osseous metaplasia was usually a feature of polypoid tumors. In our material osseous metaplasia did not coexist with massive thrombosis and was found in polypoid, pedunculated myxomas. Most importantly, CD9 overexpression was recorded in every studied myxoma and CD63 gave a weak reaction in myxoma cells.

Kore RA, Abraham EC
Phosphorylation negatively regulates exosome mediated secretion of cryAB in glioma cells.
Biochim Biophys Acta. 2016; 1863(2):368-77 [PubMed] Related Publications
Exosomes mediate secretion of crystallin alphaB (cryAB), a well characterized molecular chaperone with anti-apoptotic activity. However, the mechanisms governing its packaging and secretion remained unexplored. In glioma cells, notwithstanding extensive phosphorylation of cryAB at Ser59 followed by Ser45 (Ser19 is largely unphosphorylated), we discovered that the majority of secreted exosomal cryAB is nonphosphorylated. Transient ectopic expression of a yellow fluorescent protein (YFP) tagged triple phosphomimic (3-SD) cryAB construct in cryAB absent glioma cells led to the formation of large cytosolic inclusions. Our findings demonstrate that mimicking phosphorylation significantly reduces cryAB secretion via exosomes. Moreover, decreased colocalization of 3-SD YFP-cryAB with multivesicular endosome (MVE) and exosome marker, CD63 or Rab27, a small GTPase regulating exocytosis of MVEs, suggests that phosphorylation deters packaging of cryAB in vesicles bound for secretion as exosomes. Additionally, we found that preventing O-GlcNAcylation on cryAB also curtailed its colocalization with CD63 and Rab27 resulting in reduced exosomal secretion. Thus, our study points to O-GlcNAcylation and lack of phosphorylation as being the selective processes involved in the packaging and secretion of cryAB via exosomes.

Wang Z, Deng Z, Dahmane N, et al.
Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes.
Proc Natl Acad Sci U S A. 2015; 112(46):E6293-300 [PubMed] Free Access to Full Article Related Publications
Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.

Lai X, Chen S
Identification of Novel Biomarker and Therapeutic Target Candidates for Diagnosis and Treatment of Follicular Adenoma.
Cancer Genomics Proteomics. 2015 Nov-Dec; 12(6):271-81 [PubMed] Related Publications
Follicular adenoma is a type of benign and encapsulated nodule in the thyroid gland, but some adenomas have the potential to progress to follicular carcinoma. Therefore, it is important to monitor the state and progress of follicular adenoma in the clinic and discover drug development targets for the treatment of follicular adenoma to prevent its worsening to follicular carcinoma. Currently, the study of biomarkers and therapeutic targets lacks applications of up-to-date technologies, including proteomics and bioinformatics. To discover novel protein biomarker and therapeutic target candidates, a liquid chromatography-tandem mass spectrometry approach was applied to directly compare follicular adenoma with normal thyroid tissue samples. The proteomics analysis revealed 114 protein biomarker candidates out of 1,780 identified and quantified proteins. A comprehensive approach to prioritize the biomarker candidates by category and rank revealed CD63, DDB1, TYMP, VDAC2, and DCXR as the top five biomarker candidates. Upstream regulator analysis using the Ingenuity Pathway Analysis (IPA) software discovered four therapeutic target candidates for follicular adenoma, including TGFB1, MYC, ANGPT2, and NFE2L2. This study provided biomarker and therapeutic target candidates for a follow-up study, which will facilitate monitoring and treatment of follicular adenoma.

Duijvesz D, Versluis CY, van der Fels CA, et al.
Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer.
Int J Cancer. 2015; 137(12):2869-78 [PubMed] Related Publications
Extracellular vesicles (including the subclass exosomes) secreted by cells contain specific proteins and RNA that could be of interest in determining new markers. Isolation/characterization of PCa-derived exosomes from bodily fluids enables us to discover new markers for this disease. Unfortunately, isolation with current techniques (ultracentrifugation) is labor intensive and other techniques are still under development. The goal of our study was to develop a highly sensitive time-resolved fluorescence immunoassay (TR-FIA) for capture/detection of PCa-derived exosomes. In our assay, biotinylated capture antibodies against human CD9 or CD63 were incubated on streptavidin-coated wells. After application of exosomes, Europium-labeled detection antibodies (CD9 or CD63) were added. Cell medium from 37 cell lines was taken to validate this TR-FIA. Urine was collected (after digital rectal exam) from patients with PCa (n = 67), men without PCa (n = 76). As a control, urine was collected from men after radical prostatectomy (n = 13), women (n = 16) and patients with prostate cancer without digital rectal exam (n = 16). Signal intensities were corrected for urinary PSA and creatinine. This TR-FIA can measure purified exosomes with high sensitivity and minimal background signals. Exosomes can be measured in medium from 37 cell lines and in urine. DRE resulted in a pronounced increase in CD63 signals. After DRE and correction for urinary PSA, CD9 and CD63 were significantly higher in men with PCa. This TR-FIA enabled us to measure exosomes with high sensitivity directly from urine and cell medium. This TR-FIA forms the basis for testing different antibodies directed against exosome membrane markers to generate disease-specific detection assays.

