Home > Research > Apoptosis


"One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; ( DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth." (Source: MeSH)

Found this page useful?

Web Resources: Apoptosis
Latest Research Publications

Web Resources: Apoptosis (2 links)

Latest Research Publications

This list of publications is regularly updated (Source: PubMed).

Guillermo-Lagae R, Santha S, Thomas M, et al.
Antineoplastic Effects of Honokiol on Melanoma.
Biomed Res Int. 2017; 2017:5496398 [PubMed] Free Access to Full Article Related Publications
Honokiol, a plant lignan has been shown to have antineoplastic effects against nonmelanoma skin cancer developments in mice. In this study, antineoplastic effects of honokiol were investigated in malignant melanoma models. In vitro effects of honokiol treatment on SKMEL-2 and UACC-62 melanoma cells were evaluated by measuring the cell viability, proliferation, apoptosis, cell cycle analysis, and expressions of various proteins associated with cell cycle progression and apoptosis. For the in vivo study, male nude mice inoculated with SKMEL-2 or UACC-62 cells received injections of sesame oil or honokiol for two to seven weeks. In vitro honokiol treatment caused significant decrease in cell viability, proliferation, cell cycle arrest, increased apoptosis, and modulation of apoptotic and cell cycle regulatory proteins. Honokiol caused an accumulation of cells in the G2/M phase of the cell cycle in SKMEL-2 and G0/G1 phase in UACC-62 cells. An elevated level of caspases and PARP were observed in both cell lines treated with honokiol. A decrease in the expression of various cell cycle regulatory proteins was also observed in honokiol treated cells. Honokiol caused a significant reduction of tumor growth in SKMEL-2 and UACC-62 melanoma xenografts. These findings suggest that honokiol is a good candidate for further studies as a possible treatment for malignant melanoma.

Cheng F, Pan Y, Lu YM, et al.
RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.
Biomed Res Int. 2017; 2017:9596152 [PubMed] Free Access to Full Article Related Publications
RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

Shen L, Zhang G, Lou Z, et al.
Cryptotanshinone enhances the effect of Arsenic trioxide in treating liver cancer cell by inducing apoptosis through downregulating phosphorylated- STAT3 in vitro and in vivo.
BMC Complement Altern Med. 2017; 17(1):106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Arsenic trioxide (ATO) is approved for treating terminal-stage liver cancer in China. Cryptotanshinone (CT), a STAT3 inhibitor, has exhibited certain anti-tumor potency; however, the use of CT enhanced ATO for treating liver cancer has not been reported. Here we try to elucidate how CT could enhance the efficacy of ATO for treating liver cancer and its correlation to STAT3 in vitro and in vivo.
METHODS: Cell viability of ATO combined with CT was assessed by (1)MTT assay. Cell apoptosis induced by ATO combined with CT was detected by Annexin V/PI staining and apoptosis-related proteins were detected by western blotting. STAT3-related proteins were analysis by western blotting analysis and Immunofluorescence assays. Efficacy evaluation of ATO combined with CT on xenograft was carried in nude mice and related proteins were analysis by Immunohistochemistry assays.
RESULTS: First we evaluated cell vitality, and our data indicated that the ATO combined with CT showed obvious growth inhibition of Bel-7404 cells compared to ATO or CT alone. Next we found that ATO combined with CT induced cell apoptosis in Bel-7404 cells and upregulated the activation of apoptosis-related proteins cleaved-caspase-3, cleaved-caspase-9, and cleaved-poly(ADP-ribose) polymerase in a time-dependent manner. Next, we found that ATO combined with CT not only inhibited the constitutive levels of phosphorylated-JAK2 and phosphorylated-STAT3(Tyr705) but did so in a time-dependent manner. We also found that ATO combined with CT reversed the upregulated expression of phosphorylated-STAT3(Tyr705) stimulated by interleukin-6 and downregulated STAT3 direct target genes and the anti-apoptotic proteins Bcl-2, XIAP, and survivin but obviously upregulated the promoting apoptosis proteins Bak,.In vivo studies showed that ATO combined with CT decreased tumor growth. Tumors from ATO combined with CT-treated mice showed decreased levels of phosphorylated-STAT3(Tyr705) and the anti-apoptotic protein Bcl-2 but an increased level of pro-apoptotic protein Bax.
CONCLUSIONS: Our study provides strong evidence that CT could enhance the efficacy of ATO in treating liver cancer both in vitro and in vivo. Downregulation of phosphorylated-STAT3 expression may play an important role in inducing apoptosis of Bel-7404 cells.

