Gene Summary

Gene:CD74; CD74 molecule
Aliases: II, p33, DHLAG, HLADG, Ia-GAMMA
Summary:The protein encoded by this gene associates with class II major histocompatibility complex (MHC) and is an important chaperone that regulates antigen presentation for immune response. It also serves as cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF) which, when bound to the encoded protein, initiates survival pathways and cell proliferation. This protein also interacts with amyloid precursor protein (APP) and suppresses the production of amyloid beta (Abeta). Multiple alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Aug 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:HLA class II histocompatibility antigen gamma chain
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (61)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Chromosome 5
  • Adenocarcinoma of Lung
  • Gene Expression Profiling
  • Oncogene Fusion Proteins
  • Protein-Serine-Threonine Kinases
  • Immunohistochemistry
  • CD74
  • Chronic Lymphocytic Leukemia
  • Macrophage Migration-Inhibitory Factors
  • Lung Cancer
  • Antigens, Differentiation, B-Lymphocyte
  • Mycosis Fungoides
  • Western Blotting
  • Gene Expression
  • Adenocarcinoma
  • NTRK1
  • Breast Cancer
  • Disease Models, Animal
  • Non-Small Cell Lung Cancer
  • Receptor Protein-Tyrosine Kinases
  • Mutation
  • FISH
  • Kidney Cancer
  • Protein-Tyrosine Kinases
  • Proto-Oncogene Proteins
  • Ovary
  • Intramolecular Oxidoreductases
  • B-Lymphocytes
  • Cell Proliferation
  • Histocompatibility Antigens Class II
  • Protein Kinase Inhibitors
  • Messenger RNA
  • drug, Xalkori (Crizotinib)
  • Staging
  • Immunophenotyping
  • CD Antigens
  • Gene Rearrangement
  • RT-PCR
  • ROS1
  • Biomarkers, Tumor
  • Cell Movement
  • Neoplasm Invasiveness
  • Cancer Gene Expression Regulation
  • Gene Knockdown Techniques
  • Interferon-gamma
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (9)

Latest Publications: CD74 (cancer-related)

Okamura K, Nakabayashi K, Kawai T, et al.
DNA methylation changes involved in the tumor increase in F2 males born to gestationally arsenite-exposed F1 male mice.
Cancer Sci. 2019; 110(8):2629-2642 [PubMed] Free Access to Full Article Related Publications
Multigenerational adverse effects from the environment such as nutrition and chemicals are among important concerns in environmental health issues. Previously, we have found that arsenite exposure of only F0 females during their pregnancy increases hepatic tumors in the F2 males in C3H mice. In the current study, we investigated the association of DNA methylation with the hepatic tumor increase in the F2 males of the arsenite group. Reduced-representation bisulfite sequencing analysis newly identified that DNA methylation levels of regions around the transcriptional start sites of Tmem54 and Cd74 were decreased and the expression of these genes were significantly increased in the hepatic tumors of F2 males of the arsenite group. The associations between DNA methylation in these regions and gene expression changes were confirmed by treatment of murine hepatoma cell lines and hepatic stellate cell line with 5-aza-2'-deoxycytidine. Overexpression of Cd74 in Hepa1c1c7 cells increased Trib3 expression and suppressed the expression of tumor suppressor genes Id3 and Atoh8. Human database analysis using the Cancer Genome Atlas indicated that TMEM54, CD74, and TRIB3 were significantly increased and that ATOH8 was decreased in hepatocellular carcinoma. The data also showed that high expression of TMEM54 and TRIB3 and low expression of ATOH8 were associated with poor survival. These results suggested that an increase in Tmem54 and Cd74 expression via DNA methylation reduction was involved in the tumor increase in the F2 male offspring by gestational arsenite exposure of F0 females. This study also suggested that genes downstream of Cd74 were involved in tumorigenesis.

Imaoka M, Tanese K, Masugi Y, et al.
Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells.
Cancer Sci. 2019; 110(7):2273-2283 [PubMed] Free Access to Full Article Related Publications
Expression of programmed cell death ligand 1 (PD-L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ-Interferon (IFN-γ) has been reported as a key extrinsic stimulator of PD-L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD-L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN-γ and inhibitors of the MIF-CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD-L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN-γ stimulation, showed upregulation of PD-L1 levels by IFN-γ stimulation. This was suppressed by further treatment with the MIF-CD74 interaction inhibitor, 4-iodo-6-phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD-L1, CD74, and MIF in its non-treated state, treatment with 4-iodo-6-phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD-L1. Together, the results indicated that MIF-CD74 interaction directly regulated the expression of PD-L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF-CD74 interaction could be a therapeutic target in the treatment of melanoma patients.