Jelonek K, Wojakowska A, Marczak L, et al.
Ionizing radiation affects protein composition of exosomes secreted in vitro from head and neck squamous cell carcinoma.
Acta Biochim Pol. 2015; 62(2):265-72 [PubMed] Related Publications
Exosomes are membrane vesicles of endocytic origin that participate in inter-cellular communication. Environmental and physiological conditions affect composition of secreted exosomes, their abundance and potential influence on recipient cells. Here, we analyzed protein component of exosomes released in vitro from cells exposed to ionizing radiation (2Gy dose) and compared their content with composition of exosomes released from control not irradiated cells. Exosomes secreted from FaDu cells originating from human squamous head and neck cell carcinoma were analyzed using LC-MS/MS approach. We have found that exposure to ionizing radiation resulted in gross changes in exosomal cargo. There were 217 proteins identified in exosomes from control cells and 384 proteins identified in exosomes from irradiated cells, including 148 "common" proteins, 236 proteins detected specifically after irradiation and 69 proteins not detected after irradiation. Among proteins specifically overrepresented in exosomes from irradiated cells were those involved in transcription, translation, protein turnover, cell division and cell signaling. This indicated that exosomal cargo reflected radiation-induced changes in cellular processes like transient suppression of transcription and translation or stress-induced signaling.

Wedeh G, Cerny-Reiterer S, Eisenwort G, et al.
Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia.
Leukemia. 2015; 29(11):2230-7 [PubMed] Free Access to Full Article Related Publications
Advanced systemic mastocytosis (SM) is a life-threatening neoplasm characterized by uncontrolled growth and accumulation of neoplastic mast cells (MCs) in various organs and a poor survival. So far, no curative treatment concept has been developed for these patients. We identified the epigenetic reader bromodomain-containing protein-4 (BRD4) as novel drug target in aggressive SM (ASM) and MC leukemia (MCL). As assessed by immunohistochemistry and PCR, neoplastic MCs expressed substantial amounts of BRD4 in ASM and MCL. The human MCL lines HMC-1 and ROSA also expressed BRD4, and their proliferation was blocked by a BRD4-specific short hairpin RNA. Correspondingly, the BRD4-targeting drug JQ1 induced dose-dependent growth inhibition and apoptosis in HMC-1 and ROSA cells, regardless of the presence or absence of KIT D816V. In addition, JQ1 suppressed the proliferation of primary neoplastic MCs obtained from patients with ASM or MCL (IC50: 100-500 nm). In drug combination experiments, midostaurin (PKC412) and all-trans retinoic acid were found to cooperate with JQ1 in producing synergistic effects on survival in HMC-1 and ROSA cells. Taken together, we have identified BRD4 as a promising drug target in advanced SM. Whether JQ1 or other BET-bromodomain inhibitors are effective in vivo in patients with advanced SM remains to be elucidated.