Murata Y, Kokuryo T, Yokoyama Y, et al.
The Anticancer Effects of Novel α-Bisabolol Derivatives Against Pancreatic Cancer.
Anticancer Res. 2017; 37(2):589-598 [PubMed] Related Publications
Pancreatic cancer is highly malignant, characterized by aggressive proliferation, invasion, and metastasis. α-Bisabolol is an oily sesquiterpene alcohol derived from a variety of plants. We previously demonstrated that α-bisabolol is a potential therapeutic agent for pancreatic cancer. The aim of this study was to develop α-bisabolol derivatives which are more potent than the parent compound and may be clinically useful against pancreatic cancer. First, 22 derivatives of α-bisabolol were designed and synthesized. α-Bisabolol derivatives 4 and 5 had more potent inhibitory effects on the proliferation of pancreatic cancer cells than did α-bisabolol. Next, 15 additional α-bisabolol derivatives were designed and synthesized based on the structure of α-bisabolol derivatives 4 and 5 Among them, α-bisabolol derivative 5 had the strongest inhibitory effect on proliferation. This novel compound reduced the proliferation of various pancreatic cancer cell lines, such as KLM1, Panc1, and KP4. In addition, the compound induced higher levels of apoptosis in pancreatic cancer cell lines than did α-bisabolol. α-Bisabolol derivative 5 inhibited xenograft tumor growth and reduced dissemination of pancreatic cancer to peritoneal nodules. The compound strongly suppressed AKT expression in the peritoneal nodules. Reduced AKT expression in peritoneal nodules is consistent with an anticancer effect. These data indicate that α-bisabolol derivative 5 effectively prevents the progression of pancreatic cancer via inhibition of AKT. Taken together, the results showed that this compound has attractive therapeutic properties as a novel anticancer drug for pancreatic cancer.

Bauer G
Central Signaling Elements of Intercellular Reactive Oxygen/Nitrogen Species-dependent Induction of Apoptosis in Malignant Cells.
Anticancer Res. 2017; 37(2):499-513 [PubMed] Related Publications
Intercellular reactive oxygen/reactive nitrogen species-(ROS/RNS)-dependent induction of apoptosis in malignant cells is discussed as a potential control step during oncogenesis. In previous studies, the mechanism of intercellular apoptosis-inducing signaling was mainly established through the use of specific inhibitors and scavengers. Here, a detailed analysis was carried out based on small interfering ribonucleic acid (siRNA)-mediated knockdown of central players of intercellular ROS/RNS signaling and of the mitochondrial and the FAS receptor-dependent pathway of apoptosis. The data show that transforming growth factor β1, transforming growth factor β receptor, NADPH oxidase-1 (NOX1), NOX1 organizer, and NOX1 activator control the HOCl and the NO/peroxynitrite signaling pathways. Dual oxidase-1 (DUOX1) is specifically involved in HOCl signaling, and NO synthase in NO/peroxynitrite signaling. Both pathways utilize intracellular signal transduction through protein kinase C zeta, sphingomyelinase and central elements of the mitochondrial pathway of apoptosis, whereas the FAS receptor and FAS ligand do not seem to play a role.

Eldehna WM, Almahli H, Al-Ansary GH, et al.
Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents.
J Enzyme Inhib Med Chem. 2017; 32(1):600-613 [PubMed] Related Publications
Treatment of patients with triple-negative breast cancer (TNBC) is challenging due to the absence of well- defined molecular targets and the heterogeneity of such disease. In our endeavor to develop potent isatin-based anti-proliferative agents, we utilized the hybrid-pharmacophore approach to synthesize three series of novel isatin-based hybrids 5a-h, 10a-h and 13a-c, with the prime goal of developing potent anti-proliferative agents toward TNBC MDA-MB-231 cell line. In particular, compounds 5e and 10g were the most active hybrids against MDA-MB-231 cells (IC50 = 12.35 ± 0.12 and 12.00 ± 0.13 μM), with 2.37- and 2.44-fold increased activity than 5-fluorouracil (5-FU) (IC50 = 29.38 ± 1.24 μM). Compounds 5e and 10g induced the intrinsic apoptotic mitochondrial pathway in MDA-MB-231; evidenced by the reduced expression of the anti-apoptotic protein Bcl-2, the enhanced expression of the pro-apoptotic protein Bax and the up-regulated active caspase-9 and caspase-3 levels. Furthermore, 10g showed significant increase in the percent of annexin V-FITC positive apoptotic cells from 3.88 to 31.21% (8.4 folds compared to control).

Yu N, Xiong Y, Wang C
Bu-Zhong-Yi-Qi Decoction, the Water Extract of Chinese Traditional Herbal Medicine, Enhances Cisplatin Cytotoxicity in A549/DDP Cells through Induction of Apoptosis and Autophagy.
Biomed Res Int. 2017; 2017:3692797 [PubMed] Free Access to Full Article Related Publications
Cisplatin is one of the most active cytotoxic agents for non-small cell lung cancer (NSCLC) treatment. However, the development of cisplatin resistance is common. Bu-Zhong-Yi-Qi decoction (BZYQD), a Chinese traditional herbal medicine, is widely used for the enhancement of antitumor effect in other medications. In this study, we evaluated the effect and drug-resistance reversal mechanism of BZYQD combined with cisplatin on cisplatin-resistant A549/DDP cells. Our results showed that BZYQD exhibited direct cytotoxic and chemosensitizing effects. Cotreatment with BZYQD and cisplatin induced intrinsic apoptotic pathways which were measured by condensed nuclear chromatin, Annexin V/PI apoptosis assay, and apoptosis related proteins expression. In addition, cotreatment with BZYQD and cisplatin also activated autophagy, as indicated by an increase in LC3 puncta, classical autophagosomes and/or autolysosomes, and an accumulation of LC3-II and ATG7 protein. Finally, cotreatment with BZYQD and cisplatin resulted in the generation of ROS and scavenging ROS by NAC almost completely suppressing cell death. These results suggest that cotreatment with BZYQD and cisplatin might reverse cisplatin resistance by inducing ROS accumulation, which activates apoptosis and autophagy by oxidative stress. The combination of BZYQD and cisplatin may represent a novel approach in treatment for NSCLC and thus offer a new target for chemotherapy.

