Gene Summary

Gene:MIF; macrophage migration inhibitory factor
Aliases: GIF, GLIF, MMIF
Summary:This gene encodes a lymphokine involved in cell-mediated immunity, immunoregulation, and inflammation. It plays a role in the regulation of macrophage function in host defense through the suppression of anti-inflammatory effects of glucocorticoids. This lymphokine and the JAB1 protein form a complex in the cytosol near the peripheral plasma membrane, which may indicate an additional role in integrin signaling pathways. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:macrophage migration inhibitory factor
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: MIF (cancer-related)

Imaoka M, Tanese K, Masugi Y, et al.
Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells.
Cancer Sci. 2019; 110(7):2273-2283 [PubMed] Free Access to Full Article Related Publications
Expression of programmed cell death ligand 1 (PD-L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ-Interferon (IFN-γ) has been reported as a key extrinsic stimulator of PD-L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD-L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN-γ and inhibitors of the MIF-CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD-L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN-γ stimulation, showed upregulation of PD-L1 levels by IFN-γ stimulation. This was suppressed by further treatment with the MIF-CD74 interaction inhibitor, 4-iodo-6-phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD-L1, CD74, and MIF in its non-treated state, treatment with 4-iodo-6-phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD-L1. Together, the results indicated that MIF-CD74 interaction directly regulated the expression of PD-L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF-CD74 interaction could be a therapeutic target in the treatment of melanoma patients.

Mamoori A, Wahab R, Vider J, et al.
The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer.
Gene. 2019; 697:165-174 [PubMed] Related Publications
BACKGROUND: This study aimed to investigate the impact of miR-451 on the biological behaviours of colon cancer cells along with its targets interactions.
METHOD: The levels of miR-451 were tested in colon cancer cell lines (SW480 and SW48). Multiple functional and immunological assays were performed to analyse miR-451 induced growth changes in-vitro and downstream effects on target proteins.
RESULTS: Overexpression of miR-451 in colon cancer cells led to reduced cell proliferation, increased apoptosis and decrease accumulation of the cells at the G0/G1 phase of the cell cycle. In addition, a significant increase in the number of the cells was noted in the G2-M phase of cell cycle. Moreover, miR-451 reduced the expression of Oct-4, Sox-2 and Snail indicating its role in stem cell and epithelial-mesenchymal transition (EMT) regulation. An inverse correlation between miR-451 and macrophage migration inhibitory protein (MIF) protein expression occurred in colon cancer cells. Furthermore, restoration the level of miR-451 in colon cancer cells inhibits tumour spheres formation.
CONCLUSION: miR-451 has tumour suppressor effects in vitro, which can inhibit the cancer-related signalling pathways in colon cancer.

Sakamoto D, Takagi T, Fujita M, et al.
Basic Gene Expression Characteristics of Glioma Stem Cells and Human Glioblastoma.
Anticancer Res. 2019; 39(2):597-607 [PubMed] Related Publications
BACKGROUND: Glioma stem cells (GSCs) play important roles in the tumorigenesis of glioblastoma multiforme (GBM). Using a novel cellular bioinformatics pipeline, we aimed to characterize the differences in gene-expression profiles among GSCs, U251 (glioma cell line), and a human GBM tissue sample.
MATERIALS AND METHODS: Total RNA was extracted from GSCs, U251 and GBM and microarray analysis was performed; the data were then applied to the bioinformatics pipeline consisting of a principal component analysis (PCA) with factor loadings, an intracellular pathway analysis, and an immunopathway analysis.
RESULTS: The PCA clearly distinguished the three groups. The factor loadings of the PCA suggested that v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), dipeptidyl-peptidase 4 (DPP4), and macrophage migration-inhibitory factor (MIF) contribute to the stemness of GSCs. The intracellular pathway and immunopathway analyses provided relevant information about the functions of representative genes in GSCs.
CONCLUSION: The newly-developed cellular bioinformatics pipeline was a useful method to clarify the similarities and differences among samples.

Han TS, Voon DC, Oshima H, et al.
Interleukin 1 Up-regulates MicroRNA 135b to Promote Inflammation-Associated Gastric Carcinogenesis in Mice.
Gastroenterology. 2019; 156(4):1140-1155.e4 [PubMed] Related Publications
BACKGROUND & AIMS: Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice.
METHODS: We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan.
RESULTS: We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130
CONCLUSIONS: We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.