Tu M, Wei F, Yang J, Wong D
Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM).
J Vis Exp. 2015; (95):52439 [PubMed] Free Access to Full Article Related Publications
Exosomes are microvesicular structures that play a mediating role in intercellular communication. It is of interest to study the internal cargo of exosomes to determine if they carry disease discriminatory biomarkers. For performing exosomal analysis, it is necessary to develop a method for extracting and analyzing exosomes from target biofluids without damaging the internal content. Electric field-induced release and measurement (EFIRM) is a method for specifically extracting exosomes from biofluids, unloading their cargo, and testing their internal RNA/protein content. Using an anti-human CD63 specific antibody magnetic microparticle, exosomes are first precipitated from biofluids. Following extraction, low-voltage electric cyclic square waves (CSW) are applied to disrupt the vesicular membrane and cause cargo unloading. The content of the exosome is hybridized to DNA primers or antibodies immobilized on an electrode surface for quantification of molecular content. The EFIRM method is advantageous for extraction of exosomes and unloading cargo for analysis without lysis buffer. This method is capable of performing specific detection of both RNA and protein biomarker targets in the exosome. EFIRM extracts exosomes specifically based on their surface markers as opposed to size-based techniques. Transmission electron microscopy (TEM) and assay demonstrate the functionality of the method for exosome capture and analysis. The EFIRM method was applied to exosomal analysis of 9 mice injected with human lung cancer H640 cells (a cell line transfected to express the exosome marker human CD63-GFP) in order to test their exosome profile against 11 mice receiving saline controls. Elevated levels of exosomal biomarkers (reference gene GAPDH and protein surface marker human CD63-GFP) were found for the H640 injected mice in both serum and saliva samples. Furthermore, saliva and serum samples were demonstrated to have linearity (R = 0.79). These results are suggestive for the viability of salivary exosome biomarkers for detection of distal diseases.

Morbini P, Capello GL, Alberizzi P, et al.
Markers of squamocolumnar junction cells in normal tonsils and oropharyngeal cancer with and without HPV infection.
Histol Histopathol. 2015; 30(7):833-9 [PubMed] Related Publications
HPV infection has been identified recently as the causative agent of a subset of squamous cell carcinomas arising in oropharyngeal tonsils. Factors influencing the susceptibility of tonsillar epithelium to HPV-induced oncogenesis are far from being elucidated. A 5-protein signature including cytokeratin (CK)7, anterior gradient (AGR)2, cluster differentiation (CD)63, matrix metalloproteinase (MMP)7, and guanine deaminase (GDA) has recently been found to identify a residual embryonic cell population in the squamocolumnar (SC) junction of the cervix, susceptible to HPV infection, and cancers originating from these cells. The expression of SC junction markers was investigated with immunohistochemistry in normal tonsils and in oropharyngeal carcinomas (OPC) fully characterised for HPV. All markers were constantly expressed in the reticulated epithelial cells of the tonsillar crypts, with variable diffusion and intensity; in OPC, positivity was observed in 36,5%, 29,2%, 39%, 17%, and 25% of cases with respectively AGR2, CK7, GDA, CD63, and MMP7 antibodies. No OPC was positive for all markers; 6 were completely negative. AGR2 and CK7 showed significant association with tumor- and HPV-related parameters. AGR2 expression was associated with tumor origin in the tongue base (p=0.013); CK7 was associated with non-keratinising morphology (p=0.013). p16 tumor cell expression was associated with AGR2 (p=0.021); transcriptionally active HPV infection was associated with AGR2 and CK7 (p=0.024 and 0.043). Expression of SC junction markers in tonsillar crypt cells might be related to the embryological development of tonsillar structures; their partial association with HPV oncogenic infection could help to identify HPV-susceptible cells and related OPC.

Yang J, Wei F, Schafer C, Wong DT
Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva.
PLoS One. 2014; 9(11):e110641 [PubMed] Free Access to Full Article Related Publications
The discovery of disease-specific biomarkers in oral fluids has revealed a new dimension in molecular diagnostics. Recent studies have reported the mechanistic involvement of tumor cells derived mediators, such as exosomes, in the development of saliva-based mRNA biomarkers. To further our understanding of the origins of disease-induced salivary biomarkers, we here evaluated the hypothesis that tumor-shed secretory lipidic vesicles called exosome-like microvesicles (ELMs) that serve as protective carriers of tissue-specific information, mRNAs, and proteins, throughout the vasculature and bodily fluids. RNA content was analyzed in cell free-saliva and ELM-enriched fractions of saliva. Our data confirmed that the majority of extracellular RNAs (exRNAs) in saliva were encapsulated within ELMs. Nude mice implanted with human lung cancer H460 cells expressing hCD63-GFP were used to follow the circulation of tumor cell specific protein and mRNA in the form of ELMs in vivo. We were able to identify human GAPDH mRNA in ELMs of blood and saliva of tumor bearing mice using nested RT-qPCR. ELMs positive for hCD63-GFP were detected in the saliva and blood of tumor bearing mice as well as using electric field-induced release and measurement (EFIRM). Altogether, our results demonstrate that ELMs carry tumor cell-specific mRNA and protein from blood to saliva in a xenografted mouse model of human lung cancer. These results therefore strengthen the link between distal tumor progression and the biomarker discovery of saliva through the ELMs.