Kumar Mongre R, Sharma N, Singh Sodhi S, et al.
Novel phyto-derivative BRM270 inhibits hepatocellular carcinoma cells proliferation by inducing G2/M phase cell cycle arrest and apoptosis in xenograft mice model.
Biomed Pharmacother. 2017; 87:741-754 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a major threat to human health worldwide and development of novel antineoplastic drug is demanding task. BRM270 is a proprietary combination of traditional medicinal herbs, has been shown to be effective against a wide range of stem-like cancer initiating cells (SLCICs). However, the underlying mechanism and antitumor efficacy of BRM270 in human hepatocellular carcinoma (HCC) cells have not been well elucidated till date. Here we studied the tumoricidal effect of BRM270 on human-CD133(+) expressing stem-like HepG-2 and SNU-398 cells. Gene expression profiling by qPCR and specific cellular protein expressions was measured using immunocytochemistry/western blot analysis. In vivo efficacy of BRM270 has been elucidated in the SLCICs induced xenograft model. In addition, 2DG-(2-Deoxy-d-Glucose) optical-probe guided tumor monitoring was performed to delineate the size and extent of metastasized tumor. Significant (P<0.05) induction of Annexin-V positive cell population and dose-dependent upregulation of caspase-3 confirmed apoptotic cell death by pre/late apoptosis. In addition, bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA fragmentation in Hoechst33342 staining. Levels of c-Myc, Bcl-2 and c-Jun as invasive potential apoptotic marker were detected using qPCR/Western blot. Moreover, BRM270 significantly (P<0.05) increased survival rate that observed by Kaplan-Meier log rank test. In conclusion, these results indicate that BRM270 can effectively inhibit proliferation and induce apoptosis in hepatoma cells by down-regulating CyclinD1/Bcl2 mediated c-Jun apoptotic pathway.

Liu W, Liu SY, He YB, et al.
MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.
Biomed Pharmacother. 2017; 87:621-627 [PubMed] Related Publications
Previous studies have shown that MiR-451 plays an important role in human osteosarcoma carcinogenesis, but the underlying mechanism by which MiR-451 affects the osteosarcoma has not been fully understood. This study intends to uncover the mechanism by which MiR-451 functions as a tumor suppressor. The expression of MiR-451 in osteosarcoma tissues and osteosarcoma cell lines was monitored by real-time PCR. The proliferation ability was examined by MTT and cell cycle assay. The migration and apoptosis of cells were monitored by migration assay and flow cytometry, respectively. Moreover, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was examined by tube formation assay. The effect of MiR-451 on MIF was determined by luciferase assays and Western blot assay. The results showed that MiR-451 expression level was significantly reduced in the osteosarcoma compared with normal bone tissues. Overexpression of MiR-451 significantly attenuated the proliferation and migration, and induced the apoptosis of osteosarcoma cells. Furthermore, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was assayed and the decreased angiogenic ability was detected compared to the controls. Finally, we demonstrated that MiR-451 overexpression inhibited the malignant behavior of osteosarcoma by downregulating MIF. These findings suggest that MiR-451 may act as a tumor suppressor in osteosarcoma. MiR-451 inhibited cell proliferation, migration and angiogenesis and promoted apoptosis of human osteosarcoma cells, at least partially, by inhibiting the expression of MIF. MiR-451/MIF may be a novel therapeutic target in treatment of osteosarcoma.

Hu L, Wang H, Zhao Y, Wang J
(125)I Seeds Radiation Induces Paraptosis-Like Cell Death via PI3K/AKT Signaling Pathway in HCT116 Cells.
Biomed Res Int. 2016; 2016:8145495 [PubMed] Free Access to Full Article Related Publications
(125)I seeds brachytherapy implantation has been extensively performed in unresectable and rerecurrent rectal carcinoma. Many studies on the cancer-killing activity of (125)I seeds radiation mainly focused on its ability to trigger apoptosis, which is the most well-known and dominant type of cell death induced by radiation. However our results showed some unique morphological features such as cell swelling, cytoplasmic vacuolation, and plasma membrane integrity, which is obviously different to apoptosis. In this study, clonogenic proliferation was carried out to assay survival fraction. Transmission electron microscopy was used to analyze ultrastructural and evaluate morphologic feature of HCT116 cells after exposure to (125)I seeds radiation. Immunofluorescence analysis was used to detect the origin of cytoplasmic vacuoles. Flow cytometry analysis was employed to detect the size and granularity of HCT116 cells. Western blot was performed to measure the protein level of AIP1, caspase-3, AKT, p-Akt (Thr308), p-Akt (Ser473), and β-actin. We found that (125)I seeds radiation activated PI3K/AKT signaling pathway and could trigger paraptosis-like cell death. Moreover, inhibitor of PI3K/AKT signaling pathway could inhibit paraptosis-like cell death induced by (125)I seeds radiation. Our data suggest that (125)I seeds radiation can induce paraptosis-like cell death via PI3K/AKT signaling pathway.

