Signal Transduction
CancerIndex Home - Guide to Internet Resources for Cancer Home > Research > Signal Transduction

"The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway." (Source: MeSH)

An overview of major signal transduction pathways
Figure: An overview of major signal transduction pathways
Source: (License: CC BY-SA 3.0)

Found this page useful?

Menu: Signal Transduction

Web Resources: Signal Transduction and Cancer
Latest Research Publications

Web Resources: Signal Transduction and Cancer (3 links)

Latest Research Publications

This list of publications is regularly updated (Source: PubMed).

Gao X, Liu Y, Deeb D, et al.
Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-κB/mTOR signaling.
J Exp Ther Oncol. 2014; 10(4):275-83 [PubMed] Free Access to Full Article Related Publications
Pristimerin isaquinonemethidetriterpenoidthathasshown anticancer activity against some cancer types. However, the antitumor effects of pristimerin (PM) in ovarian cancer cells have not been adequately studied. The objective of the present study was to determine the anticancer activity and its mechanism of action in human ovarian carcinoma cell lines. PM strongly inhibited the proliferation of ovarian cancer cells by inducing apoptosis characterized by increased annexin V-binding, cleavage of poly (ADP-ribose) polymerase (PARP-1) and procaspases-3, -8 and -9. Furthermore, PM caused mitochondrial depolarization. Western blot analysis showed inhibition of prosurvival phospho-AKT (p-AKT), nuclear factor kappa B (NF-κB) (p65) and phospho-mammalian target of rapamycin (p-mTOR) signaling proteins in cells treated with PM. Treatment with PM also inhibited the expression of NF-κB-regulated antiapoptotic Bcl-2, Bcl-xL, c-IAP1 and survivin. Thus, our data showing potent antiproliferative and apoptosis-inducing activity of PM in ovarian carcinoma cells through the inhibition of AKT/ NF-κB/ mTOR signaling pathway warrant further investigation of PM for the management of ovarian cancer.

Related: Apoptosis Mitochondrial Mutations in Cancer Ovarian Cancer AKT1 MTOR

Wang J, Knaut H
Chemokine signaling in development and disease.
Development. 2014; 141(22):4199-205 [PubMed] Related Publications
Chemokines are a group of small, secreted molecules that signal through G protein-coupled receptors to promote cell survival and proliferation and to provide directional guidance to migrating cells. CXCL12 is one of the most evolutionary conserved chemokines and signals through the chemokine receptor CXCR4 to guide cell migration during embryogenesis, immune cell trafficking and cancer metastasis. Here and in the accompanying poster, we provide an overview of chemokine signaling, focusing on CXCL12, and we highlight some of the different chemokine-dependent strategies used to guide migrating cells.

Zhu Y, Liu Y, Qian Y, et al.
Research on the efficacy of Celastrus Orbiculatus in suppressing TGF-β1-induced epithelial-mesenchymal transition by inhibiting HSP27 and TNF-α-induced NF-κ B/Snail signaling pathway in human gastric adenocarcinoma.
BMC Complement Altern Med. 2014; 14:433 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Celastrus orbiculatus has been used as a folk medicine in China for the treatment of many diseases. In the laboratory, the ethyl acetate extract of Celastrus orbiculatus (COE) displays a wide range of anticancer functions. However, the inhibition of the metastasis mechanism of COE in gastric cancer cells has not been investigated so far.
METHODS: The present study was undertaken to determine if the anti-metastasis effect of COE was involved in inhibiting of epithelial-mesenchymal transition (EMT) of human gastric adenocarcinoma SGC-7901 cells. In vitro, a well-established experimental EMT model involving transforming growth factor β1 (TGF-β1) was applied. Viability, invasion and migration, protein and mRNA expression of tumor cells were analyzed by MTT assay, transwell assay, western blot and real-time PCR, respectively. The molecular targets of COE in SGC-7901 cells were investigated by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF mass spectrometer. Overexpression of heat shock protein 27 (HSP27) was performed by transfected with the recombinant retroviral expression plasmid. In vivo, the anti-metastasis mechanisms of COE in the peritoneal gastric cancer xenograft model was explored and the effect was tested.
RESULTS: The non-cytostatic concentrations of COE effectively inhibited TGF-β1 induced EMT process in SGC-7901 cells, which is characterized by prevented morphological changes, increased E-cadherin expression and decreased Vimentin, N-cadherin expression. Moreover, COE inhibited invasion and migration induced by TGF-β1. Using a comparative proteomics approach, four proteins were identified as differently expressed, with HSP27 protein being one of the most significantly down-regulated proteins induced by COE. Moreover, the activation of nuclear factor κB (NF-κB)/Snail signaling pathway induced by tumor necrosis factor-α (TNF-α) was also attenuated under the pretreatment of COE. Interestingly, overexpression of HSP27 significantly decreases the inhibitory effect of COE on EMT and the NF-κB/Snail pathway. Furthermore, COE significantly reduced the number of peritoneal metastatic nodules in the peritoneal gastric cancer xenograft model.
CONCLUSIONS: Taken together, these results suggest that COE inhibits the EMT by suppressing the expression of HSP27, correlating with inhibition of NF-κB/Snail signal pathways in SGC-7901 cells. Based on these results, COE may be considered a novel anti-cancer agent for the treatment of metastasis in gastric cancer.