Seubert B, Cui H, Simonavicius N, et al.
Tetraspanin CD63 acts as a pro-metastatic factor via β-catenin stabilization.
Int J Cancer. 2015; 136(10):2304-15 [PubMed] Related Publications
The tetraspanin CD63 is implicated in pro-metastatic signaling pathways but, so far, it is unclear, how CD63 levels affect the tumor cell phenotype. Here, we investigated the effect of CD63 modulation in different metastatic tumor cell lines. In vitro, knock down of CD63 induced a more epithelial-like phenotype concomitant with increased E-cadherin expression, downregulation of its repressors Slug and Zeb1, and decreased N-cadherin. In addition, β-catenin protein was markedly reduced, negatively affecting expression of the target genes MMP-2 and PAI-1. β-catenin inhibitors mimicked the epithelial phenotype induced by CD63 knock down. Inhibition of β-catenin upstream regulators PI3K/AKT or GSK3β could rescue the mesenchymal phenotype underlining the importance of the β-catenin pathway in CD63-regulated cell plasticity. CD63 knock down-induced phenotypical changes correlated with a decrease of experimental metastasis whereas CD63 overexpression enhanced the tumor cell-intrinsic metastatic potential. Taken together, our data show that CD63 is a crucial player in the regulation of the tumor cell-intrinsic metastatic potential by affecting cell plasticity.

Jabbar KJ, Medeiros LJ, Wang SA, et al.
Flow cytometric immunophenotypic analysis of systemic mastocytosis involving bone marrow.
Arch Pathol Lab Med. 2014; 138(9):1210-4 [PubMed] Related Publications
CONTEXT: Mast cells of systemic mastocytosis (SM) have aberrant immunophenotypes that are useful for their detection by flow cytometry immunophenotyping.
OBJECTIVES: To assess the usefulness of CD2, CD25, and other antigens for establishing the diagnosis of SM in bone marrow using flow cytometry immunophenotyping.
DESIGN: We studied 50 bone marrow aspirates of patients with SM using flow cytometry immunophenotyping. The bone marrow aspirates were stained with antibodies specific for CD2, CD25, CD35, CD59, CD63, and CD69. For the detection of CD2 and CD25, antibodies conjugated with phycoerythrin (PE) or fluorescein isothiocyanate (FITC) were compared. CD45-PerCP and CD117-APC were used for gating. Data were acquired on FACS Calibur cytometers and analyzed using CellQuest software.
RESULTS: CD2 and CD25 were positive in 41 of 50 (82%) and 45 of 50 (90%) SM cases, respectively. For CD2, the PE-conjugated antibody yielded better sensitivity than the FITC-conjugated antibody (31 of 40 [78%] versus 28 of 40 [70%]). For CD25, PE-conjugated and FITC-conjugated antibodies showed similar detection sensitivity, although the intensity of expression was brighter with CD25-PE. Compared with immunohistochemistry, flow cytometry immunophenotyping was superior for detecting CD2 (14 of 23 [61%] versus 9 of 23 [39%]). Other antigens frequently overexpressed in SM were CD35 (43 of 50 [86%]), CD59 (46 of 50 [92%]), CD63 (43 of 49 [88%]), and CD69 (39 of 48 [81%]).
CONCLUSIONS: Flow cytometry immunophenotyping is a rapid and sensitive technique for characterizing mast cells in bone marrow aspirate specimens. The use of PE-conjugated antibodies for CD2 and CD25 improves the detection rate (CD2) or facilitates analysis (CD25); therefore, PE-conjugated antibodies are suggested. Antibodies reactive with CD35, CD59, CD63, and CD69 are also helpful in detecting SM in bone marrow.

Kang M, Ryu J, Lee D, et al.
Correlations between transmembrane 4 L6 family member 5 (TM4SF5), CD151, and CD63 in liver fibrotic phenotypes and hepatic migration and invasive capacities.
PLoS One. 2014; 9(7):e102817 [PubMed] Free Access to Full Article Related Publications
Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies.

Lupia A, Peppicelli S, Witort E, et al.
CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.
J Invest Dermatol. 2014; 134(12):2947-56 [PubMed] Related Publications
The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

D'Angelo RC, Liu XW, Najy AJ, et al.
TIMP-1 via TWIST1 induces EMT phenotypes in human breast epithelial cells.
Mol Cancer Res. 2014; 12(9):1324-33 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1-overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1-mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the matrix metalloproteinase (MMP)-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function.
IMPLICATIONS: TIMP-1's function as an endogenous inhibitor of MMP or as a "cytokine-like" signaling molecule may be a critical determinant for tumor cell behavior.