Zhu Y, Jiang Y, Shi L, et al.
7-O-Geranylquercetin induces apoptosis in gastric cancer cells via ROS-MAPK mediated mitochondrial signaling pathway activation.
Biomed Pharmacother. 2017; 87:527-538 [PubMed] Related Publications
7-O-Geranylquercetin (GQ) is a novel O-alkylated derivate of quercetin. In this study, we evaluated its apoptosis induction effects in human gastric cancer cell lines SGC-7901 and MGC-803 and explored the potential molecular mechanisms. The results demonstrated that GQ lowered viability of SGC-7901 and MGC-803 cells in a dose- and time-dependent manner without apparent cytotoxicity to human gastric epithelial cell line GES-1. GQ could induce apoptosis in SGC-7901 and MGC-803cells, and arrest the gastric cancer cells at G2/M phase. Mechanism study showed that GQ triggered generation of reactive oxygen species (ROS), then activated p38 and JNK signaling pathways, subsequently led to mitochondrial impairment by regulating the expression of Bcl-2, Bcl-xl and Bax, and finally promoted the release of cytochrome c and the activation of caspases to induce apoptosis. In addition, Z-VAD-FMK (caspase inhibitor) could reverse GQ-induced apoptosis. SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) could rescue GQ-induced cell death and attenuate mitochondrial signal pathway activation. Furthermore, NAC (ROS inhibitor) could rescue GQ-induced cell death, reduce ROS generation, decrease the phosphorylation of p38 and JNK, and then attenuate the activation of mitochondrial signal pathway. Taken together, GQ induces caspase-dependent apoptosis in gastric cancer cells through activating ROS-MAPK mediated mitochondrial signal pathway. This study highlights the potential use of GQ as a gastric cancer therapeutic agent.

Shabestari RM, Safa M, Alikarami F, et al.
CREB knockdown inhibits growth and induces apoptosis in human pre-B acute lymphoblastic leukemia cells through inhibition of prosurvival signals.
Biomed Pharmacother. 2017; 87:274-279 [PubMed] Related Publications
A majority of acute lymphoblastic leukemia patients overexpress CREB in the bone marrow. However, the functional significance of this up-regulation and the detailed molecular mechanism behind the regulatory effect of CREB on the growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells has not been elucidated. We demonstrated here that CREB knockdown induced apoptosis and impaired growth of BCP-ALL NALM-6 cells which was associated with caspase activation. The gene expression levels of prosurvival signals Bcl-2, Mcl-1, Bcl-xL, survivin and XIAP were down-regulated upon CREB suppression. These findings indicate a critical role for CREB in proliferation, survival, and apoptosis of BCP-ALL cells. The data also suggest that CREB could possibly serve as potential therapeutic target in BCP-ALL.

Kleinsimon S, Kauczor G, Jaeger S, et al.
ViscumTT induces apoptosis and alters IAP expression in osteosarcoma in vitro and has synergistic action when combined with different chemotherapeutic drugs.
BMC Complement Altern Med. 2017; 17(1):26 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Osteosarcoma is the most common bone tumor and is associated with a poor prognosis. Conventional therapies, surgery and chemotherapy, are still the standard but soon reach their limits. New therapeutic approaches are therefore needed. Conventional aqueous mistletoe extracts from the European mistletoe (Viscum album L.) are used in complementary cancer treatment. These commercial extracts are water-based and do not include water-insoluble compounds such as triterpenic acids. However, both hydrophilic and hydrophobic triterpenic acids possess anti-cancer properties. In this study, a whole mistletoe extract viscumTT re-created by combining an aqueous extract (viscum) and a triterpene extract (TT) was tested for its anti-cancer potential in osteosarcoma.
METHODS: Two osteosarcoma cell lines were treated with three different mistletoe extracts viscum, TT and viscumTT to compare their apoptotic potential. For this purpose, annexin/PI staining and caspase-3, -8 and -9 activity were investigated by flow cytometry. To determine the mechanism of action, alterations in expression of inhibitors of apoptosis (IAPs) were detected by western blot. Apoptosis induction by co-treatment of viscum, TT and viscumTT with doxorubicin, etoposide and ifosfamide was examined by flow cytometry.
RESULTS: In vitro as well as ex vivo, the whole mistletoe extract viscumTT led to strong inhibition of proliferation and synergistic apoptosis induction in osteosarcoma cells. In the investigations of mechanism of action, inhibitors of apoptosis such as XIAP, BIRC5 and CLSPN showed a clear down-regulation after viscumTT treatment. In addition, co-treatment with doxorubicin, etoposide and ifosfamide further enhanced apoptosis induction, also synergistically.
CONCLUSION: ViscumTT treatment results in synergistic apoptosis induction in osteosarcoma cells in vitro and ex vivo. Additionally, conventional standard chemotherapeutic drugs such as doxorubicin, etoposide and ifosfamide were able to dramatically enhance apoptosis induction. These results promise a high potential of viscumTT as an additional adjuvant therapy approach for osteosarcoma.