Related: Stomach Cancer Gastric Cancer TGFB1 TNF

Yu H, Lee H, Herrmann A, et al.
Revisiting STAT3 signalling in cancer: new and unexpected biological functions.
Nat Rev Cancer. 2014; 14(11):736-46 [PubMed] Related Publications
The Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) proteins, particularly STAT3, are among the most promising new targets for cancer therapy. In addition to interleukin-6 (IL-6) and its family members, multiple pathways, including G-protein-coupled receptors (GPCRs), Toll-like receptors (TLRs) and microRNAs were recently identified to regulate JAK-STAT signalling in cancer. Well known for its role in tumour cell proliferation, survival, invasion and immunosuppression, JAK-STAT3 signalling also promotes cancer through inflammation, obesity, stem cells and the pre-metastatic niche. In addition to its established role as a transcription factor in cancer, STAT3 regulates mitochondrion functions, as well as gene expression through epigenetic mechanisms. Newly identified regulators and functions of JAK-STAT3 in tumours are important targets for potential therapeutic strategies in the treatment of cancer.

Related: Cancer Prevention and Risk Reduction

Safi R, Nelson ER, Chitneni SK, et al.
Copper signaling axis as a target for prostate cancer therapeutics.
Cancer Res. 2014; 74(20):5819-31 [PubMed] Article available free on PMC after 15/10/2015 Related Publications
Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies.

Related: Apoptosis Prostate Cancer

Kemper K, de Goeje PL, Peeper DS, van Amerongen R
Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy.
Cancer Res. 2014; 74(21):5937-41 [PubMed] Related Publications
Mutations in BRAF are present in the majority of patients with melanoma, rendering these tumors sensitive to targeted therapy with BRAF and MEK inhibitors. Unfortunately, resistance almost invariably develops. Recently, a phenomenon called "phenotype switching" has been identified as an escape route. By switching from a proliferative to an invasive state, melanoma cells can acquire resistance to these targeted therapeutics. Interestingly, phenotype switching bears a striking resemblance to the epithelial-to-mesenchymal-like transition that has been described to occur in cancer stem cells in other tumor types. We propose that these changes are manifestations of one and the same underlying feature, namely a dynamic and reversible phenotypic tumor cell plasticity that renders a proportion of cells both more invasive and resistant to therapy. At the same time, the specific characteristics of these tumor cell populations offer potential for being explored as target for therapeutic intervention.

Related: Cancer Prevention and Risk Reduction BRAF gene

Shin K, Lim A, Zhao C, et al.
Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors.
Cancer Cell. 2014; 26(4):521-33 [PubMed] Related Publications
Hedgehog (Hh) pathway inhibitors are clinically effective in treatment of basal cell carcinoma and medulloblastoma, but fail therapeutically or accelerate progression in treatment of endodermally derived colon and pancreatic cancers. In bladder, another organ of endodermal origin, we find that despite its initial presence in the cancer cell of origin Sonic hedgehog (Shh) expression is invariably lost during progression to invasive urothelial carcinoma. Genetic blockade of stromal response to Shh furthermore dramatically accelerates progression and decreases survival time. This cancer-restraining effect of Hh pathway activity is associated with stromal expression of BMP signals, which stimulate urothelial differentiation. Progression is dramatically reduced by pharmacological activation of BMP pathway activity with low-dose FK506, suggesting an approach to management of human bladder cancer.

Related: Bladder Cancer Bladder Cancer - Molecular Biology

Bosman MC, Schepers H, Jaques J, et al.
The TAK1-NF-κB axis as therapeutic target for AML.
Blood. 2014; 124(20):3130-40 [PubMed] Related Publications
Development and maintenance of leukemia can be partially attributed to alterations in (anti)-apoptotic gene expression. Genome-wide transcriptome analyses revealed that 89 apoptosis-associated genes were differentially expressed between patient acute myeloid leukemia (AML) CD34(+) cells and normal bone marrow (NBM) CD34(+) cells. Among these, transforming growth factor-β activated kinase 1 (TAK1) was strongly upregulated in AML CD34(+) cells. Genetic downmodulation or pharmacologic inhibition of TAK1 activity strongly impaired primary AML cell survival and cobblestone formation in stromal cocultures. TAK1 inhibition was mainly due to blockade of the nuclear factor κB (NF-κB) pathway, as TAK1 inhibition resulted in reduced levels of P-IκBα and p65 activity. Overexpression of a constitutive active variant of NF-κB partially rescued TAK1-depleted cells from apoptosis. Importantly, NBM CD34(+) cells were less sensitive to TAK1 inhibition compared with AML CD34(+) cells. Knockdown of TAK1 also severely impaired leukemia development in vivo and prolonged overall survival in a humanized xenograft mouse model. In conclusion, our results indicate that TAK1 is frequently overexpressed in AML CD34(+) cells, and that TAK1 inhibition efficiently targets leukemic stem/progenitor cells in an NF-κB-dependent manner.