Wu P, Yang S, Singh S, et al.
The Landscape and Implications of Chimeric RNAs in Cervical Cancer.
EBioMedicine. 2018; 37:158-167 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene fusions and fusion products have been proven to be ideal biomarkers and drug targets for cancer. Even though a comprehensive study of cervical cancer has been conducted as part of the Cancer Genome Atlas (TCGA) project, few recurrent gene fusions have been found, and none above 3% of frequency.
METHODS: We believe that chimeric fusion RNAs generated by intergenic splicing represent a new repertoire of biomarkers and/or therapeutic targets. However, they would be missed when only genome sequences and fusions at DNA level are considered. We performed extensive data mining for chimeric RNAs using both our and TCGA cervical cancer RNA-Seq datasets. Multiple criteria were applied. We analyzed the landscape of chimeric RNAs at various levels, and from different angles.
FINDINGS: The chimeric RNA landscape changed as different filters were applied. 15 highly frequent (>10%) chimeric RNAs were identified. LHX6-NDUFA8 was detected exclusively in cervical cancer tissues and Pap smears, but not in normal controls. Mechanistically, it is not due to interstitial deletion, but a product of cis-splicing between adjacent genes. Silencing of another recurrent chimera, SLC2A11-MIF, resulted in cell cycle arrest and reduced cellular proliferation. This effect is unique to the chimera, and not shared by the two parental genes.
INTERPRETATION: Highly frequent chimeric RNAs are present in cervical cancers. They can be formed by intergenic splicing. Some have clear implications as potential biomarkers, or for shedding new light on the biology of the disease. FUND: Stand Up To Cancer and the National Science Foundation of China.

Joseph D, Gonsky JP, Blain SW
Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells.
PLoS One. 2018; 13(11):e0206368 [PubMed] Free Access to Full Article Related Publications
Multiple Myeloma (MM) is the second most common hematological malignancy with a median survival of 5-10 years. While current treatments initially cause remission, relapse almost always occurs, leading to the hypothesis that a chemotherapy-resistant cancer stem cell (CSC) remains dormant, and undergoes self-renewal and differentiation to reestablish disease. Our finding is that the mature cancer cell (CD138+, rapidly proliferating and chemosensitive) has developmental plasticity; namely, the ability to dedifferentiate back into its own chemoresistant CSC progenitor, the CD138-, quiescent pre-plasma cell. We observe multiple cycles of differentiation and dedifferentiation in the absence of niche or supportive accessory cells, suggesting that soluble cytokines secreted by the MM cells themselves are responsible for this bidirectional interconversion and that stemness and chemoresistance are dynamic characteristics that can be acquired or lost and thus may be targetable. By examining cytokine secretion of CD138- and CD138+ RPMI-8226 cells, we identified that concomitant with interconversion, Macrophage Migration Inhibitory Factor (MIF-1) is secreted. The addition of a small molecule MIF-1 inhibitor (4-IPP) or MIF-1 neutralizing antibodies to CD138+ cells accelerated dedifferentiation back into the CD138- progenitor, while addition of recombinant MIF-1 drove cells towards CD138+ differentiation. A similar increase in the CD138- population is seen when MM tumor cells isolated from primary bone marrow aspirates are cultured in the presence of 4-IPP. As the CD138+ MM cell is chemosensitive, targeting MIF-1 and/or the pathways that it regulates could be a viable way to modulate stemness and chemosensitivity, which could in turn transform the treatment of MM.

Li L, Li Y, Huang Y, et al.
Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4.
Cancer Sci. 2018; 109(12):3714-3725 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNA MIF-AS1 (lncMIF-AS1) has been found to be upregulated in the tumor tissues of gastric cancer; however, its importance for the progression of gastric cancer remains unknown. Thus, the present study was designed to determine the role of the lncMIF-AS1-based signal transduction pathway in mediating the proliferation and apoptosis of gastric cancer cells. Differentially expressed lncRNAs and mRNAs were screened out using microarray analysis, based on the published data (GSE63288), and validated using quantitative RT-PCR. Target relationships between lncRNA-micro RNA (miRNA) and miRNA-mRNA were predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Protein expression of NDUFA4, COX6C and COX5B was detected by western blot. Cell proliferation, cell cycle and apoptosis were determined using colony formation assay and flow cytometry analysis. Oxidative phosphorylation in gastric cancer cells was assessed by levels of oxygen consumption and ATP synthase activity. Expression of lncMIF-AS1 and NDUFA4 were upregulated in gastric cancer tissues and cells as compared with non-cancerous gastric tissues and cells (P < .05). MiR-212-5p was identified as the most important miRNA linker between lncMIF-AS1 and NDUFA4, which was negatively regulated by lncMIF-AS1 and its depletion is the main cause of NDUFA4 overexpression (P < .01). The upregulated expression of NDUFA4 then greatly promoted the proliferation and decreased the apoptosis of gastric cancer cells through activation of the oxidative phosphorylation pathway. Taken together, the present study implies that inhibition of lncMIF-AS1/miR-212-5p/NDUFA4 signal transduction may provide a promising therapeutic target for the treatment of gastric cancer.