Jiang C, Fang X, Zhang H, et al.
AMD3100 combined with triptolide inhibit proliferation, invasion and metastasis and induce apoptosis of human U2OS osteosarcoma cells.
Biomed Pharmacother. 2017; 86:677-685 [PubMed] Related Publications
BACKGROUND: Osteosarcoma (OS) mainly occurs in children and adolescents, and has a high propensity for lung metastasis. Little is known about the role of SDF-1/CXCR4 axis in OS progression. AMD3100 is a specific CXCR4 antagonist. Triptolide can induce apoptosis and proliferation inhibition in various cancer cell lines.
OBJECTIVE: This work aimed to investigate the effects of AMD3100 plus triptolide on the proliferation, apoptosis, invasion and metastasis of OS cells.
METHODS: The expression levels of SDF-1 and CXCR4 in five OS cell lines was analyzed by qRT-PCR, western blotting and ELISA assays. The effect of AMD3100 and triptolide on the proliferation, apoptosis and invasion of U2OS cells was evaluated by CCK-8, flow cytometry and transwell assay, respectively. Orthotopic intra-tibial growth and lung metastasis mouse model of OS were employed to evaluate the inhibition effect of AMD3100 and triptolide on primary OS growth and lung metastasis.
RESULTS: CXCR4 protein expression was detected in HOS-8603, MG-63, U2OS and 143B but not Saos2 cells, and all these cell lines expressed SDF-1. AMD3100 plus triptolide induced proliferation inhibition and apoptosis of U2OS cells, which was attributed to the downregulation of c-Myc, survivin, cyclin D1 and increased cleaved caspase-3 and PARP. AMD3100 and triptolide also suppressed SDF-1 induced invasion of CXCR4+ U2OS cells, which was validated by decreased expression of MMP-2 and 9, VEGF, m-Calpain and β-catenin. Moreover, the phosphorylation levels of Erk1/2, Akt and STAT3, as well as the nuclear translocation and phosphorylation of NF-κB p65 in U2OS cells were also reduced by AMD3100 and triptolide. In vivo, AMD3100 and triptolide significantly reduced primary tumor growth and lung metastasis of U2OS cells.
CONCLUSIONS: AMD3100 combined with triptolide can reduce proliferation and metastasis, and induce apoptosis of U2OS cells, which may be related to the Erk1/2, Akt, STAT3 and NF-κB pathways.

Wang W, Wang D, Wang Z, et al.
Synthesis of new sarsasapogenin derivatives with cytotoxicity and apoptosis-inducing activities in human breast cancer MCF-7 cells.
Eur J Med Chem. 2017; 127:62-71 [PubMed] Related Publications
Based on the fact that Timosaponin A-III, a saponin isolated from the rhizome of Anemarrhena asphodeloides, is a promising bioactive lead compound in the treatment of cancer, structural modification at the C3 and C26 positions of sarsasapogenin has always been the focus of our structure-activity investigations. In this paper, we describe the synthesis of a range of new derivatives 5a-5o and the evaluation of their antitumor activities in a panel of six human cancer cell lines using the MTT assay in vitro. The results obtained showed that compounds 5h, 5i, and 5n exhibited significant cytotoxic activities against the six cell lines, being more potent than their parent compound sarsasapogenin. Furthermore, the p-fluorobenzyloxy series of compounds generally exhibited stronger cytotoxicities against all the tested cancer cells compared with the benzyloxy and p-methoxybenzyloxy series, and the substitution of pyrrolidinyl and piperazinyl groups at the C26 position was the preferred option for these compounds to display antitumor activities. Compound 5n exhibited excellent cytotoxic activity against MCF-7 cell line (IC50 = 2.95 μM), and was 16.7-fold more potent than sarsasapogenin. Further studies of the cellular mechanism of 5n showed that it arrested MCF-7 cells at the G2/M phase and induced apoptosis and necrosis. All these results show that it is important to carry out structural modification of sarsasapogenin to obtain some promising derivatives with marked antitumor activities, and the representative compound 5n is a lead compound for further research.

Wang Y, Chen Y, Zhang X, et al.
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway.
Biomed Res Int. 2016; 2016:9014364 [PubMed] Free Access to Full Article Related Publications
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.

Banerjee K, Das S, Majumder S, et al.
Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status.
Mol Cell Biochem. 2017; 427(1-2):35-58 [PubMed] Related Publications
Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer treatment have been recorded, the involvement of glutathione (GSH) and dependency of p53 status on the modulation of GSH-mediated treatment efficacy have been largely overlooked. Herein, we tried to decipher the underlying mechanism of the action of Mn-N-(2-hydroxyacetophenone) glycinate (MnNG) against differential p53 status bearing Hct116, MCF-7, and MDA-MB-468 cells on the backdrop of intracellular GSH level and reveal the role of p53 status in modulating GSH-dependant abrogation of MnNG-induced apoptosis in these cancer cells. Present study discloses that MnNG targets specifically wild-type-p53 expressing Hct116 and MCF-7 cells by significantly depleting both cytosolic, mitochondrial GSH, and modulating nuclear GSH through Glutathione reductase and Glutamate-cysteine ligase depletion that may in turn induce p53-mediated intrinsic apoptosis in them. Thus GSH addition abrogates p53-mediated apoptosis in wild-type-p53 expressing cells. GSH addition also overrides MnNG-induced modulation of phase II detoxifying parameters in them. However, GSH addition partially replenishes the down-regulated or modulated GSH pool in cytosol, mitochondria, and nucleus, and relatively abrogates MnNG-induced intrinsic apoptosis in p53-mutated MDA-MB-468 cells. On the contrary, although MnNG induces significant cell death in p53-null Hct116 cells, GSH addition fails to negate MnNG-induced cell death. Thus p53 status with intracellular GSH is critical for the modulation of MnNG-induced apoptosis.