Related: Apoptosis Acute Myeloid Leukemia (AML)

Iida Y, H Tsuno N, Kishikawa J, et al.
Lysophosphatidylserine stimulates chemotactic migration of colorectal cancer cells through GPR34 and PI3K/Akt pathway.
Anticancer Res. 2014; 34(10):5465-72 [PubMed] Related Publications
BACKGROUND: Lysophosphatidylserine (lysoPS) is a type of lysophospholipid mediator, which is involved in allergic conditions and tumor progression. We investigated the physiological function of lysoPS on colorectal cancer (CRC) cell lines, as well as the involved receptor and signaling pathways.
MATERIALS AND METHODS: Expression of lysoPS receptors on six cell lines was examined by reverse transcription-polymerase chain reaction (RT-PCR). The physiological functions of lysoPS were investigated, and experiments using small interfering RNA (siRNA) or inhibitors of the signaling pathways were conducted.
RESULTS: Among the three lysoPS receptors, GPR34 was highly expressed on all cell lines. LysoPS stimulated the chemotactic migratory ability. Wortmannin inhibited the migratory ability, as well as the GPR34 knock-down, strongly suggestive of the involvement of this receptor in the PI3K/Akt pathway.
CONCLUSION: The involved receptor and pathways in the migratory ability in response to lysoPS was demonstrated, which opens premises for targeting as a new strategy for prevention and treatment of colorectal cancer.

Related: Colorectal (Bowel) Cancer AKT1

Fayngerts SA, Wu J, Oxley CL, et al.
TIPE3 is the transfer protein of lipid second messengers that promote cancer.
Cancer Cell. 2014; 26(4):465-78 [PubMed] Article available free on PMC after 13/10/2015 Related Publications
More than half of human cancers have aberrantly upregulated phosphoinositide signals; yet how phospholipid signals are controlled during tumorigenesis is not fully understood. We report here that TIPE3 (TNFAIP8L3) is the transfer protein of phosphoinositide second messengers that promote cancer. High-resolution crystal structure of TIPE3 shows a large hydrophobic cavity that is occupied by a phospholipid-like molecule. TIPE3 preferentially captures and shuttles two lipid second messengers, i.e., phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, and increases their levels in the plasma membrane. Notably, human cancers have markedly upregulated TIPE3 expression. Knocking out TIPE3 diminishes tumorigenesis, whereas enforced TIPE3 expression enhances it in vivo. Thus, the function and metabolism of phosphoinositide second messengers are controlled by a specific transfer protein during tumorigenesis.

Related: Cancer Prevention and Risk Reduction

Chakrabarti R, Wei Y, Hwang J, et al.
ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling.
Nat Cell Biol. 2014; 16(10):1004-15, 1-13 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Emerging evidence suggests that cancer is populated and maintained by tumour-initiating cells (TICs) with stem-like properties similar to those of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signalling. Importantly, Fzd7-dependent enhancement of Wnt signalling by ΔNp63 also governs tumour-initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms.

Related: Breast Cancer

Tao C, Lin H, Chen S
The regulation of ERK and p-ERK expression by cisplatin and sorafenib in gastric cancer cells.
Gene. 2014; 552(1):106-15 [PubMed] Related Publications
Previous studies have reported strong antitumor effects of cisplatin and sorafenib. Our results indicated that cisplatin and sorafenib exhibited anti-tumor effects on gastric cancer cells. They significantly inhibited gastric cell growth and induced apoptosis. They effectively inhibited gastric cancer cell proliferation and induced G0/G1 phase arrest. Western blotting analysis indicated that it also promoted the phosphorylation extracellular signal regulated kinase (p-ERK). Moreover, cisplatin and sorafenib played a synergistic antitumor effect. These results suggested that the antitumor mechanism of cisplatin and sorafenib involved altering the cell cycle and stimulating ERK phosphorylation in the ERK signaling pathway.