Tominaga N, Hagiwara K, Kosaka N, et al.
RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy.
Mol Cancer. 2014; 13:134 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tetraspanin CD63 is a highly N-glycosylated protein that is known to regulate cancer malignancy. However, the contribution of glycosylation of CD63 to cancer malignancy remains unclear. Previously, we reported that ribophorin II (RPN2), which is part of an N-oligosaccharyle transferase complex, is responsible for drug resistance in breast cancer cells. In this study, we demonstrate that cancer malignancy associated with the glycosylation of CD63 is regulated by RPN2.
RESULTS: Inhibition of RPN2 expression led to a reduction in CD63 glycosylation. In addition, the localization of CD63 was deregulated by knockdown of RPN2. Interestingly, multidrug resistance protein 1 (MDR1) localization was displaced from the cell surface in CD63-silenced cells. CD63 silencing reduced the chemoresistance and invasion ability of malignant breast cancer cells. Furthermore, the enrichment of CD63/MDR1-double positive cells was associated with lymph node metastasis. Taken together, these results indicated that high glycosylation of CD63 by RPN2 is implicated in clinical outcomes in breast cancer patients.
CONCLUSIONS: These findings describe a novel and important function of RPN2-mediated CD63 glycosylation, which regulates MDR1 localization and cancer malignancy, including drug resistance and invasion.

Płaszczyca A, Nilsson J, Magnusson L, et al.
Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.
Int J Biochem Cell Biol. 2014; 53:475-81 [PubMed] Related Publications
Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

Yoshioka Y, Kosaka N, Konishi Y, et al.
Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen.
Nat Commun. 2014; 5:3591 [PubMed] Free Access to Full Article Related Publications
Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remains challenging. Here we describe a sensitive and rapid analytical technique for profiling circulating EVs directly from blood samples of patients with colorectal cancer. EVs are captured by two types of antibodies and are detected by photosensitizer-beads, which enables us to detect cancer-derived EVs without a purification step. We also show that circulating EVs can be used for detection of colorectal cancer using the antigen CD147, which is embedded in cancer-linked EVs. This work describes a new liquid biopsy technique to sensitively detect disease-specific circulating EVs and provides perspectives in translational medicine from the standpoint of diagnosis and therapy.

Aga M, Bentz GL, Raffa S, et al.
Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes.
Oncogene. 2014; 33(37):4613-22 [PubMed] Free Access to Full Article Related Publications
It has emerged recently that exosomes are potential carriers of pro-tumorigenic factors that participate in oncogenesis. However, whether oncogenic transcription factors are transduced by exosomes is unknown. Hypoxia-inducible factor-1α (HIF1α) transcriptionally regulates numerous key aspects of tumor development and progression by promoting a more aggressive tumor phenotype, characterized by increased proliferation and invasiveness coupled with neoangiogenesis. It has been shown that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), drives oncogenic processes and tumor progression of the highly invasive EBV malignancy, nasopharyngeal carcinoma (NPC). We now demonstrate that endogenous HIF1α is detectable in exosomes and that LMP1 significantly increases levels of HIF1α in exosomes. HIF1 recovered from exosomes retains DNA-binding activity and is transcriptionally active in recipient cells after exosome uptake. We also show that treatment of EBV-negative cells with LMP1-exosomes increases migration and invasiveness of NP cell lines in functional assays, which correlates with the phenotype associated with epithelial-mesenchymal transition (EMT). In addition, we provide evidence that HIF1α itself participates in exosome-mediated pro-metastatic effects in recipient cells, as exosome-mediated delivery of active and inactive forms of HIF1α results in reciprocal changes in the expression of E- and N-cadherins associated with EMT. Further, immunohistochemical analysis of NPC tumor tissues revealed direct correlation between protein levels of LMP1 and of the endosome/exosome marker tetraspanin, CD63, which suggests an increase in exosome formation in this EBV-positive malignancy. We hypothesize that exosome-mediated transfer of functional pro-metastatic factors by LMP1-positive NPC cells to surrounding tumor cells promotes cancer progression.