Wang D, Wang R, Huang A, et al.
Upregulation of macrophage migration inhibitory factor promotes tumor metastasis and correlates with poor prognosis of pancreatic ductal adenocarcinoma.
Oncol Rep. 2018; 40(5):2628-2636 [PubMed] Free Access to Full Article Related Publications
Macrophage migration inhibitory factor (MIF) is a pro‑inflammatory cytokine that serves important roles in cancer. MIF overexpression is frequently observed in numerous human cancer types, including pancreatic carcinoma. However, the prognostic value and function of MIF in pancreatic ductal adenocarcinoma (PDAC) have not been fully elucidated. In the present study, upregulation of MIF expression in PDAC tissue compared with adjacent normal tissue was observed. Furthermore, MIF overexpression was identified to be significantly associated with poor survival rates in patients with PDAC. Multivariate Cox regression analysis confirmed that MIF was an independent risk factor for poor survival. Functional analyses demonstrated that MIF knockdown significantly inhibited the proliferation and invasion of pancreatic cancer cells in vitro compared with control cells. IN addition, mechanistic investigations revealed that silencing MIF leads to inhibition of AKT serine/threonine kinase and extracellular‑signal‑regulated kinase activation, and suppression of cyclin D1 and matrix metalloproteinase‑2 expression, which may suppress tumor proliferation and invasion. These results highlight the importance of MIF overexpression in PDAC aggressiveness, and indicate that MIF may be a potential therapeutic target for pancreatic cancer.

Razzaghi MR, Mazloomfard MM, Malekian S, Razzaghi Z
Association of macrophage inhibitory factor -173 gene polymorphism with biological behavior of prostate cancer.
Urol J. 2019; 16(1):32-36 [PubMed] Related Publications
PURPOSE: Chronic inflammation is an important factor in the etiology of prostate cancer. Macrophage migration inhibitory factor (MIF) plays an important regulatory role in inflammatory responses. The aim of this study was to investigate the potential association between MIF-173 G/C polymorphism, and both biological behavior and incidence of prostate cancer.
MATERIALS AND METHODS: Analysis of polymorphic variants for MIF was performed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method in 128 subjects with prostate cancer and 135 controls.
RESULTS: The frequency of MIF-173 *C allele was significantly (OR = 2.18, 95% CI = 1.32-3.61) higher in patients with prostate cancer (19.5%) than in healthy individuals (10%). Prostate cancer patients with Gleason scores ? 7 had higher frequency of MIF-173 *C allele than Gleason scores < 7 (86.1% vs. 27.1%, P = 0.003, OR = 3.18, 95%CI = 1.46-6.95). The frequency of MIF-173 *C allele was significantly different in patients with T1, T2 and ?T3 clinical stages of prostate cancer (15.2% vs. 42.6% and 47.8%, P = 0.003).
CONCLUSION: Our data suggest that MIF-173 polymorphisms may be associated with a higher incidence of prostate cancer compared to controls. We believe that MIF-173 GC+CC genotype can be used as a predictive factor for aggressive behavior of prostate cancer including pathological stage and Gleason scores as well as metastatic potential.

Sandt C, Feraud O, Bonnet ML, et al.
Direct and rapid identification of T315I-Mutated BCR-ABL expressing leukemic cells using infrared microspectroscopy.
Biochem Biophys Res Commun. 2018; 503(3):1861-1867 [PubMed] Related Publications
Despite the major success obtained by the use of tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), resistances to therapies occur due to mutations in the ABL-kinase domain of the BCR-ABL oncogene. Amongst these mutations, the "gatekeeper" T315I is a major concern as it renders leukemic cells resistant to all licenced TKI except Ponatinib. We report here that Fourier transform infrared (FTIR) microspectroscopy is a powerful methodology allowing rapid and direct identification of a spectral signature in single cells expressing T315I-mutated BCR-ABL. The specificity of this spectral signature is confirmed using a Dox-inducible T315I-mutated BCR-ABL-expressing human UT-7 cells as well as in murine embryonic stem cells. Transcriptome analysis of UT-7 cells expressing BCR-ABL as compared to BCR-ABL T315I clearly identified a molecular signature which could be at the origin of the generation of metabolic changes giving rise to the spectral signature. Thus, these results suggest that this new methodology can be applied to the identification of leukemic cells harbouring the T315I mutation at the single cell level and could represent a novel early detection tool of mutant clones. It could also be applied to drug screening strategies to target T315I-mutated leukemic cells.

Kong F, Deng X, Kong X, et al.
ZFPM2-AS1, a novel lncRNA, attenuates the p53 pathway and promotes gastric carcinogenesis by stabilizing MIF.
Oncogene. 2018; 37(45):5982-5996 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNAs (lncRNAs) are implicated to be involved in the pathogenesis of many cancers. Herein we report on our discovery of a novel lncRNA, ZFPM2 antisense RNA 1 (ZFPM2-AS1), and its critical role in gastric carcinogenesis. ZFPM2-AS1 expression in gastric cancer specimens was analyzed using Gene Expression Omnibus data set and validated in 73 paired gastric tumor and normal adjacent gastric tissue specimens using qRT-PCR. The effect of ZFPM2-AS1 expression on proliferation and apoptosis in gastric cancer cells was assessed by altering its expression in vitro and in vivo. Mechanistic investigation was carried out using cell and molecular biological approaches. ZFPM2-AS1 expression was higher in gastric tumors than in normal gastric tissue. Also, increased ZFPM2-AS1 expression in gastric cancer specimens was associated with tumor size, depth of tumor invasion, differentiation grade, and TNM stage. High ZFPM2-AS1 expression predicted markedly reduced overall and disease-free survival in gastric cancer patients. Functional experiments demonstrated that ZFPM2-AS1 expression promoted proliferation and suppressed apoptosis of gastric cancer cells in vitro and promoted tumor growth in vivo. This effect is associated with attenuated nuclear translocation of p53. Mechanistic experiments demonstrated that tumor-activated ZFPM2-AS1 could bind to and protect the degradation of macrophage migration inhibitory factor (MIF), a potent destabilizer of p53. Knockdown of MIF expression diminished ZFPM2-AS1's impact on p53 expression in gastric cancer cells. Our findings demonstrated that ZFPM2-AS1 regulates gastric cancer progression and revealed a novel ZFPM2-AS1/MIF/p53 signaling axis, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant gastric cells.