Related: Apoptosis Cisplatin Stomach Cancer Gastric Cancer Sorafenib (Nexavar)

Liu Y, Patel L, Mills GB, et al.
Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma.
J Natl Cancer Inst. 2014; 106(9) [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Endometrioid endometrial carcinoma (EEC) is the most common form of endometrial carcinoma. The heterogeneous clinical course of EEC is an obstacle to individualized patient care.
METHODS: We performed an integrated analysis on the multiple-dimensional data types including whole-exome and RNA sequencing, RPPA profiling, and clinical data from 271 EEC cases in The Cancer Genome Atlas (TCGA) to identify molecular fingerprints that may account for this clinical heterogeneity. Significance analysis of microarray was used to identify marker genes of each subtype that were subject to pathway analysis. Association of molecular subtypes with clinical features and mutation data was analyzed with the Mann Whitney, Chi-square, Fisher's exact, and Kruskal-Wallis tests. Survival analysis was evaluated with log-rank test. All statistical tests were two-sided.
RESULTS: Four transcriptome subtypes with distinct clinicopathologic characteristics and mutation spectra were identified from the TCGA dataset and validated in an independent sample cohort of 184 EEC cases. Cluster II consisted of younger, obese patients with low-grade EEC but diminished survival. CTNNB1 exon 3 mutations were present in 87.0% (47/54) of Cluster II (P < .001) that exhibited a low overall mutation rate; this was statistically significantly associated with Wnt/β-catenin signaling activation (P < .001). High expression levels of CTNNB1 (P = .001), MYC (P = .01), and CCND1 (P = .01) were associated with poorer overall survival in low-grade EEC tumors.
CONCLUSIONS: CTNNB1 exon 3 mutations are likely a driver that characterize an aggressive subset of low-grade and low-stage EEC occurring in younger women.

Related: Endometrial (Uterus) Cancer Endometrial Cancer CTNNB1 gene

Albert B, Hahn H
Interaction of hedgehog and vitamin D signaling pathways in basal cell carcinomas.
Adv Exp Med Biol. 2014; 810:329-41 [PubMed] Related Publications
Basal Cell Carcinomas (BCCs) are the most commonly diagnosed tumors among people in the western world. Most BCCs are caused by mutational inactivation of the tumor suppressor Patched (PTCH), which results in activation of Smoothened (SMO) and of the Hedgehog (HH) signaling pathway. Recent studies indicate that BCC progression involves a crosstalk between Hh signaling, vitamin D derivatives and the vitamin D receptor (Vdr) signaling pathway. This has been demonstrated in BCC-bearing Ptch mutant mice and BCC cell lines, in which both vitamin D3 and its active metabolite calcitriol (1alpha-25(OH)2D3) exert antitumor effects. Interestingly, the antitumor effects are mainly ascribed to an inhibition of Hh signaling. Furthermore, as evident from studies in Vdr deficient mice, calcitriol may also repress the activity of Hh signaling in a Vdr-dependent fashion thereby establishing an additional inhibitory feedback on Hh signaling activity. In this chapter, we discuss the current understanding and controversial findings of the inhibition of Hh signaling by vitamin D derivatives and the implication of these findings for BCC carcinogenesis.

Related: Basal Cell Carcinoma Skin Cancer

Emmert S, Schön MP, Haenssle HA
Molecular biology of basal and squamous cell carcinomas.
Adv Exp Med Biol. 2014; 810:234-52 [PubMed] Related Publications
The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so called nonmelanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun-exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type have begun to pave the way for modulating new molecular targets therapeutically with small molecules.

Related: Basal Cell Carcinoma Skin Cancer KRAS gene FYN

Wang F, Ke ZF, Wang R, et al.
Astrocyte elevated gene-1 (AEG-1) promotes osteosarcoma cell invasion through the JNK/c-Jun/MMP-2 pathway.
Biochem Biophys Res Commun. 2014; 452(4):933-9 [PubMed] Related Publications
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents and is characterised by high malignant and metastatic potentials. However, the molecular mechanism underlying this invasiveness remains unclear. In this study, we determined that PD98059 and SP600125, the two mitogen-activated protein kinase (MAPK) family inhibitors, decreased the osteosarcoma cell U2OS-AEG-1 migration and invasion that was enhanced by astrocyte elevated gene-1 (AEG-1) in an in vitro wound-healing and Matrigel invasion assay independently of cell viability. These findings indicate that AEG-1 promoted osteosarcoma cell invasion is relevant to the MAPK pathways. The up-regulation of AEG-1 increased the levels of phosphor-c-Jun N-terminal kinase (JNK) and phosphor-c-Jun; however, there were no marked changes in the levels of phosphor-extracellular regulated kinase (ERK) 1/2 or phosphor-c-Fos due to the activation of AEG-1 in U2OS. SP600125 (a JNK inhibitor) decreased phosphor-c-Jun and MMP-2 in U2OS-AEG-1, while PD98059 (a ERK1/2 inhibitor) had no influence on the levels of phosphor-c-Jun or MMP-2 in U2OS-AEG-1. Further study revealed that the down-regulation of phosphor-c-Jun not only obviously decreased the MMP-2 protein level and the MMP-2 transcriptional activity that were up-regulated by AEG-1 in Western-blot and luciferase reporter assays, but also inhibited the migration and invasion abilities of the U2OS-AEG-1 cells, which suggests that AEG-1 mediated U2OS invasion at least partially via the JNK/c-Jun/MMP-2 pathway. Consistent with these observations, immunohistochemical (IHC) staining revealed that AEG-1 expression was associated with the protein levels of phosphor-c-Jun and MMP-2 in needle biopsy paraffin-embedded archival human osteosarcoma tissues. Taken together, our findings suggest that AEG-1 plays a crucial role in the aggressiveness of osteosarcoma via the JNK/c-Jun/MMP-2 pathway.