Murray E, Hernychová L, Scigelova M, et al.
Quantitative proteomic profiling of pleomorphic human sarcoma identifies CLIC1 as a dominant pro-oncogenic receptor expressed in diverse sarcoma types.
J Proteome Res. 2014; 13(5):2543-59 [PubMed] Related Publications
Sarcomas are rare forms of cancer with a high unmet clinical need that develop in connective tissue, such as muscle, bone, nerves, cartilage, and fat. The outcome for patients is poor, with surgery and postoperative radiotherapy the standard treatment for patients. A better understanding of the molecular pathology of sarcoma may allow for the development of novel therapeutics. There are dozens of sarcoma subtypes where there is a need for targetted therapeutics, with the most commonly studied including Ewing's sarcoma and osteosarcoma. Here we initiate a proteomics-based target-discovery program to define "dominant" pro-oncogenic signaling targets in the most common sarcoma in adults: high-grade pleiomorphic soft tissue sarcoma. We have carried out a proteome screen using tandem mass tag isobaric labeling on three high-grade undifferentiated pleomorphic sarcoma biopsies from different tissue sites. We identified the commonly dysregulated proteins within the three sarcomas and further validated the most penetrant receptor as CLIC1, using immunohistochemistry arising from two different population cohorts representing over 300 patients. The dominant expression of CLIC1 in a broad range of human sarcomas suggests that studying this relatively unexplored signaling pathway might provide new insights into disease mechanism and facilitate the development of new CLIC1 targeted therapeutics.

Lee SY, Kim JM, Cho SY, et al.
TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling.
Biochem J. 2014; 459(3):565-76 [PubMed] Related Publications
We recently reported that hNSCs (human neural stem cells) have the interesting characteristic of migration towards an intracranial glioma. However, the molecules and mechanisms responsible for tumour tropism are unclear. In the present study, we used microarray and proteomics analyses to identify a novel chemoattractant molecule, TIMP-1 (tissue inhibitor of metalloproteinase-1), secreted from human brain tumour tissues. We demonstrate that TIMP-1 significantly enhances hNSC adhesion and migration in a cell culture system. These effects were critically dependent on CD63, as shRNA-mediated ablation of CD63 expression attenuated the response. TIMP-1 significantly increased the number of FAs (focal adhesions) and cytoskeletal reorganization for cell migration in hNSCs, whereas knockdown of CD63 resulted in decreased hNSC spreading, FAs and migration, even after TIMP-1 treatment. In addition, TIMP-1 binding to CD63 activated β1 integrin-mediated signalling through Akt and FAK phosphorylation, leading to pattern changes in distribution of vinculin and F-actin (filamentous actin). Furthermore, inactivation of β1 integrin by use of a blocking antibody or inhibition of PI3K (phosphoinositide 3-kinase) signalling impaired the migration of hNSCs towards TIMP-1. Collectively, our results underline TIMP-1 as a novel and effective key regulator of CD63 and β1 integrin-mediated signalling, which regulates hNSC adhesion and migration.

Bidad K, Nawijn MC, van Oosterhout AJ, et al.
Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy.
Cytometry B Clin Cytom. 2014; 86(3):183-90 [PubMed] Related Publications
BACKGROUND: There is need for an accurate diagnostic test in mastocytosis patients with wasp venom allergy (WVA) and monitoring of these patients during immunotherapy (IT). In this study, we aimed to evaluate sensitivity and specificity of the Basophil Activation Test (BAT) as a diagnostic and monitoring test in patients with mastocytosis and WVA.
METHODS: Seventeen patients with mastocytosis and WVA and six mastocytosis patients without WVA were included. BAT was performed before the start of IT (first visit) and at 6 weeks (second visit) and 1 year (third visit), after reaching the maintenance dose. Of 17 patients included, 11 completed the third visit. In mastocytosis patients with WVA, dose-dependent wasp-venom induced upregulation of CD63 and CD203c expression on basophils was observed compared with mastocytosis patients without WVA. Serum specific IgE, IgG4, and tryptase levels were measured in all patients.
RESULTS: BAT had a sensitivity of 87% and specificity of 100% in diagnosing WVA in mastocytosis patients. Basophil allergen threshold sensitivity with respect to CD63 and CD203c was significantly decreased in the second visit compared with the first visit and increased significantly in the third visit compared with the second visit. Specific IgE levels increased significantly in the second visit compared with first and decreased significantly in the third visit compared with the second. Specific IgG4 levels rose significantly in the second visit compared with the first and on the third visit compared with the second. Tryptase levels did not change significantly during the study.
CONCLUSIONS: BAT represents a diagnostic test with 100% specificity in allergic patients with mastocytosis and these patients are better to be monitored for a longer period during IT.