Balogh KN, Templeton DJ, Cross JV
Macrophage Migration Inhibitory Factor protects cancer cells from immunogenic cell death and impairs anti-tumor immune responses.
PLoS One. 2018; 13(6):e0197702 [PubMed] Free Access to Full Article Related Publications
The Macrophage Migration Inhibitory Factor (MIF) is an inflammatory cytokine that is overexpressed in a number of cancer types, with increased MIF expression often correlating with tumor aggressiveness and poor patient outcomes. In this study, we aimed to better understand the link between primary tumor expression of MIF and increased tumor growth. Using the MMTV-PyMT murine model of breast cancer, we observed that elevated MIF expression promoted tumor appearance and growth. Supporting this, we confirmed our previous observation that higher MIF expression supported tumor growth in the 4T1 murine model of breast cancer. We subsequently discovered that loss of MIF expression in 4T1 cells led to decreased cell numbers and increased apoptosis in vitro under reduced serum culture conditions. We hypothesized that this increase in cell death would promote detection by the host immune system in vivo, which could explain the observed impairment in tumor growth. Supporting this, we demonstrated that loss of MIF expression in the primary tumor led to an increased abundance of intra-tumoral IFNgamma-producing CD4+ and CD8+ T cells, and that depletion of T cells from mice bearing MIF-deficient tumors restored growth to the level of MIF-expressing tumors. Furthermore, we found that MIF depletion from the tumor cells resulted in greater numbers of activated intra-tumoral dendritic cells (DCs). Lastly, we demonstrated that loss of MIF expression led to a robust induction of a specialized form of cell death, immunogenic cell death (ICD), in vitro. Together, our data suggests a model in which MIF expression in the primary tumor dampens the anti-tumor immune response, promoting tumor growth.

Xue N, Lin JH, Xing S, et al.
Plasma Macrophage Migration Inhibitory Factor and CCL3 as Potential Biomarkers for Distinguishing Patients with Nasopharyngeal Carcinoma from High-Risk Individuals Who Have Positive Epstein-Barr Virus Capsid Antigen-Specific IgA.
Cancer Res Treat. 2019; 51(1):378-390 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The purpose of this study was to identify novel plasma biomarkers for distinguishing nasopharyngeal carcinoma (NPC) patients from healthy individuals who have positive Epstein-Barr virus (EBV) viral capsid antigen (VCA-IgA).
Materials and Methods: One hundred seventy-four plasma cytokines were analyzed by a Cytokine Array in eight healthy individuals with positive EBV VCA-IgA and eight patients with NPC. Real-time polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry were employed to detect the expression levels of macrophage migration inhibitory factor (MIF) and CC chemokine ligand 3 (CCL3) in NPC cell lines and tumor tissues. Plasma MIF and CCL3 were measured by ELISA in 138 NPC patients, 127 EBV VCA-IgA negative (VN) and 100 EBV VCA-IgA positive healthy donors (VP). Plasma EBV VCA-IgA was determined by immunoenzymatic techniques.
RESULTS: Thirty-four of the 174 cytokines varied significantly between the VP and NPC group. Plasma MIF and CCL3 were significantly elevated in NPC patients compared with VN and VP. Combination of MIF and CCL3 could be used for the differential diagnosis of NPC from VN cohort (area under the curve [AUC], 0.913; sensitivity, 90.00%; specificity, 80.30%), and combination of MIF, CCL3, and VCA-IgA could be used for the differential diagnosis of NPC from VP cohort (AUC, 0.920; sensitivity, 90.00%; specificity, 84.00%), from (VN+VP) cohort (AUC, 0.961; sensitivity, 90.00%; specificity, 92.00%). Overexpressions of MIF and CCL3 were observed in NPC plasma, NPC cell lines and NPC tissues.
CONCLUSION: Plasma MIF, CCL3, and VCA-IgA combination significantly improves the diagnostic specificity of NPC in high-risk individuals.