Chiang IT, Chen WT, Tseng CW, et al.
Hyperforin Inhibits Cell Growth by Inducing Intrinsic and Extrinsic Apoptotic Pathways in Hepatocellular Carcinoma Cells.
Anticancer Res. 2017; 37(1):161-167 [PubMed] Related Publications
The aim of the present study was to investigate the antitumor effect and mechanism of action of hyperforin in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro. Cells were treated with different concentrations of hyperforin for different periods of time. Effects of hyperforin on cell viability, apoptosis signaling, and expression of anti-apoptotic and proliferative proteins [cellular FLICE-like inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia 1(MCL1), and cyclin-D1] were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and western blotting. Hyperforin significantly inhibited cell viability and expression of anti-apoptotic and proliferative proteins. We also found that hyperforin significantly induced accumulation of cells in sub-G1 phase, loss of mitochondrial membrane potential, and increased levels of active caspase-3, and caspase-8. Taken together, our findings indicate that hyperforin triggers inhibition of tumor cell growth by inducing intrinsic and extrinsic apoptotic pathways in HCC SK-Hep1 cells.

Dasiram JD, Ganesan R, Kannan J, et al.
Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.
Biomed Pharmacother. 2017; 86:373-380 [PubMed] Related Publications
Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage.

Fallahian F, Ghanadian M, Aghaei M, Zarei SM
Induction of G2/M phase arrest and apoptosis by a new tetrahydroingenol diterpenoid from Euphorbia erythradenia Bioss. in melanoma cancer cells.
Biomed Pharmacother. 2017; 86:334-342 [PubMed] Related Publications
In the current study, a new tetrahydroingenol diterpene isolated from Euphorbia erythradenia, 7,13-diacetyl-5-angeloyl-20-nicotinyl-3-propionyl-1,2,6,7-tetrahydroingenol (DANPT), were tested for the molecular mechanism of its anti-cancer activity in two human melanoma cancer cell lines, A375 and HMCB. DANPT was found cytotoxic against A375 and HMCB cells with IC50 value of 15.37±2.6μM and 15.62±1.89μM, respectively. Flow cytometric analysis showed that DANPT halted the A375 and HMCB cells in G2/M phase and induced apoptosis in a dose-dependent manner. Cell cycle arrest was associated with down-regulation of cyclin B and Cdk-1 and subsequent up-regulation of p53 and p21. Moreover, DANPT induced Bax and inhibited Bcl-2 expression, which results in increasing Bax/Bcl-2 ratio and activation of caspase-3. Furthermore, the apoptotic effect of DANPT was also related to ROS production and loss of mitochondrial membrane potential (ΔYm). Overall, our results suggest that DANPT can inhibit proliferation of human melanoma cancer cells by promoting apoptosis and inducing cell cycle arrest and therefore, it can be a promising natural agent for the treatment of melanoma cancer.

Li H, Lu Y, Pang Y, et al.
Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway.
Biomed Pharmacother. 2017; 86:324-333 [PubMed] Related Publications
OBJECTIVE: The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon.
METHODS: The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay.
RESULTS: In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin.
CONCLUSION: Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer.

Li Y, Guo M, Lin Z, et al.
Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis.
Int J Nanomedicine. 2016; 11:6693-6702 [PubMed] Free Access to Full Article Related Publications
Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer.

Liu F, Wang B, Wang J, et al.
Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells.
Biomed Res Int. 2016; 2016:1784161 [PubMed] Free Access to Full Article Related Publications
Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10(-5) M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM.

Tang B, Tang F, Wang Z, et al.
Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle.
Int J Nanomedicine. 2016; 11:6401-6420 [PubMed] Free Access to Full Article Related Publications
Primary liver cancer is globally the sixth most frequent cancer, and the second leading cause of cancer death and its incidence is increasing in many countries, becoming a serious threat to human health. Many researches focused on the treatment and prevention of liver cancer. However, due to the underlying molecular mechanism of liver cancer still not fully understood, the studies and development of treatments were forced to be delayed. Akt has been suggested to play an essential role in the progression of inflammation response and apoptosis. Hence, in this study, Akt-knockout mice and cells of liver cancer were used as a model to investigate the molecular mechanism of Akt-associated inflammatory and apoptotic signaling pathway linked with NF-κB and Bcl-2-associated death promoter (Bad) for the progression of liver cancer. Carnosic acid (CA), as a phenolic diterpene with anticancer, antibacterial, antidiabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Administration of CA nanoparticles was sufficient to lead to considerable inhibition of liver cancer progression. The results indicated that, compared to the normal liver cells, the expression of Akt was significantly higher in liver cancer cell lines. Also, we found that Akt-knockout cancer cell lines modulated inflammation response and apoptosis via inhibiting NF-κB activation and inducing apoptotic reaction. Our results indicated that the downstream signals, including cytokines regulated by NF-κB and caspase-3-activated apoptosis affected by Bad, were re-modulated for knockout of Akt. And CA nanoparticles, acting as Akt-knockout, could inhibit inflammation and accelerate apoptosis in liver cancer by altering NF-κB activation and activating caspase-3 through Bad pathway. These findings demonstrated that the nanoparticulate drug CA performed its effective role owing to its ability to reduce inflammatory action and enhance apoptosis for the overexpression of NF-κB and Bad via Akt signaling pathway, playing a direct role in liver cancer progression. Thus, nanoparticle CA might be an important and potential choice for the clinical treatment in the future.