Zhang J, Chen Y, Chen K, et al.
IL-33 drives the antitumour effects of dendritic cells via upregulating CYLD expression in pulmonary adenocarcinoma.
Artif Cells Nanomed Biotechnol. 2019; 47(1):1335-1341 [PubMed] Related Publications
Lung adenocarcinoma is one of the leading causes of cancer-related death worldwide. Low expression of Interleukin-33 (IL-33) was reported to be associated with the progression of pulmonary adenocarcinoma. However, the IL-33-mediated immunoregulation in pulmonary adenocarcinoma remains unclear. In this study, we found that IL-33 treatment evidently repressed tumour growth, induced CD4

Klein S, Mauch C, Wagener-Ryczek S, et al.
Immune-phenotyping of pleomorphic dermal sarcomas suggests this entity as a potential candidate for immunotherapy.
Cancer Immunol Immunother. 2019; 68(6):973-982 [PubMed] Related Publications
BACKGROUND: Pleomorphic dermal sarcomas (PDS) are sarcomas of the skin with local recurrences in up to 28% of cases, and distant metastases in up to 20%. Although recent evidence provides a strong rational to explore immunotherapeutics in solid tumors, nothing is known about the immune environment of PDS.
METHODS: In the current study, a comprehensive immune-phenotyping of 14 PDS using RNA and protein expression analyses, as well as quantitative assessment of immune cells using an image-analysis tool was performed.
RESULTS: Three out of 14 PDS revealed high levels of CD8-positive tumor-infiltrating T-lymphocytes (TILs), also showing elevated levels of immune-related cytokines such as IL1A, IL2, as well as markers that were very recently linked to enhanced response of immunotherapy in malignant melanoma, including CD27, and CD40L. Using a multivariate analysis, we found a number of differentially expressed genes in the CD8-high group including: CD74, LYZ and HLA-B, while the remaining cases revealed enhanced levels of immune-suppressive cytokines including CXCL14. The "CD8-high" PDS showed strong MHC-I expression and revealed infiltration by PD-L1-, PD-1- and LAG-3-expressing immune cells. Tumor-associated macrophages (TAMs) predominantly consisted of CD68 + , CD163 + , and CD204 + M2 macrophages showing an accentuation at the tumor invasion front.
CONCLUSIONS: Together, we provide first explorative evidence about the immune-environment of PDS tumors that may guide future decisions whether individuals presenting with advanced PDS could qualify for immunotherapeutic options.

Kato Y, Ninomiya K, Ohashi K, et al.
Combined effect of cabozantinib and gefitinib in crizotinib-resistant lung tumors harboring ROS1 fusions.
Cancer Sci. 2018; 109(10):3149-3158 [PubMed] Free Access to Full Article Related Publications
The ROS1 tyrosine kinase inhibitor (TKI) crizotinib has shown dramatic effects in patients with non-small cell lung cancer (NSCLC) harboring ROS1 fusion genes. However, patients inevitably develop resistance to this agent. Therefore, a new treatment strategy is required for lung tumors with ROS1 fusion genes. In the present study, lung cancer cell lines, HCC78 harboring SLC34A2-ROS1 and ABC-20 harboring CD74-ROS1, were used as cell line-based resistance models. Crizotinib-resistant HCC78R cells were established from HCC78. We comprehensively screened the resistant cells using a phosphor-receptor tyrosine kinase array and RNA sequence analysis by next-generation sequencing. HCC78R cells showed upregulation of HB-EGF and activation of epidermal growth factor receptor (EGFR) phosphorylation and the EGFR signaling pathway. Recombinant HB-EGF or EGF rendered HCC78 cells or ABC-20 cells resistant to crizotinib. RNA sequence analysis by next-generation sequencing revealed the upregulation of AXL in HCC78R cells. HCC78R cells showed marked sensitivity to EGFR-TKI or anti-EGFR antibody treatment in vitro. Combinations of an AXL inhibitor, cabozantinib or gilteritinib, and an EGFR-TKI were more effective against HCC78R cells than monotherapy with an EGFR-TKI or AXL inhibitor. The combination of cabozantinib and gefitinib effectively inhibited the growth of HCC78R tumors in an in vivo xenograft model of NOG mice. The results of this study indicated that HB-EGF/EGFR and AXL play roles in crizotinib resistance in lung cancers harboring ROS1 fusions. The combination of cabozantinib and EGFR-TKI may represent a useful alternative treatment strategy for patients with advanced NSCLC harboring ROS1 fusion genes.