Related: MMP2 Osteosarcoma

Seino M, Okada M, Shibuya K, et al.
Requirement of JNK signaling for self-renewal and tumor-initiating capacity of ovarian cancer stem cells.
Anticancer Res. 2014; 34(9):4723-31 [PubMed] Related Publications
BACKGROUND/AIM: Activation of the c-JUN N-terminal kinase (JNK) signaling pathway has been associated with poor survival of ovarian cancer patients, but the role(s) and significance of JNK signaling in ovarian cancer cells remain poorly understood. In the present study, we aimed to investigate the role of JNK specifically in ovarian cancer stem cells (CSCs).
MATERIALS AND METHODS: The effect of JNK inhibition on the self-renewal (CSC marker expression, sphere-forming ability) and tumor-initiating capacity was examined in CSCs derived from the A2780 human ovarian cancer cell line. JNK inhibition was achieved either pharmacologically or genetically by use of RNA interference.
RESULTS: Both pharmacological and genetic targeting of JNK resulted in loss of self-renewal and tumor-initiating capacity of A2780 CSCs.
CONCLUSION: Our findings demonstrate, to our knowledge for the first time, that JNK has a pivotal role in the maintenance of ovarian CSCs.

Related: Ovarian Cancer

Deb SP, Singh S, Deb S
MDM2 overexpression, activation of signaling networks, and cell proliferation.
Subcell Biochem. 2014; 85:215-34 [PubMed] Related Publications
Frequent overexpression of MDM2 in human cancers suggests that the protein confers a survival advantage to cancer cells. However, overexpression of MDM2 in normal cells seems to restrict cell proliferation. This review discusses the cell growth regulatory functions of MDM2 in normal and genetically defective cells to assess how cancer cells evade the growth-restricting consequence of MDM2 overexpression. Similar to oncoproteins that induce a DNA damage response and oncogene induced senescence in non-transformed cells, MDM2 induces G1-arrest and intra-S phase checkpoint responses that control untimely DNA replication in the face of genetic challenges.

Related: Cancer Prevention and Risk Reduction AKT1 MDM2 gene

Teo K, Brunton VG
The role and therapeutic potential of the autotaxin-lysophosphatidate signalling axis in breast cancer.
Biochem J. 2014; 463(1):157-65 [PubMed] Related Publications
ATX (autotaxin) is a secreted lysophospholipase capable of catalysing the formation of the bioactive lipid mediator LPA (lysophosphatidate) from LPC (lysophosphatidylcholine). The ATX-LPA signalling axis plays an important role in both normal physiology and disease pathogenesis, including cancer. In a number of different human cancers, expression of ATX and the G-protein-coupled LPARs (lysophosphatidic acid receptors) have been shown to be elevated and their activation regulates many processes central to tumorigenesis, including proliferation, invasion, migration and angiogenesis. The present review provides an overview of the ATX-LPA signalling axis and collates current knowledge regarding its specific role in breast cancer. The potential manipulation of this pathway to facilitate diagnosis and treatment is also discussed.

Related: Breast Cancer

Martinengo C, Poggio T, Menotti M, et al.
ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis.
Cancer Res. 2014; 74(21):6094-106 [PubMed] Related Publications
Rearrangements involving the anaplastic lymphoma kinase (ALK) gene are defining events in several tumors, including anaplastic large-cell lymphoma (ALCL) and non-small cell lung carcinoma (NSCLC). In such cancers, the oncogenic activity of ALK stimulates signaling pathways that induce cell transformation and promote tumor growth. In search for common pathways activated by oncogenic ALK across different tumors types, we found that hypoxia pathways were significantly enriched in ALK-rearranged ALCL and NSCLC, as compared with other types of T-cell lymphoma or EGFR- and K-RAS-mutated NSCLC, respectively. Consistently, in both ALCL and NSCLC, we found that under hypoxic conditions, ALK directly regulated the abundance of hypoxia-inducible factors (HIF), which are key players of the hypoxia response in normal tissues and cancers. In ALCL, the upregulation of HIF1α and HIF2α in hypoxic conditions required ALK activity and its downstream signaling proteins STAT3 and C/EBPβ. In vivo, ALK regulated VEGFA production and tumor angiogenesis in ALCL and NSCLC, and the treatment with the anti-VEGFA antibody bevacizumab strongly impaired ALCL growth in mouse xenografts. Finally, HIF2α, but not HIF1α, was required for ALCL growth in vivo whereas the growth and metastasis potential of ALK-rearranged NSCLC required both HIF1α and HIF2α. In conclusion, we uncovered an ALK-specific regulation of the hypoxia response across different ALK(+) tumor types and propose HIFs as a powerful specific therapeutic target in ALK-rearranged ALCL and NSCLC.