Dai W, Li Q, Liu BY, et al.
Differential networking meta-analysis of gastric cancer across Asian and American racial groups.
BMC Syst Biol. 2018; 12(Suppl 4):51 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric Carcinoma is one of the most lethal cancer around the world, and is also the most common cancers in Eastern Asia. A lot of differentially expressed genes have been detected as being associated with Gastric Carcinoma (GC) progression, however, little is known about the underlying dysfunctional regulation mechanisms. To address this problem, we previously developed a differential networking approach that is characterized by involving differential coexpression analysis (DCEA), stage-specific gene regulatory network (GRN) modelling and differential regulation networking (DRN) analysis.
RESULT: In order to implement differential networking meta-analysis, we developed a novel framework which integrated the following steps. Considering the complexity and diversity of gastric carcinogenesis, we first collected three datasets (GSE54129, GSE24375 and TCGA-STAD) for Chinese, Korean and American, and aimed to investigate the common dysregulation mechanisms of gastric carcinogenesis across racial groups. Then, we constructed conditional GRNs for gastric cancer corresponding to normal and carcinoma, and prioritized differentially regulated genes (DRGs) and gene links (DRLs) from three datasets separately by using our previously developed differential networking method. Based on our integrated differential regulation information from three datasets and prior knowledge (e.g., transcription factor (TF)-target regulatory relationships and known signaling pathways), we eventually generated testable hypotheses on the regulation mechanisms of two genes, XBP1 and GIF, out of 16 common cross-racial DRGs in gastric carcinogenesis.
CONCLUSION: The current cross-racial integrative study from the viewpoint of differential regulation networking provided useful clues for understanding the common dysfunctional regulation mechanisms of gastric cancer progression and discovering new universal drug targets or biomarkers for gastric cancer.

Md Fuzi AA, Omar SZ, Mohamed Z, et al.
High throughput silencing identifies novel genes in endometrioid endometrial cancer.
Taiwan J Obstet Gynecol. 2018; 57(2):217-226 [PubMed] Related Publications
OBJECTIVE: To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer.
MATERIALS AND METHODS: A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined.
RESULTS: Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05).
CONCLUSION: We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.

Azimi A, Kaufman KL, Ali M, et al.
Differential proteomic analysis of actinic keratosis, Bowen's disease and cutaneous squamous cell carcinoma by label-free LC-MS/MS.
J Dermatol Sci. 2018; 91(1):69-78 [PubMed] Related Publications
BACKGROUND: The boundaries between actinic keratosis (AK), Bowen's disease (BD), and cutaneous squamous cell carcinoma (cSCC) are sometimes not clear. Large-scale proteomic profiling studies of these lesions are also non-existent.
OBJECTIVE: To evaluate proteomic changes between normal epidermis, AK, BD and cSCC that could support a molecular classification and improve our understanding of disease progression.
METHODS: Microdissected formalin-fixed paraffin embedded samples of normal epidermis (n = 4, pooled), AK (n = 10), BD (n = 10) and cSCC (n = 10) were analyzed by mass spectrometry. Following normalization and multiple testing adjustments, differential abundance analysis was performed using Linear Models for Microarray data. Proteins were filtered for significance (adjusted p-value ≤ 0.05) and fold change of at least ±1.5. Comparative bioinformatics analysis was performed using Ingenuity Pathway Analysis (IPA) software. Proteomic findings were subsequently substantiated using immunohistochemistry.
RESULTS: 2073 unique proteins were identified. cSCC had the highest number of differentially abundant proteins (63 proteins) followed by BD (58 proteins) and AK (46 proteins). Six proteins (APOA1, ALB, SERPINA1, HLA-B, HP and TXNDC5) were differentially abundant in cSCC compared to AK. Immunohistochemical analysis corroborated changes in MIF, RPL37A and TXNDC5. IPA analysis predicted that cell proliferation, angiogenesis and inflammatory reactions were significantly activated in cSCC compared to BD and AK. Cell death and DNA damage were predicted to be inhibited in BD.
CONCLUSION: Our study supports the concept that AK and BD are precursors of cSCC. The identification of proteome changes indicates disruption of repair, pro-apoptotic, and tumor promoting pathways. Our findings will help select targets for classification and treatment.

Abdul-Aziz AM, Shafat MS, Sun Y, et al.
HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia.
Oncogene. 2018; 37(20):2676-2686 [PubMed] Related Publications
Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML.

Klasen C, Ziehm T, Huber M, et al.
LPS-mediated cell surface expression of CD74 promotes the proliferation of B cells in response to MIF.
Cell Signal. 2018; 46:32-42 [PubMed] Related Publications
Macrophage migration inhibitory factor (MIF) is a chemokine-like inflammatory cytokine, which plays a pivotal role in the pathogenesis of inflammatory and cardiovascular diseases as well as cancer. We previously identified MIF as a novel B cell chemokine that promotes B cell migration through non-cognate interaction with the CXC chemokine receptor CXCR4 and CD74, the surface form of MHC class II invariant chain. In this study, we have analyzed the regulation of the MIF receptors under inflammatory conditions by investigating the impact of lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on CD74 and CXCR4 expression in B lymphocytes. We found that both LPS and TNF-α stimulation of primary B cells and the human B myeloma cell line RPMI-8226 enhanced protein expression as well as mRNA levels of CD74 in a time- and dose-dependent manner. By contrast, no effect on CXCR4 expression was observed. Selective inhibition of IκBα phosphorylation significantly attenuated LPS-induced expression of CD74, suggesting the contribution of NF-κB signaling pathways to the regulation of CD74 expression. Importantly, individual or simultaneous blockade of MIF or CD74 using specific neutralizing antibodies markedly affected B cell proliferation after LPS exposure. Taken together, our findings unveil a connection between the pro-proliferative activity of MIF/CD74 signaling in B cells and inflammation, offering novel target mechanisms in inflammatory cardiovascular or autoimmune pathogenesis.