Lacher MD, Bauer G, Fury B, et al.
SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4
Front Immunol. 2018; 9:776 [PubMed] Free Access to Full Article Related Publications
Targeted cancer immunotherapy with irradiated, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study ( NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (

Wilson FH, Politi K
ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation.
Cancer Discov. 2018; 8(6):676-678 [PubMed] Free Access to Full Article Related Publications
A patient with advanced lung adenocarcinoma harboring a

Johnstone CN, Pattison AD, Gorringe KL, et al.
Functional and genomic characterisation of a xenograft model system for the study of metastasis in triple-negative breast cancer.
Dis Model Mech. 2018; 11(5) [PubMed] Free Access to Full Article Related Publications
Triple-negative breast cancer (TNBC) represents 10-20% of all human ductal adenocarcinomas and has a poor prognosis relative to other subtypes. Hence, new molecular targets for therapeutic intervention are necessary. Analyses of panels of human or mouse cancer lines derived from the same individual that differ in their cellular phenotypes but not in genetic background have been instrumental in defining the molecular players that drive the various hallmarks of cancer. To determine the molecular regulators of metastasis in TNBC, we completed a rigorous

Zeiner PS, Zinke J, Kowalewski DJ, et al.
CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival.
Acta Neuropathol Commun. 2018; 6(1):18 [PubMed] Free Access to Full Article Related Publications
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74

Gou W, Zhou X, Liu Z, et al.
CD74-ROS1 G2032R mutation transcriptionally up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to crizotinib.
Cancer Lett. 2018; 422:19-28 [PubMed] Related Publications
The c-ros oncogene 1 (ROS1) is a receptor tyrosine kinase, which has been identified as an oncogene driver of non-small-cell lung cancer (NSCLC). Although crizotinib has a prominent effect on ROS1, resistance is inevitable. Development of the acquired ROS1 G2032R mutation has been reported as a resistant mechanism to ROS1 inhibitors in ROS1-rearranged (ROS1

Klasen C, Ziehm T, Huber M, et al.
LPS-mediated cell surface expression of CD74 promotes the proliferation of B cells in response to MIF.
Cell Signal. 2018; 46:32-42 [PubMed] Related Publications
Macrophage migration inhibitory factor (MIF) is a chemokine-like inflammatory cytokine, which plays a pivotal role in the pathogenesis of inflammatory and cardiovascular diseases as well as cancer. We previously identified MIF as a novel B cell chemokine that promotes B cell migration through non-cognate interaction with the CXC chemokine receptor CXCR4 and CD74, the surface form of MHC class II invariant chain. In this study, we have analyzed the regulation of the MIF receptors under inflammatory conditions by investigating the impact of lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on CD74 and CXCR4 expression in B lymphocytes. We found that both LPS and TNF-α stimulation of primary B cells and the human B myeloma cell line RPMI-8226 enhanced protein expression as well as mRNA levels of CD74 in a time- and dose-dependent manner. By contrast, no effect on CXCR4 expression was observed. Selective inhibition of IκBα phosphorylation significantly attenuated LPS-induced expression of CD74, suggesting the contribution of NF-κB signaling pathways to the regulation of CD74 expression. Importantly, individual or simultaneous blockade of MIF or CD74 using specific neutralizing antibodies markedly affected B cell proliferation after LPS exposure. Taken together, our findings unveil a connection between the pro-proliferative activity of MIF/CD74 signaling in B cells and inflammation, offering novel target mechanisms in inflammatory cardiovascular or autoimmune pathogenesis.

Handschuh L, Kaźmierczak M, Milewski MC, et al.
Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.
Int J Oncol. 2018; 52(3):656-678 [PubMed] Free Access to Full Article Related Publications
Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1 gene expression levels correlated with the response to therapy. CAT expression was highest in patients who remained longer under complete remission, whereas WT1 expression increased with treatment resistance. On the whole, this study demonstrates that the AML-array can potentially serve as a first-line screening tool, and may be helpful for the diagnosis of AML, whereas the differentiation between AML subgroups can be more successfully performed with PCR-based analysis of a few marker genes.