Related: Non-Small Cell Lung Cancer HIF1A KRAS gene EGFR ALK

Steinway SN, Zañudo JG, Ding W, et al.
Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation.
Cancer Res. 2014; 74(21):5963-77 [PubMed] Related Publications
Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue, and establish distant metastases. A hallmark of EMT is the loss of E-cadherin expression, and one major signal for the induction of EMT is TGFβ, which is dysregulated in up to 40% of hepatocellular carcinoma (HCC). We have constructed an EMT network of 70 nodes and 135 edges by integrating the signaling pathways involved in developmental EMT and known dysregulations in invasive HCC. We then used discrete dynamic modeling to understand the dynamics of the EMT network driven by TGFβ. Our network model recapitulates known dysregulations during the induction of EMT and predicts the activation of the Wnt and Sonic hedgehog (SHH) signaling pathways during this process. We show, across multiple murine (P2E and P2M) and human HCC cell lines (Huh7, PLC/PRF/5, HLE, and HLF), that the TGFβ signaling axis is a conserved driver of mesenchymal phenotype HCC and confirm that Wnt and SHH signaling are induced in these cell lines. Furthermore, we identify by network analysis eight regulatory feedback motifs that stabilize the EMT process and show that these motifs involve cross-talk among multiple major pathways. Our model will be useful in identifying potential therapeutic targets for the suppression of EMT, invasion, and metastasis in HCC.

Related: Liver Cancer

Hong X, Nguyen HT, Chen Q, et al.
Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover.
EMBO J. 2014; 33(21):2447-57 [PubMed] Article available free on PMC after 03/11/2015 Related Publications
Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of Ras(V12) depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1.

Related: EGFR

Estrella JS, Taggart MW, Rashid A, Abraham SC
Low-grade neuroendocrine tumors arising in intestinal adenomas: evidence for alterations in the adenomatous polyposis coli/β-catenin pathway.
Hum Pathol. 2014; 45(10):2051-8 [PubMed] Related Publications
Low-grade neuroendocrine tumors (NETs) arising in intestinal adenomas are rare. They are occasionally observed in patients with familial adenomatous polyposis (FAP), suggesting a role for the adenomatous polyposis coli/β-catenin pathway. We identified 25 composite adenoma/low-grade NETs from colorectum (21) and duodenum (4) and evaluated their clinicopathological features, survival, and nuclear β-catenin expression by immunohistochemistry. β-catenin staining was scored as % positivity × intensity (weak, 1; moderate, 2; and strong, 3), for a total possible score of 300. Control groups included 1781 adenomas without NET, 63 composite adenoma/high-grade neuroendocrine carcinomas (NECs), and 32 sporadic NETs. Among 25 adenoma/low-grade NETs, 4 (16%) occurred in patients with FAP. Size of the NET component ranged from 0.01 to 0.9 cm (mean, 0.32 cm). Most (84%) arose in "advanced" adenomas (size >1 cm, villous architecture [72%], or high-grade dysplasia [56%]). In contrast, villous architecture and high-grade dysplasia were present in only 14% (P < .001) and 7% (P < .001), respectively, of adenomas without NET. Overall survival with adenoma/low-grade NET was significantly higher than adenoma/high-grade NEC but significantly lower than sporadic NET (P < .001). Higher β-catenin expression was seen in adenoma/low-grade NETs (mean score, 231) compared with sporadic NETs (mean score, 48; P < .0001) and adenoma/high-grade NEC (mean score, 173; P = .04). In summary, composite adenoma/low-grade NETs most commonly occur with advanced polyps, but the NET component itself is generally small and indolent. In contrast to sporadic NETs, the occurrence of these lesions in FAP and their high levels of nuclear β-catenin expression support a pathogenic role for the adenomatous polyposis coli/β-catenin pathway.

Related: Familial Adenomatous Polyposis (FAP) CTNNB1 gene

Nakamoto M, Matsuyama A, Shiba E, et al.
Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma.
Virchows Arch. 2014; 465(4):401-8 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies and is associated with a variety of molecular abnormalities. Although WNT signaling through its canonical/non-canonical pathways is one of the major factors involved in oncogenesis or progression of PDA, the prognostic significance of WNT signaling still remains poorly investigated. In this study, the status of the WNT signaling pathways was immunohistochemically analyzed in 101 PDAs, and its potential association with patient postoperative survival was assessed. Nuclear expression of beta-catenin, a hallmark of the activated canonical pathway, was identified in 59 cases, and was associated with reduced survival compared to the patients lacking nuclear beta-catenin expression (P = 0.002). In contrast, activation of the non-canonical pathway (25 cases), as indicated by co-expression of WNT2/5a and nuclear NFATc1, was not correlated with reduced survival (P = 0.268). Co-activation of both pathways (16 cases) was associated with worse prognosis in comparison with cases with an activated non-canonical pathway (P = 0.034). In addition, nuclear beta-catenin expression was an independent unfavorable prognostic factor (P = 0.006). Our data indicate that activated WNT signaling through its canonical pathway has a significantly negative effect on the clinical course of PDA, and the canonical WNT pathway should be considered as a future therapeutic target for PDA.