Fei HJ, Chen SC, Zhang JY, et al.
Identification of significant biomarkers and pathways associated with gastric carcinogenesis by whole genome-wide expression profiling analysis.
Int J Oncol. 2018; 52(3):955-966 [PubMed] Related Publications
The incidence of gastric cancer (GC) is extremely high in East Asia. GC is also one of the most common and lethal forms of cancer from a global perspective. However, to date, we have not been able to determine one or several genes as biomarkers in the diagnosis of GC and have also been unable to identify the genes which are important in the therapy of GC. In this study, we analyzed all genome-wide expression profiling arrays uploaded onto the Gene Expression Omnibus (GEO) database to filtrate the differentially expressed genes (DEGs) between normal stomach tissues and GC tissues. GSE13911, GSE19826 and GSE79973 were based on the GPL570 platform, and GSE29272 was based on the GPL96 platform. We screened out the DEGs from the two platforms and by selecting the intersection of these two platforms, we identified the common DEGs in the sequencing data from different laboratories. Finally, we obtained 3 upregulated and 34 downregulated DEGs in GC from 384 samples. As the number of downregulated DEGs was greater than that of the upregulated DEGs, functional analysis and pathway enrichment analysis were performed on the downregulated DEGs. Through our analysis, we identified the most significant genes associated with GC, such as secreted phosphoprotein 1 (SPP1), sulfatase 1 (SULF1), thrombospondin 2 (THBS2), ATPase H+/K+ transporting beta subunit (ATP4B), gastric intrinsic factor (GIF) and gastrokine 1 (GKN1). The prognostic power of these genes was corroborated in the Oncomine database and by Kaplan-Meier plotter (KM-plotter) analysis. Moreover, gastric acid secretion, collecting duct acid secretion, nitrogen metabolism and drug metabolism were significantly related to GC. Thus, these genes and pathways may be potential targets for improving the diagnosis and clinical effects in patients with GC.

Soutourina J
Transcription regulation by the Mediator complex.
Nat Rev Mol Cell Biol. 2018; 19(4):262-274 [PubMed] Related Publications
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

Li J, Zhang J, Xie F, et al.
Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF‑κB/HIF‑1α pathway in lung cancer.
Int J Mol Med. 2018; 41(2):1062-1068 [PubMed] Related Publications
Macrophage migration inhibitory factor (MIF) is upregulated in various solid tumors, a process that is associated with tumor progression and metastasis. The present study aimed to investigate the role and the underlying mechanism of MIF in human lung cancer. Human lung cancer H358, H460, H524, H1650, H838, H1975 and A549 cell lines were used to examine the expression of MIF by real time‑quantitative polymerase chain reaction and western blotting. The lentivirus was used to overexpress MIF and the expression of MIF and hypoxia‑inducible factor 1‑α (HIF‑1α) were knocked down by shRNA or siRNA. The proliferation of cell lines was detected by MTT assay. Glucose uptake, adenosine 5'‑triphosphate (ATP) production, the glycolytic rate and lactate production were used to examine the Warburg effect in cells. BAY 11‑7082 (BAY) was used to inhibit the nuclear translocation of nuclear factor‑κB (NF‑κB), which was detected using immunofluorescence. It was revealed that overexpression of MIF promoted cell proliferation and the Warburg effect in lung cancer, whereas knockdown of MIF inhibited cell proliferation and the Warburg effect. Mechanistically, MIF promoted the Warburg effect by upregulating HIF‑1α. Knockdown of HIF‑1α largely abolished the promotional effect of MIF on the Warburg effect. Additionally, the results in the current study provided evidence that MIF regulates HIF‑1α through NF‑κB. In conclusion, the findings of the present study demonstrated that MIF is a key component in lung cancer progression through promoting the Warburg effect, and that the novel MIF/NF‑κB/HIF‑1α axis may prove to be useful for the development of new strategies for treating patients with lung cancer.