Piton N, Ruminy P, Gravet C, et al.
Ligation-dependent RT-PCR: a new specific and low-cost technique to detect ALK, ROS, and RET rearrangements in lung adenocarcinoma.
Lab Invest. 2018; 98(3):371-379 [PubMed] Related Publications
Detection of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 (ROS1), and rearranged during transfection (RET) gene rearrangements in lung adenocarcinoma is usually performed by immunohistochemistry (IHC) screening followed by fluorescence in situ hybridization (FISH), which is an expensive and difficult technique. Ligation-dependent reverse transcription polymerase chain reaction (RT-PCR) multiplex technique can detect gene rearrangements using probes specifically hybridized to either side of the break point. PCR products are then sequenced by pyrosequencing or high throughput sequencing in order to identify the two genes involved. The reagent cost is <15 dollars per patient and results are available in 2 days. We have developed a 47-probe LD-RT-PCR kit especially for lung adenocarcinomas. Thirty-nine lung adenocarcinomas were studied: 24 ALK+, 14 ROS1+, and 1 RET+. ALK+ and ROS1+ were IHC+ (D5F3 Ventana for ALK and D4D6 Cell Signaling Technology for ROS1) and all cases were FISH+ (Vysis ALK Breakapart Probe Abbott for ALK, Zytolight SPEC ROS1 Dualcolor Breakapart Probe for ROS1 and Zytolight SPEC RET Dual Color Breakapart for RET); 14 wild type samples were included as negative controls. Using LD-RT-PCR, 15 rearrangements (63%) were detected in the ALK cases (gene partner: EML4 in all cases), 9 rearrangements (64%) in the ROS1 cases (gene partners: CD74 in 8 cases and SLC34A2 in 1 case) and 1 (100%) in the single RET case (gene partner: KIF5B). No rearrangement was found in the 14 negative control cases. Negative cases using LD-RT-PCR could be explained by the fact that some partner genes were not included in our assay and therefore could not be detected. Because it is an affordable, fast, and very simple technique, we propose using LD-RT-PCR when ALK immunostaining is positive. For LD-RT-PCR-negative cases, samples should then be analyzed by FISH.

Fernandez-Jimenez N, Sklias A, Ecsedi S, et al.
Lowly methylated region analysis identifies EBF1 as a potential epigenetic modifier in breast cancer.
Epigenetics. 2017; 12(11):964-972 [PubMed] Free Access to Full Article Related Publications
Breast cancer (BC) encompasses heterogeneous pathologies with different subtypes exhibiting distinct molecular changes, including those related to DNA methylation. However, the role of these changes in mediating BC heterogeneity is poorly understood. Lowly methylated regions (LMRs), non-CpG island loci that usually contain transcription factor (TF) binding sites, have been suggested to act as regulatory elements that define cellular identity. In this study, we aimed to identify the key subtype-specific TFs that may lead to LMR generation and shape the BC methylome and transcription program. We initially used whole-genome bisulfite sequencing (WGBS) data available at The Cancer Genome Atlas (TCGA) portal to identify subtype-specific LMRs. Differentially methylated regions (DMRs) within the BC PAM50 subtype-specific LMRs were selected by comparing tumors and normal tissues in a larger TCGA cohort assessed by HumanMethylation450 BeadChip (450K) arrays and TF enrichment analyses were performed. To assess the impact of LMRs on gene expression, TCGA RNA sequencing data were downloaded and Pearson correlations between methylation levels of loci presenting subtype-specific TF motifs and expression of the nearest genes were calculated. WGBS methylome data revealed a large number of LMRs for each of the BC subtypes. Analysis of these LMRs in the 450K datasets available for a larger sample set identified 7,765, 5,657, and 19 differentially methylated positions (DMPs) between normal adjacent tissues and tumor tissues from basal, luminal, and HER2-enriched subtypes, respectively. Unsupervised clustering showed that the discriminatory power of the top DMPs was remarkably strong for basal BC. Interestingly, in this particular subtype, we found 4,409 differentially hypomethylated positions grouped into 1,185 DMRs with a strong enrichment for the early B-cell factor 1 (EBF1) motifs. The methylation levels of the DMRs containing EBF1 motifs showed a strong negative correlation with the expression of 719 nearby genes, including BTS2 and CD74, two oncogenes known to be specific for basal BC subtype and for poor outcome. This study identifies LMRs specific to the three main BC subtypes and reveals EBF1 as a potentially important regulator of BC subtype-specific methylation and gene expression program.