Liu J, Sun H, Wang X, et al.
Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer.
Int J Mol Sci. 2014; 15(1):758-73 [PubMed] Free Access to Full Article Related Publications
Well-run screening programs for cervical cancer in the population at risk have been shown to result in a sharp decrease in the incidence and mortality of cervical cancer in a number of large populations. Expression patterns of a recently identified biomarker family, microRNA, appear to be characteristic of tumor type and developmental origin. Several tumors have been reported to actively release exosomes carrying microRNAs. The present study has determined the association of microRNAs with cervical cancer-derived exosomes. The cervical cancer-derived exosomes were enriched in the cervicovaginal lavages specimens and the abundance of exosomes and exosomal microRNAs was detected by electron microscopy, western blot analysis, RT-qPCR and microRNA target reporter vector. The microRNA-21 and microRNA-146a, which were up-regulated in cervical cancer patients, were associated with the high levels of cervical cancer-derived exosomes. In conclusion, we demonstrated the abundance of exosomes in the cervicovaginal lavage specimens of women with cervical cancer. Furthermore, our results indicated that abnormally high levels of microRNA-21 and microRNA-146a existed in the cervical cancer-derived exosomes and the two microRNAs were functional in 293T cells.

Lorenzi L, Tabellini G, Vermi W, et al.
Occurrence of nodular lymphocyte-predominant hodgkin lymphoma in hermansky-pudlak type 2 syndrome is associated to natural killer and natural killer T cell defects.
PLoS One. 2013; 8(11):e80131 [PubMed] Free Access to Full Article Related Publications
Hermansky Pudlak type 2 syndrome (HPS2) is a rare autosomal recessive primary immune deficiency caused by mutations on β3A gene (AP3B1 gene). The defect results in the impairment of the adaptor protein 3 (AP-3) complex, responsible for protein sorting to secretory lysosomes leading to oculo-cutaneous albinism, bleeding disorders and immunodeficiency. We have studied peripheral blood and lymph node biopsies from two siblings affected by HPS2. Lymph node histology showed a nodular lymphocyte predominance type Hodgkin lymphoma (NLPHL) in both HPS2 siblings. By immunohistochemistry, CD8 T-cells from HPS2 NLPHL contained an increased amount of perforin (Prf) + suggesting a defect in the release of this granules-associated protein. By analyzing peripheral blood immune cells we found a significant reduction of circulating NKT cells and of CD56(bright)CD16(-) Natural Killer (NK) cells subset. Functionally, NK cells were defective in their cytotoxic activity against tumor cell lines including Hodgkin Lymphoma as well as in IFN-γ production. This defect was associated with increased baseline level of CD107a and CD63 at the surface level of unstimulated and IL-2-activated NK cells. In summary, these results suggest that a combined and profound defect of innate and adaptive effector cells might explain the susceptibility to infections and lymphoma in these HPS2 patients.

Plantier F
[Granular cell tumour or Abrikissoff's tumour].
Ann Dermatol Venereol. 2013; 140(5):399-402 [PubMed] Related Publications

Ordóñez NG
Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update.
Hum Pathol. 2014; 45(2):191-205 [PubMed] Related Publications
Since the identification of S100 protein as an immunohistochemical marker that could be useful in the diagnosis of melanoma in the early 1980s, a large number of other melanocytic-associated markers that could potentially be used to assist in the differential diagnosis of these tumors have also been investigated. A great variation exists, however, among these markers, not only in their expression in some subtypes of melanoma, particularly desmoplastic melanoma, but also in their specificity because some of them can also be expressed in nonmelanocytic neoplasms, including various types of soft tissue tumors and carcinomas. This article reviews the information that is currently available on the practical value of some of the markers that have more often been recommended for assisting in the diagnosis of melanomas, including those that have only recently become available.