Related: Cancer of the Pancreas Pancreatic Cancer

El-Habr EA, Levidou G, Trigka EA, et al.
Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development.
Virchows Arch. 2014; 465(4):473-85 [PubMed] Related Publications
We investigated the significance of PI3K/AKT/mTOR pathway and its interactions with MAPK, JAK/STAT and Notch pathways in meningioma progression. Paraffin-embedded tissue from 108 meningioma patients was analysed for the presence of mutations in PIK3CA and AKT1. These were correlated with the expression status of components of the PI3K/AKT/mTOR pathway, including p85α and p110γ subunits of PI3K, phosphorylated (p)-AKT, p-mTOR, p-p70S6K and p-4E-BP1, as well as of p-ERK1/2, p-STAT3 and Notch-1, clinicopathological data and patient survival. A mutation in PIK3CA or AKT1 was found in around 9 % of the cases. Higher grade meningiomas displayed higher nuclear expression of p-p70S6K; higher nuclear and cytoplasmic expression of p-4E-BP1 and of Notch-1; lower cytoplasmic expression of p85αPI3K, p-p70S6K and p-ERK1/2; and lower PTEN Histo-scores (H-scores). PTEN H-score was inversely correlated with recurrence probability. In univariate survival analysis, nuclear expression of p-4E-BP1 and absence of p-ERK1/2 expression portended adverse prognosis, whereas in multivariate survival analysis, p-ERK1/2 expression emerged as an independent favourable prognostic factor. Treatment of the human meningioma cell line HBL-52 with the PI3K inhibitor LY294002 resulted in reduction of p-AKT, p-p70S6K and p-ERK1/2 protein levels. The complex interactions established between components of the PI3K/AKT/mTOR pathway, or with components of the MAPK, JAK/STAT and Notch-1 pathways, appear to be essential for facilitating and fuelling meningioma progression.

Related: AKT1 NOTCH1 gene MTOR

Deng K, Guo X, Wang H, Xia J
The lncRNA-MYC regulatory network in cancer.
Tumour Biol. 2014; 35(10):9497-503 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) have been widely studied in recent years, and accumulating evidence identified lncRNAs as crucial regulators of various biological processes, including cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. In addition, the fact that lncRNAs interact with the MYC gene family in human carcinomas has been discovered. This review summarizes the latest progress on the investigation of lncRNAs and MYC, particularly focusing on the interplay between lncRNAs and MYC in cancer to reveal the significance of lncRNA-MYC network in regulating initiation, development, and metastasis of tumors. Further research and collection of clinical data would provide a better understanding of lncRNA-MYC network in cancer diagnosis and treatment.

Related: Cancer Prevention and Risk Reduction

Zheng Q, Liu WW, Li B, et al.
Anticancer effect of icaritin on human lung cancer cells through inducing S phase cell cycle arrest and apoptosis.
J Huazhong Univ Sci Technolog Med Sci. 2014; 34(4):497-503 [PubMed] Related Publications
Icaritin, a prenylflavonoid derivative from Epimedium Genus, has been shown to exhibit many pharmacological and biological activities. However, the function and the underlying mechanisms of icaritin in human non-small cell lung cancer have not been fully elucidated. The purpose of this study was to investigate the anticancer effects of icaritin on A549 cells and explore the underlying molecular mechanism. The cell viability after icaritin treatment was tested by MTT assay. The cell cycle distribution, apoptosis and reactive oxygen species (ROS) levels were analyzed by flow cytometry. The mRNA and protein expression levels of the genes involved in proliferation and apoptosis were respectively detected by RT-PCR and Western blotting. The results demonstrated that icaritin induced cell cycle arrest at S phase, and down-regulated the expression levels of S regulatory proteins such as Cyclin A and CDK2. Icaritin also induced cell apoptosis characterized by positive Hoechst 33258 staining, accumulation of the Annexin V-positive cells, increased ROS level and alteration in Bcl-2 family proteins expression. Moreover, icaritin induced sustained phosphorylation of ERK and p38 MAPK. These findings suggested that icaritin might be a new potent inhibitor by inducing S phase arrest and apoptosis in human lung carcinoma A549 cells.