Moek KL, de Groot DJA, de Vries EGE, Fehrmann RSN
The antibody-drug conjugate target landscape across a broad range of tumour types.
Ann Oncol. 2017; 28(12):3083-3091 [PubMed] Related Publications
Background: Antibody-drug conjugates (ADCs), consisting of an antibody designed against a specific target at the cell membrane linked with a cytotoxic agent, are an emerging class of therapeutics. Because ADC tumour cell targets do not have to be drivers of tumour growth, ADCs are potentially relevant for a wide range of tumours currently lacking clear oncogenic drivers. Therefore, we aimed to define the landscape of ADC targets in a broad range of tumours.
Materials and methods: PubMed and were searched for ADCs that are or were evaluated in clinical trials. Gene expression profiles of 18 055 patient-derived tumour samples representing 60 tumour (sub)types and 3520 healthy tissue samples were collected from the public domain. Next, we applied Functional Genomic mRNA-profiling to predict per tumour type the overexpression rate at the protein level of ADC targets with healthy tissue samples as a reference.
Results: We identified 87 ADCs directed against 59 unique targets. A predicted overexpression rate of ≥ 10% of samples for multiple ADC targets was observed for high-incidence tumour types like breast cancer (n = 31 with n = 23 in triple negative breast cancer), colorectal cancer (n = 18), lung adenocarcinoma (n = 18), squamous cell lung cancer (n = 16) and prostate cancer (n = 5). In rare tumour types we observed, amongst others, a predicted overexpression rate of 55% of samples for CD22 and 55% for ENPP3 in adrenocortical carcinomas, 81% for CD74 and 81% for FGFR3 in osteosarcomas, and 95% for c-MET in uveal melanomas.
Conclusion: This study provides a data-driven prioritization of clinically available ADCs directed against 59 unique targets across 60 tumour (sub)types. This comprehensive ADC target landscape can guide clinicians and drug developers which ADC is of potential interest for further evaluation in which tumour (sub)type.

Cortés M, Sanchez-Moral L, de Barrios O, et al.
Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles.
EMBO J. 2017; 36(22):3336-3355 [PubMed] Free Access to Full Article Related Publications
Accumulation of tumor-associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro-tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial-to-mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor-promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of

Klymenko T, Gu Q, Herbert I, et al.
RNA-Seq Analysis of Differentiated Keratinocytes Reveals a Massive Response to Late Events during Human Papillomavirus 16 Infection, Including Loss of Epithelial Barrier Function.
J Virol. 2017; 91(24) [PubMed] Free Access to Full Article Related Publications
The human papillomavirus (HPV) replication cycle is tightly linked to epithelial cell differentiation. To examine HPV-associated changes in the keratinocyte transcriptome, RNAs isolated from undifferentiated and differentiated cell populations of normal, spontaneously immortalized keratinocytes (NIKS) and NIKS stably transfected with HPV16 episomal genomes (NIKS16) were compared using next-generation sequencing (RNA-Seq). HPV16 infection altered expression of 2,862 cellular genes. Next, to elucidate the role of keratinocyte gene expression in late events during the viral life cycle, RNA-Seq was carried out on triplicate differentiated populations of NIKS (uninfected) and NIKS16 (infected). Of the top 966 genes altered (>log

Fernandez-Retana J, Zamudio-Meza H, Rodriguez-Morales M, et al.
Gene signature based on degradome-related genes can predict distal metastasis in cervical cancer patients.
Tumour Biol. 2017; 39(6):1010428317711895 [PubMed] Related Publications
Cervical cancer is one of the leading causes of death in women worldwide, which mainly affects developing countries. The patients who suffer a recurrence and/or progression disease have a higher risk of developing distal metastases. Proteases comprising the degradome given its ability to promote cell growth, migration, and invasion of tissues play an important role during tumor development and progression. In this study, we used high-density microarrays and quantitative reverse transcriptase polymerase chain reaction to evaluate the degradome profile and their inhibitors in 112 samples of patients diagnosed with locally advanced cervical cancer. Clinical follow-up was done during a period of 3 years. Using a correlation analysis between the response to treatment and the development of metastasis, we established a molecular signature comprising eight degradome-related genes (FAM111B, FAM111A, CFB, PSMB8, PSMB9, CASP7, PRSS16, and CD74) with the ability to discriminate patients at risk of distal metastases. In conclusion, present results show that molecular signature obtained from degradome genes can predict the possibility of metastasis in patients with locally advanced cervical cancer.