Toricelli M, Melo FH, Peres GB, et al.
Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation.
Mol Cancer. 2013; 12:22 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Anoikis resistance is one of the abilities acquired along tumor progression. This characteristic is associated with metastasis development, since tumorigenic cells must survive independently of cell-matrix interactions in this process. In our laboratory, it was developed a murine melanocyte malignant transformation model associated with a sustained stressful condition. After subjecting melan-a melanocytes to 1, 2, 3 and 4 cycles of anchorage impediment, anoikis resistant cells were established and named 1C, 2C, 3C and 4C, respectively. These cells showed altered morphology and PMA independent cell growth, but were not tumorigenic, corresponding to pre-malignant cells. After limiting dilution of 4C pre-malignant cells, melanoma cell lines with different characteristics were obtained. Previous data from our group showed that increased Timp1 expression correlated with anoikis-resistant phenotype. Timp1 was shown to confer anchorage-independent growth capability to melan-a melanocytes and render melanoma cells more aggressive when injected into mice. However, the mechanisms involved in anoikis regulation by Timp1 in tumorigenic cells are not clear yet.
METHODS: The β1-integrin and Timp1 expression were evaluated by Western blotting and CD63 protein expression by flow cytometry using specific antibodies. To analyze the interaction among Timp1, CD63 and β1-integrin, immunoprecipitation assays were performed, anoikis resistance capability was evaluated in the presence or not of the PI3-K inhibitors, Wortmannin and LY294002. Relative expression of TIMP1 and CD63 in human metastatic melanoma cells was analyzed by real time PCR.
RESULTS: Differential association among Timp1, CD63 and β1-integrins was observed in melan-a melanocytes, 4C pre-malignant melanocytes and 4C11- and 4C11+ melanoma cells. Timp1 present in conditioned medium of melanoma cells rendered melan-a melanocytes anoikis-resistant through PI3-K signaling pathway independently of Akt activation. In human melanoma cell lines, in which TIMP1 and beta-1 integrin were also found to be interacting, TIMP1 and CD63 levels together was shown to correlate significantly with colony formation capacity.
CONCLUSIONS: Our results show that Timp1 is assembled in a supramolecular complex containing CD63 and β1-integrins along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway, independently of Akt phosphorylation. In addition, our data point TIMP1, mainly together with CD63, as a potential biomarker of melanoma.

Miller IV, Raposo G, Welsch U, et al.
First identification of Ewing's sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications.
Biol Cell. 2013; 105(7):289-303 [PubMed] Related Publications
BACKGROUND INFORMATION: Exosomes are small RNA- and protein-containing extracellular vesicles (EVs) that are thought to mediate hetero- and homotypic intercellular communication between normal and malignant cells.Tumour-derived exosomes are believed to promote re-programming of the tumour-associated stroma to favour tumour growth and metastasis. Currently, exosomes have been intensively studied in carcinomas. However, little is known about their existence and possible role in sarcomas.
RESULTS: Here, we report on the identification of vesicles with exosomal features derived from Ewing's sarcoma(ES), the second most common soft-tissue or bone cancer in children and adolescents. ES cell line-derived EV shave been isolated by ultracentrifugation and analysed by flow-cytometric assessment of the exosome-associated proteins CD63 and CD81 as well as by electron microscopy. They proved to contain ES-specific transcripts including EWS-FLI1, which were suitable for the sensitive detection of ES cell line-derived exosomes by qRT-PCRin a pre-clinical model for patient plasma. Microarray analysis of ES cell line-derived exosomes revealed that they share a common transcriptional signature potentially involved in G-protein-coupled signalling, neurotransmitter signalling and stemness.
CONCLUSIONS: In summary, our results imply that ES-derived exosomes could eventually serve as biomarkers for minimal residual disease diagnostics in peripheral blood and prompt further investigation of their potential biological role in modification of the ES-associated microenvironment

Wei F, Yang J, Wong DT
Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM).
Biosens Bioelectron. 2013; 44:115-21 [PubMed] Free Access to Full Article Related Publications
Exosomes biomarkers mediating important biological process, especially in the systemic disease diagnostics and therapeutics, yet the protective exosomal vesicle structure hinders rapid, simple detection of the harbored molecules. We have established a new method, the electric field-induced release and measurement (EFIRM), which can simultaneously disrupt exosomes to release the contents and on-site monitoring the harbored exosomal RNA/proteins biomarkers. When exposed to a non-uniform electrical field, exosomal RNA and proteins are rapidly released. Bio-recognition of these biomolecules is carried out concurrently. We tested the hypothesis that the lung cancer cell line, H460 stably transfected with hCD63-GFP, would shed hCD63-GFP expressing exosomes that could be detected in serum and saliva. We confirmed in vivo that H460-CD63-GFP shed exosomes were transported to blood and saliva. This result demonstrates for the first time tumor-shed exosomes were detected in saliva, in addition to blood, presenting a new translational utility of exosome-based biomarker detection in saliva.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD63, Cancer Genetics Web: http://www.cancer-genetics.org/CD63.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 10 March, 2017     Cancer Genetics Web, Established 1999