Couldwell WT, Cannon-Albright LA
A description of familial clustering of meningiomas in the Utah population.
Neuro Oncol. 2017; 19(12):1683-1687 [PubMed] Free Access to Full Article Related Publications
Background: Meningiomas are common intracranial tumors in adults, yet the genetics and cause of sporadic meningiomas are not well understood. Few familial clusters have been reported. The aim of this study was to investigate the familiality of meningiomas within the Utah Population Database.
Methods: Meningioma cases reported in the Utah Cancer Registry were identified. Relative risk of their relatives was calculated. All possible cases were assessed with the Genealogical Index of Familiality (GIF), which measures average pairwise relatedness of all possible pairs using the Malecot coefficient of kinship. Clusters of cases descending from a common ancestor were identified.
Results: Eight hundred fifty-eight meningioma cases were reported. The relative risk of a first- or second-degree relative was 3.13 (95% CI: 1.67, 5.36) or 2.28 (1.30, 3.70), respectively. The GIF statistic demonstrated a clear excess of relationships for genetic distance <4 (closer than first cousins). We identified 920 pedigrees, including 2-21 meningioma cases. One hundred eighty-nine of these pedigrees, including 2-15 cases, had a significant excess (P < 0.05) of meningioma cases over what was expected.
Conclusions: This Utah population-based analysis of meningiomas shows clear evidence of familial clustering and supports both a familial and a germline variant basis for meningioma. These clusters may allow identification of genes likely to contribute to tumorigenesis in high-risk pedigrees. These relative risk data provide the basis for further investigations of genetic contributions to meningioma. These data may contribute to developing a basis for determining screening criteria of higher-risk pedigrees for the presence of meningiomas.

Piltti J, Bygdell J, Qu C, Lammi MJ
Effects of long-term low oxygen tension in human chondrosarcoma cells.
J Cell Biochem. 2018; 119(2):2320-2332 [PubMed] Related Publications
The cell-based therapies could be potential methods to treat damaged cartilage tissues. Instead of native hyaline cartilage, the current therapies generate mainly weaker fibrocartilage-type of repair tissue. A correct microenvironment influences the cellular phenotype, and together with external factors it can be used, for example, to aid the differentiation of mesenchymal stem cells to defined types of differentiated adult cells. In this study, we investigated the effect of long-term exposure to 5% low oxygen atmosphere on human chondrosarcoma HCS-2/8 cells. This atmosphere is close to normal oxygen tension of cartilage tissue. The proteome was analyzed with label-free mass spectrometric method and further bioinformatic analysis. The qRT-PCR method was used to gene expression analysis, and ELISA and dimethylmethylene blue assays for type II collagen and sulfated glycosaminoglycan measurements. The 5% oxygen atmosphere did not influence cell proliferation, but enhanced slightly ACAN and COL2A1 gene expression. Proteomic screening revealed a number of low oxygen-induced protein level responses. Increased ones included NDUFA4L2, P4HA1, NDRG1, MIF, LDHA, PYGL, while TXNRD1, BAG2, TXN2, AQSTM1, TNFRSF1B, and EPHX1 decreased during the long-term low oxygen atmosphere. Also a number of proteins previously not related to low oxygen tension changed during the treatment. Of those S100P, RPSS26, NDUFB11, CDV3, and TUBB8 had elevated levels, while ALCAM, HLA-B, EIF1, and ACOT9 were lower in the samples cultured at low oxygen tension. In conclusion, low oxygen condition causes changes in the cellular amounts of several proteins.

Ramos TL, Sánchez-Abarca LI, Rosón-Burgo B, et al.
Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.
PLoS One. 2017; 12(8):e0182470 [PubMed] Free Access to Full Article Related Publications
There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells.

Goto A, Tanaka M, Yoshida M, et al.
The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases.
PLoS One. 2017; 12(7):e0181270 [PubMed] Free Access to Full Article Related Publications
PURPOSE: miR-451 is a tumor suppressive microRNA with several target genes, including Macrophage migration inhibitory factor (MIF). As little is known about the expression and clinicopathological significance of mir-451 in NSCLC, we performed a clinicopathological study of 370 NSCLC cases to clarify them. Cell biological experiments were also performed on NSCLC cell lines to confirm the tumor-suppressive role of miR-451 and whether or not MIF is targeted by miR-451.
METHODS: We analyzed 370 NSCLC cases for the miR-451 expression by quantitative real-time polymerase chain reaction and the MIF expression by immunohistochemistry. Eighty-four background lung tissue samples were also evaluated for the miR-451 expression. The clinicopathological and genetic factors surveyed were the disease-free survival, smoking status, histological type, disease stage, EGFR gene mutations and ALK rearrangements. In 286 adenocarcinoma cases, the invasive status (adenocarcinoma in situ, minimally invasive adenocarcinoma and invasive adenocarcinoma) was also evaluated. Five NSCLC cell lines (H23, H441, H522, H1703, and H1975) were cultured and evaluated for their miR-451 and MIF expression. The cell lines with lower miR-451 and higher MIF expressions were then selected and transfected with miR-451-mimic to observe its effects on MIF expression, Akt and Erk status, cell proliferation, and cell migration.
RESULTS: The miR-451 expression was down-regulated in cancer tissues compared with background lung tissues (P<0.0001). Factors such as advanced disease stage, positive pleural invasion and nodal status and being a smoker were significantly correlated with a lower expression of miR-451 (P<0.05 each), while EGFR gene mutations and ALK rearrangements were not. In adenocarcinoma, invasive and minimally invasive adenocarcinoma showed lower expression of miR-451 than adenocarcinoma in situ (P<0.0005, respectively). A survival analysis showed that a lower expression of miR-451 was an independent predictor of a poor prognosis for NSCLC (P<0.05). The MIF expression was inversely correlated with the miR-451 expression. Out of 5 NSCLC cell lines examined, H441 and H1975 showed higher MIF and lower miR-451 expressions. After the transfection of miR-451-mimic, the MIF expression and phosphorylated Akt expression of these cell lines was suppressed, as were cell proliferation and cell migration.
CONCLUSION: This clinicopathological study of 370 NSCLC cases and the cell biological studies of NSCLC cell lines clarified the tumor-suppressive role of miR-451 and its prognostic value. We also validated MIF as a target of miR-451 in NSCLC.