Turner TB, Meza-Perez S, Londoño A, et al.
Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth.
Oncotarget. 2017; 8(27):44159-44170 [PubMed] Free Access to Full Article Related Publications
Expression of MHC class II pathway proteins in ovarian cancer correlates with prolonged survival. Murine and human ovarian cancer cells were treated with epigenetic modulators - histone deacetylase inhibitors and a DNA methyltransferase inhibitor. mRNA and protein expression of the MHC II pathway were evaluated by qPCR and flow cytometry. Treatment with entinostat and azacytidine of ID8 cells in vitro increased mRNA levels of Cd74, Ciita, and H2-Aa, H2-Eb1. MHC II and CD74 protein expression were increased after treatment with either agent. A dose dependent response in mRNA and protein expression was seen with entinostat. Combination treatment showed higher MHC II protein expression than with single agent treatment. In patient derived xenografts, CIITA, CD74, and MHC II mRNA transcripts were significantly increased after combination treatment. Expression of MHC II on ovarian tumors in MISIIR-Tag mice was increased with both agents relative to control. Combination treatment significantly reduced ID8 tumor growth in immune-competent mice. Epigenetic treatment increases expression of MHC II on ovarian cancer cells and impedes tumor growth. This approach warrants further study in ovarian cancer patients.

Roskoski R
ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers.
Pharmacol Res. 2017; 121:202-212 [PubMed] Related Publications
ROS1 protein-tyrosine kinase fusion proteins are expressed in 1-2% of non-small cell lung cancers. The ROS1 fusion partners include CD74, CCDC6, EZR, FIG, KDELR2, LRIG3, MSN, SDC4, SLC34A2, TMEM106B, TMP3, and TPD52L1. Physiological ROS1 is closely related to the ALK, LTK, and insulin receptor protein-tyrosine kinases. ROS1 is a so-called orphan receptor because the identity of its activating ligand, if any, is unknown. The receptor is expressed during development, but little is expressed in adults and its physiological function is unknown. The human ROS1 gene encodes 2347 amino acid residues and ROS1 is the largest protein-tyrosine kinase receptor protein. Unlike the ALK fusion proteins that are activated by the dimerization induced by their amino-terminal portions, the amino-terminal domains of several of its fusion proteins including CD74 apparently lack the ability to induce dimerization so that the mechanism of constitutive protein kinase activation is unknown. Downstream signaling from the ROS1 fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module, the phosphatidyl inositol 3-kinase cell survival pathway, and the Vav3 cell migration pathway. Moreover, several of the ROS1 fusion proteins are implicated in the pathogenesis of a very small proportion of other cancers including glioblastoma, angiosarcoma, and cholangiocarcinoma as well as ovarian, gastric, and colorectal carcinomas. The occurrence of oncogenic ROS1 fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ROS1 inhibitors. Although the percentage of lung cancers driven by ROS1 fusion proteins is low, owing to the large number of new cases of non-small cell lung cancer per year, the number of new cases of ROS1-positive lung cancers is significant and ranges from 2000 to 4000 per year in the United States and 10,000-15,000 worldwide. Crizotinib was the first inhibitor approved by the US Food and Drug Administration for the treatment of ROS1-positive non-small cell lung cancer in 2016. Other drugs that are in clinical trials for the treatment of these lung cancers include ceritinib, cabozantinib, entrectinib, and lorlatinib. Crizotinib forms a complex within the front cleft between the small and large lobes of an active ROS1 protein-kinase domain and it is classified as type I inhibitor.

Lozano-Pope I, Sharma A, Matthias M, et al.
Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer.
BMC Cancer. 2017; 17(1):133 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer is one of the most common and lethal type of cancer worldwide. Infection with Helicobacter pylori (H. pylori) is recognized as the major cause of gastric cancer. However, it remains unclear the mechanism by which Helicobacter infection leads to gastric cancer. Furthermore, the underlying molecular events involved during the progression of Helicobacter infection to gastric malignancy are not well understood. In previous studies, we demonstrated that that H. felis-infected Myd88
METHODS: Wild type (WT) and Myd88 deficient mice (Myd88
RESULTS: Helicobacter infection affected the transcriptional profile of more genes in Myd88
CONCLUSIONS: These results provide a global transcriptional gene profile during the development and progression of Helicobacter-induced gastric cancer. The data show that our mouse model system is useful for identifying genes involved in gastric cancer progression.