Kalbe B, Schulz VM, Schlimm M, et al.
Helional-induced activation of human olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-small-cell lung cancer cell line.
Eur J Cell Biol. 2017; 96(1):34-46 [PubMed] Related Publications
Studies within the last decade have localized the functional expression of olfactory receptors (ORs) to cells outside of the olfactory epithelium. In human hepatocarcinoma and prostate cancer cells, the activation of ORs by odors modulates elementary physiological processes and leads to an inhibitory effect on proliferation. Cells of the respiratory tract are in direct contact with the surrounding air, in which a myriad of volatile molecules, especially odors, are present. Non-small-cell lung cancer (NSCLC) has a high prevalence, a high mortality rate and is difficult to treat. NSCLC cells are nearly resistant to common chemotherapeutic approaches, and surgical resection provides the only possible chance of a cure for most patients. New approaches for the treatment of NSCLC are the focus of many current studies. Thus, it is of interest to characterize the functional expression of ORs in cancer cells of the lung and to investigate the impact of ORs on pathophysiological processes. In the present study, we demonstrate that the expression of OR2J3 and cytosolic Ca(2+) increase via the activation of the agonist helional in the NSCLC cell line A549. We further investigated the underlying pathway. Helional triggers phoshoinositol-3 kinase (PI3K), signaling the release of intracellular Ca(2+) and phosphorylation of ERK. We observed that OR2J3 activation induces apoptosis and inhibits cell proliferation and migration in long-term stimulus experiments with helional. Our study provides the first evidence of the functional expression of an OR in NSCLC cells and its putative therapeutic impact.

Baghbani E, Baradaran B, Pak F, et al.
Suppression of protein tyrosine phosphatase PTPN22 gene induces apoptosis in T-cell leukemia cell line (Jurkat) through the AKT and ERK pathways.
Biomed Pharmacother. 2017; 86:41-47 [PubMed] Related Publications
The aim of this study was to investigate the effect of specific PTPN22 small interfering RNAs (siRNAs) on the viability and induction of apoptosis in Jurkat cells and to evaluate apoptosis signaling pathways. In this study, Jurkat cells were transfected with specific PTPN22 siRNA. Relative PTPN22 mRNA expression was measured by Quantitative Real-time PCR. Western blotting was performed to determine the protein levels of PTPN22, AKT, P-AKT, ERK, and P-ERK. The cytotoxic effects of PTPN22 siRNA were determined using the MTT assay. Apoptosis was quantified using TUNEL assay and flow cytometry. Results showed that in Jurkat cells after transfection with PTPN22 siRNA, the expression of PTPN22 in both mRNA and protein levels was effectively reduced. Moreover, siRNA transfection induced apoptosis on the viability of T-cell acute leukemia cells. More importantly, PTPN22 positively regulated the anti-apoptotic AKT kinase, which provides a powerful survival signal to T-ALL cells as well as the suppression of PTPN22 down regulated ERK activity. Our results suggest that the PTPN22 specific siRNA effectively decreases the viability of T-cell acute leukemia cells, induces apoptosis in this cell line, and therefore could be considered as a potent adjuvant in T-ALL therapy.

Xu L, Cao Y
Native musk and synthetic musk ketone strongly induced the growth repression and the apoptosis of cancer cells.
BMC Complement Altern Med. 2016; 16(1):511 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Musk is widely used in clinical practice for its anti-cancer properties. Here, we treated various types of cancer using musk to determine which cancers are sensitive to musk treatment. We also compared effects of native musk and synthetic musk ketone in cancer cells. Furthermore, we investigated mechanisms underlying effects of musk.
METHODS: Twenty two cancer cell lines were treated with musk. Cell proliferation and apoptosis analyses were carried out. Native musk and synthetic musk ketone were analyzed by gas chromatograph-mass spectrometer (GC-MS) assay. Differentially expressed genes were determined by microarray and quantitative real-time polymerase chain reaction.
RESULTS: Native musk strongly induced the growth repression and the apoptosis in the majority of cancer cell lines in a dose-dependent manner, but distinct types of cancer showed significantly different reactions. Cancer cells which originated from epithelial cells showed higher sensitivity for musk treatment. By contrast, leukaemia and lymphoma cells were not sensitive. GC-MS analysis demonstrated that native musk contains more than 30 contents in which musk ketone is a major component; synthetic musk ketone was consistent with natural musk ketone, and the used sample of synthetic musk ketone contained only sole component. Similar to native musk, synthetic musk ketone induced the growth repression and the apoptosis of cancer cells. Additionally, numerous genes were differentially expressed in lung cancer cells after native musk treatment. These differentially expressed genes were involved in many signalling pathways. Among these pathways, apoptosis-related pathways included interleukin family, tumor necrosis factor family, and MAPK signalling pathway. Native musk and synthetic musk ketone can up-regulate IL-24 (interleukin family) and DDIT3 (MAPK signalling pathway) in lung cancer cells.
CONCLUSIONS: This research provided strong evidence that native musk and synthetic musk ketone can induce the growth repression and the apoptosis of cancer cells. However, the selection of sensitive cancer patient for individualized treatment is a key step in clinical application. Synthetic musk ketone can substitute for native musk to treat cancer patients. Musk might induce the growth repression and the apoptosis of lung cancer cells through up-regulating IL-24 and DDIT3 expressions.