Related: Apoptosis Lung Cancer

Perez-Yepez EA, Ayala-Sumuano JT, Lezama R, Meza I
A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial-mesenchymal transition in breast cancer cells.
Cancer Lett. 2014; 354(1):164-71 [PubMed] Related Publications
Interleukin 1β has been associated with tumor development, invasiveness and metastasis in various types of cancer. However, the molecular mechanisms underlying this association have not been clearly elucidated. The present study is the first to show, in breast cancer cells, that an IL-1β/IL-1RI/β-catenin signaling pathway induces β-catenin accumulation due to GSK3β inactivation by Akt phosphorylation. Translocation to the nucleus of accumulated β-catenin and formation of the TCF/Lef/β-catenin complex induce sequential expression of c-MYC, CCDN1, SNAIL1 and MMP2, leading to up-regulation of proliferation, migration and invasion; all of the processes shown to be required, in cancerous cells, to initiate transition from a non-invading to an invasive phenotype.

Related: Breast Cancer AKT1 CTNNB1 gene

Moghadamtousi SZ, Kadir HA, Paydar M, et al.
Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB.
BMC Complement Altern Med. 2014; 14:299 [PubMed] Article available free on PMC after 03/11/2015 Related Publications
BACKGROUND: Annona muricata leaves have been reported to have antiproliferative effects against various cancer cell lines. However, the detailed mechanism has yet to be defined. The current study was designed to evaluate the molecular mechanisms of A. muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells.
METHODS: The effect of AMEAE on cell proliferation of different cell lines was analyzed by MTT assay. High content screening (HCS) was applied to investigate the suppression of NF-κB translocation, cell membrane permeability, mitochondrial membrane potential (MMP) and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. The western blot analysis also carried out to determine the protein expression of cleaved caspase-3 and -9. Flow cytometry analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. Quantitative PCR analysis was performed to measure the gene expression of Bax and Bcl-2 proteins.
RESULTS: Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards lung cancer cells, A549, with an IC50 value of 5.09 ± 0.41 μg/mL after 72 h of treatment. Significant LDH leakage and phosphatidylserine externalization were observed in AMEAE treated cells by fluorescence analysis. Treatment of A549 cells with AMEAE significantly elevated ROS formation, followed by attenuation of MMP via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The incubation of A549 cells with superoxide dismutase and catalase significantly attenuated the cytotoxicity caused by AMEAE, indicating that intracellular ROS plays a pivotal role in cell death. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G0/G1 phase. Moreover, AMEAE suppressed the induced translocation of NF-κB from cytoplasm to nucleus.
CONCLUSIONS: Our data showed for the first time that the ethyl acetate extract of Annona muricata inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway with the involvement of the NF-kB signalling pathway.

Related: Apoptosis CASP3 Lung Cancer Mitochondrial Mutations in Cancer

Park SH, Kim J, Do KH, et al.
Activating transcription factor 3-mediated chemo-intervention with cancer chemokines in a noncanonical pathway under endoplasmic reticulum stress.
J Biol Chem. 2014; 289(39):27118-33 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
The cell-protective features of the endoplasmic reticulum (ER) stress response are chronically activated in vigorously growing malignant tumor cells, which provide cellular growth advantages over the adverse microenvironment including chemotherapy. As an intervention with ER stress responses in the intestinal cancer cells, preventive exposure to flavone apigenin potentiated superinduction of a regulatory transcription factor, activating transcription factor 3 (ATF3), which is also known to be an integral player coordinating ER stress response-related gene expression. ATF3 superinduction was due to increased turnover of ATF3 transcript via stabilization with HuR protein in the cancer cells under ER stress. Moreover, enhanced ATF3 caused inhibitory action against ER stress-induced cancer chemokines that are potent mediators determining the survival and metastatic potential of epithelial cancer cells. Although enhanced ATF3 was a negative regulator of the well known proinflammatory transcription factor NF-κB, blocking of NF-κB signaling did not affect ER stress-induced chemokine expression. Instead, immediately expressed transcription factor early growth response protein 1 (EGR-1) was positively involved in cancer chemokine induction by ER stressors. ER stress-induced EGR-1 and subsequent chemokine production were repressed by ATF3. Mechanistically, ATF3 directly interacted with and recruited HDAC1 protein, which led to epigenetic suppression of EGR-1 expression and subsequent chemokine production. Conclusively, superinduced ATF3 attenuated ER stress-induced cancer chemokine expression by epigenetically interfering with induction of EGR-1, a transcriptional modulator crucial to cancer chemokine production. Thus, these results suggest a potent therapeutic intervention of ER stress response-related cancer-favoring events by ATF3.

Related: Cancer Prevention and Risk Reduction ELAVL1

this page
it's private
powered by

This page last updated: 14th January 2015
Displaying links verified within last 2 weeks at time of update.

CancerIndex Logo

Site Map
Cancer Types

Health Professionals


© 1996-2013