Brocks T, Fedorchenko O, Schliermann N, et al.
Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.
FASEB J. 2017; 31(2):526-543 [PubMed] Free Access to Full Article Related Publications
The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif

Park GB, Chung YH, Gong JH, et al.
GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63.
Int J Oncol. 2016; 49(5):2163-2172 [PubMed] Related Publications
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediated intracellular fatty acid synthesis to control EMT in TLR4-activated colorectal cancer cells and the underlying regulatory mechanism. Engagement of TLR4 with lipopolysaccharide (LPS) in colon cancer cells promoted the induction of phosphorylated GSK-3β and related lipogenic enzymes as well as the expression of CD74, CD44 and macrophage inhibitory factor (MIF), but decreased expression of transcriptionally active p63 (TAp63). In addition, targeted inhibition of GSK-3β using SB216763 was accompanied by decreased intracellular fatty acid synthesis and blockage of CD74 and CD44 expression, whereas it reversed the level of TAp63. Although TAp63 overexpression had no effect on the expression of CD74 and CD44 in LPS-treated colon cancer cells, GSK-3β-dependent fatty acid synthesis and invasive activity were significantly suppressed. Notably, inhibition of CD44 or CD74 by siRNA not only attenuated de novo lipogenesis and migratory activity but also restored the expression of TAp63 in LPS-activated colon cancer cells. These results suggest that TAp63-mediated GSK-3β activation induced by TLR4 stimulation triggers migration and invasion of colon cancer cells through the regulation of lipid synthesis and GSK-3β-mediated CD74/CD44 expression could be a target to control fatty acid-related EMT process through the modulation of TAp63 expression.

Lekomtsev S, Aligianni S, Lapao A, Bürckstümmer T
Efficient generation and reversion of chromosomal translocations using CRISPR/Cas technology.
BMC Genomics. 2016; 17(1):739 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chromosomal translocations are a hallmark of cancer cells and give rise to fusion oncogenes. To gain insight into the mechanisms governing tumorigenesis, adequate model cell lines are required.
RESULTS: We employ the versatile CRISPR/Cas system to engineer cell lines in which chromosomal translocations are either generated de novo (CD74-ROS1) or existing translocations are reverted back to the original configuration (BCR-ABL1). To this end, we co-apply two guide RNAs to artificially generate two breakpoints and screen for spontaneous fusion events by PCR.
CONCLUSIONS: The approach we use is efficient and delivers clones bearing translocationsin a predictable fashion. Detailed analysis suggests that the clones display no additional undesired alterations, implying that the approach is robust and precise.

Shin DH, Lee D, Hong DW, et al.
Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung.
Oncotarget. 2016; 7(43):69450-69465 [PubMed] Free Access to Full Article Related Publications
The neuregulin 1 (NRG1) fusion is a recently identified novel driver oncogene in invasive mucinous adenocarcinoma of the lung (IMA). After identification of a case of SLC3A2-NRG1 in a patient with IMA, we verified this fusion gene in a cohort of 59 patients with IMA. Targeted cancer panel sequencing and RT-PCR identified the possible coexistence of other driver oncogenes. Among 59 IMAs, we found 16 NRG1 fusions (13 SLC3A2-NRG1 and 3 CD74-NRG1). Of 16 patients with NRG1 fusions, concurrent KRAS codon 12 mutations were found in 10 cases. We also found concurrent NRAS Q61L mutation and EML4-ALK fusion in additional two cases with NRG1 fusions. When comparing overall survival (OS) according to the presence of NRG1 fusions showed that patients harboring NRG1 fusions had significantly inferior OS than those without NRG1 fusions (hazard ratio = 0.286; 95% confidence interval, .094 to .865). Ectopic expression of the SLC3A2-NRG1 fusion in lung cancer cells increased cell migration, proliferation and tumor growth in vitro and in xenograft models, suggesting oncogenic function for the fusion protein. We found that the SLC3A2-NRG1 fusion promoted ERBB2-ERBB3 phosphorylation and heteroduplex formation and activated the downstream PI3K/AKT/mTOR pathway through paracrine signaling. These findings suggested that the SLC3A2-NRG1 fusion was a driver in IMA with an important prognostic impact. SLC3A2-NRG1 should be considered a therapeutic target for patients with IMA.

Chong CR, Bahcall M, Capelletti M, et al.
Identification of Existing Drugs That Effectively Target NTRK1 and ROS1 Rearrangements in Lung Cancer.
Clin Cancer Res. 2017; 23(1):204-213 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Efforts to discover drugs that overcome resistance to targeted therapies in patients with rare oncogenic alterations, such as NTRK1 and ROS1 rearrangements, are complicated by the cost and protracted timeline of drug discovery.
EXPERIMENTAL DESIGN: In an effort to identify inhibitors of NTRK1 and ROS1, which are aberrantly activated in some patients with non-small cell lung cancer (NSCLC), we created and screened a library of existing targeted drugs against Ba/F3 cells transformed with these oncogenes.
RESULTS: This screen identified the FDA-approved drug cabozantinib as a potent inhibitor of CD74-ROS1-transformed Ba/F3, including the crizotinib-resistant mutants G2032R and L2026M (IC
CONCLUSIONS: While acquired resistance to targeted therapies is challenging, this study highlights that existing agents may be repurposed to overcome drug resistance and identifies cabozantinib as a promising treatment of ROS1-rearranged NSCLC after progression on crizotinib. Clin Cancer Res; 23(1); 204-13. ©2016 AACR.