Choi YJ, Choi YK, Lee KM, et al.
SH003 induces apoptosis of DU145 prostate cancer cells by inhibiting ERK-involved pathway.
BMC Complement Altern Med. 2016; 16(1):507 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Herbal medicines have been used in cancer treatment, with many exhibiting favorable side effect and toxicity profiles compared with conventional chemotherapeutic agents. SH003 is a novel extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes Kirilowii Maximowicz combined at a 1:1:1 ratio that impairs the growth of breast cancer cells. This study investigates anti-cancer effects of SH003 in prostate cancer cells.
METHODS: SH003 extract in 30% ethanol was used to treat the prostate cancer cell lines DU145, LNCaP, and PC-3. Cell viability was determined by MTT and BrdU incorporation assays. Next, apoptotic cell death was determined by Annexin V and 7-AAD double staining methods. Western blotting was conducted to measure protein expression levels of components of cell death and signaling pathways. Intracellular reactive oxygen species (ROS) levels were measured using H2DCF-DA. Plasmid-mediated ERK2 overexpression in DU145 cells was used to examine the effect of rescuing ERK2 function. Results were analyzed using the Student's t-test and P-values < 0.05 were considered to indicate statistically-significant differences.
RESULTS: Our data demonstrate that SH003 induced apoptosis in DU145 prostate cancer cells by inhibiting ERK signaling. SH003 induced apoptosis of prostate cancer cells in dose-dependent manner, which was independent of androgen dependency. SH003 also increased intracellular ROS levels but this is not associated with its pro-apoptotic effects. SH003 inhibited phosphorylation of Ras/Raf1/MEK/ERK/p90RSK in androgen-independent DU145 cells, but not androgen-dependent LNCaP and PC-3 cells. Moreover, ERK2 overexpression rescued SH003-induced apoptosis in DU145 cells.
CONCLUSIONS: SH003 induces apoptotic cell death of DU145 prostate cancer cells by inhibiting ERK2-mediated signaling.

Ramdani LH, Talhi O, Taibi N, et al.
Effects of Spiro-bisheterocycles on Proliferation and Apoptosis in Human Breast Cancer Cell Lines.
Anticancer Res. 2016; 36(12):6399-6408 [PubMed] Related Publications
Breast cancer is the leading cause of cancer-related death in women worldwide and a critical public health concern. Here we investigated the anticancer potential and effects of low-molecular-weight bridgehead oxygen and nitrogen-containing spiro-bisheterocycles on proliferation and apoptosis of the human breast cancer cell lines MCF-7 and MDA-MB-231. The compounds feature a hydantoin moiety attached to either diazole, isoxazole, diazepine, oxazepine or benzodiazepine via the privileged tetrahedral spiro-linkage. Treatment with compounds spiro [hydantoin-isoxazole] and spiro [hydantoin-oxazepine] resulted in a dose-dependent decrease of cell proliferation and induction of apoptosis in both breast cancer cell lines, whereas spiro [hydantoin-diazepine] was only active against MDA-MB 231. Quantitative reverse transcription polymerase chain reaction analysis showed up-regulation of murine double minute 2 (MDM2), strictly p53-dependent, and detected an increase in expression of pro-apoptotic caspase 3 and BCL2-associated X (BAX) genes in both breast cancer cell lines expressing wild-type and mutant p53. In summary, the results suggest that our compounds promote apoptosis of breast cancer cell lines via p53-dependent and -independent pathways.

Pinkhien T, Maiuthed A, Chamni S, et al.
Bishydroquinone Renieramycin M Induces Apoptosis of Human Lung Cancer Cells Through a Mitochondria-dependent Pathway.
Anticancer Res. 2016; 36(12):6327-6333 [PubMed] Related Publications
BACKGROUND: Renieranycin M (RM), a bistetrahydro-isoquinolinequinone isolated from the Thai blue sponge, Xestospongia sp. was reported to be a potent anti-lung cancer agent. Modification at quinone ring enhanced apoptosis over necrosis. Thus, bishydroquinone renieramycin M (HQ-RM) was prepared and evaluated for apoptosis induction in lung cancer cells.
METHODS: HQ-RM was examined for cytotoxicity and apoptosis induction in human lung cancer H292 cells by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazoliumbromide and Hoechst/propidium iodide staining, respectively. The key molecular markers of mitochondrial apoptosis pathway were determined by western blot analysis.
RESULTS: HQ-RM exhibited stronger cytotoxicity than RM. HQ-RM reduced vitality of lung cancer cells in a dose-dependent manner. Nuclear staining assay indicated that apoptotic cell death was the main mechanism of toxicity caused by HQ-RM. Protein analysis revealed that HQ-RM-mediated apoptosis involved the increase of pro-apoptotic B-cell lymphoma 2 associated X (BAX) protein, and the decrease of anti-apoptosis myeloid cell leukemia 1 (MCL1) and B-cell lymphoma 2 (BCL2) proteins. Moreover, caspase-9 and -3 and Poly (ADP-ribose) polymerase (PARP) were dramatically cleaved in response to HQ-RM treatment.
CONCLUSION: HQ-RM has highly potent anticancer activity, greater than its parental RM, and induces lung cancer cell apoptosis through a mitochondrial apoptosis caspase-dependent mechanism. This information benefits the development of this compound for cancer therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

[Home]    Page last updated: 07 March, 2017     © CancerIndex, Established 1996