Wang C, Zhou X, Li W, et al.
Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway.
Cancer Lett. 2017; 403:271-279 [PubMed] Related Publications
Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment.

Kobayashi K, Tomita H, Shimizu M, et al.
p53 Expression as a Diagnostic Biomarker in Ulcerative Colitis-Associated Cancer.
Int J Mol Sci. 2017; 18(6) [PubMed] Free Access to Full Article Related Publications
Ulcerative colitis (UC) is defined as an idiopathic inflammatory disorder primarily involving the mucosa and submucosa of the colon. UC-associated colon cancers (also known as colitic cancers) develop through the inflammation-dysplasia sequence, which is a major problem affecting the prognosis of patients with UC. It is therefore very important to detect malignancy from UC at an early stage. As precancerous lesions arising in UC, there are pathological adenomatous changes, basal cell changes, in situ anaplasia, clear cell changes, and pan-cellular change. It is considered that the mutation of the p53 gene plays a crucial role, and the protein expression of p53 in dysplastic crypts may serve as a good biomarker in the early stages of UC-associated colon carcinogenesis. Immunohistochemistry for p53 is a very valuable diagnostic tool in UC-associated colon cancers. However, protein expression of p53 is not always universal, and additional methods may be required to assess p53 status in UC-associated colon cancers.

Sobot D, Mura S, Rouquette M, et al.
Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer Cells.
Mol Ther. 2017; 25(7):1596-1605 [PubMed] Free Access to Full Article Related Publications
Selective delivery of anticancer drugs to rapidly growing cancer cells can be achieved by taking advantage of their high receptor-mediated uptake of low-density lipoproteins (LDLs). Indeed, we have recently discovered that nanoparticles made of the squalene derivative of the anticancer agent gemcitabine (SQGem) strongly interacted with the LDLs in the human blood. In the present study, we showed both in vitro and in vivo that such interaction led to the preferential accumulation of SQGem in cancer cells (MDA-MB-231) with high LDL receptor expression. As a result, an improved pharmacological activity has been observed in MDA-MB-231 tumor-bearing mice, an experimental model with a low sensitivity to gemcitabine. Accordingly, we proved that the use of squalene moieties not only induced the gemcitabine insertion into lipoproteins, but that it could also be exploited to indirectly target cancer cells in vivo.

Jia L, Chen J, Xie C, et al.
Life Sci. 2017; 180:9-16 [PubMed] Related Publications
Our previous study has shown that microRNA-1228

Wang Q, Wei Y, Zhang J
Combined Knockdown of D-dopachrome Tautomerase and Migration Inhibitory Factor Inhibits the Proliferation, Migration, and Invasion in Human Cervical Cancer.
Int J Gynecol Cancer. 2017; 27(4):634-642 [PubMed] Related Publications
OBJECTIVE: D-dopachrome tautomerase (D-DT) is a homologue of macrophage migration inhibitory factor (MIF) with similar functions. However, the possible biological roles of D-DT in cervical cancer remain unknown so far.
METHODS: D-dopachrome tautomerase was assessed by immunohistochemistry in 83 cervical cancer and 31 normal cervix tissues. The stable knockdown of D-DT and MIF by lentivirus-delivered short hairpin RNA was established, and tumor growth was examined in vitro and in vivo. The effects of D-DT and MIF on the migration and invasion were further detected by wound healing assay and transwell assay. Western blot was used to explore the mechanism of D-DT and MIF in cervical cancer pathogenesis.
RESULTS: We found that D-DT was significantly high in cervical cancer, which correlated with lymph node metastasis. The knockdown of D-DT and MIF, individually and additively, inhibited the proliferation, migration, and invasion in HeLa and SiHa cells and restrained the growth of xenograft tumor. The ablation of D-DT and MIF rescued the expression of E-cadherin and inhibited the expression of PCNA, cyclin D1, gankyrin, Sam68, and vimentin, as well as phospho-Akt and phospho-glycogen synthase kinase 3-β.
CONCLUSIONS: The inhibition of D-DT and MIF in combination may represent a potential therapeutic strategy for cervical cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MIF, Cancer Genetics Web: http://www.cancer-genetics.org/MIF.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999