Clark AJ, Petty HR
Identification of lesion subtypes in biopsies of ductal carcinoma in situ of the breast using biomarker ratio imaging microscopy.
Sci Rep. 2016; 6:27039 [PubMed] Free Access to Full Article Related Publications
Although epidemiological studies propose aggressive and non-aggressive forms of ductal carcinoma in situ (DCIS), they cannot be identified with conventional histopathology. We now report a retrospective study of human biopsy samples using biomarker ratio imaging microscopy (BRIM). Using BRIM, micrographs of biomarkers whose expression correlates with breast cancer aggressiveness are divided by micrographs of biomarkers whose expression negatively correlates with aggressiveness to create computed micrographs reflecting aggressiveness. The biomarker pairs CD44/CD24, N-cadherin/E-cadherin, and CD74/CD59 stratified DCIS samples. BRIM identified subpopulations of DCIS lesions with ratiometric properties resembling either benign fibroadenoma or invasive carcinoma samples. Our work confirms the existence of distinct subpopulations of DCIS lesions, which will likely have utility in breast cancer research and clinical practice.

Butrym A, Gebura K, Iwaszko M, et al.
Dual role of the CXCL12 polymorphism in patients with chronic lymphocytic leukemia.
HLA. 2016; 87(6):432-8 [PubMed] Related Publications
The CXCL12 [chemokine (C-X-C motif) ligand 12] is a member of the CXC family of chemokines and interacts with its CXCR4 receptor. The CXCL12/CXCR4 axis is involved in regulation of proliferation, survival and trafficking of hematopoietic stem cells, including B lymphocytes and disruption within this signaling pathway has been implicated in pathogenesis of chronic lymphocytic leukemia (CLL). The aim of this study was to determine a potential association of the CXCL12 rs1801157 G > A polymorphism with susceptibility to CLL, the disease course and efficacy of therapy. Also, expression of the CD74 and CD38 proteins on B cells was analyzed in relation to clinical parameters and genotyping results. A total of 124 patients with CLL and 75 healthy controls were studied. CXCL12 genotyping was performed using polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) method. The CD74 and CD38 surface expression was determined using flow cytometry. There was a significantly increased frequency of the A allele and AA genotype in CLL patients compared with control group (P < 0.001 in both cases). In addition, the A allele was overrepresented among patients with worse response to therapy in comparison to other genotypes (P < 0.001). On the contrary, patients carrying the A allele displayed lower grade of the disease at diagnosis more frequently than patients homozygous for the G allele (P = 0.037). Moreover, the AA homozygosity correlated with lower CD74 expression on B cells (P = 0.007). In conclusion, data from this study indicate that the CXCL12 rs1801157 G > A polymorphism may affect CLL development, disease progression as well as response to treatment.

Ghoochani A, Schwarz MA, Yakubov E, et al.
MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis.
Oncogene. 2016; 35(48):6246-6261 [PubMed] Related Publications
Microglial cells in the brain tumor microenvironment are associated with enhanced glioma malignancy. They persist in an immunosuppressive M2 state at the peritumoral site and promote the growth of gliomas. Here, we investigated the underlying factors contributing to the abolished immune surveillance. We show that brain tumors escape pro-inflammatory M1 conversion of microglia via CD74 activation through the secretion of the cytokine macrophage migration inhibitory factor (MIF), which results in a M2 shift of microglial cells. Interruption of this glioma-microglial interaction through an antibody-neutralizing approach or small interfering RNA (siRNA)-mediated inhibition prolongs survival time in glioma-implanted mice by reinstating the microglial pro-inflammatory M1 function. We show that MIF-CD74 signaling inhibits interferon (IFN)-γ secretion in microglia through phosphorylation of microglial ERK1/2 (extracellular signal-regulated protein kinases 1 and 2). The inhibition of MIF signaling or its receptor CD74 promotes IFN-γ release and amplifies tumor death either through pharmacological inhibition or through siRNA-mediated knockdown. The reinstated IFN-γ secretion leads both to direct inhibition of glioma growth as well as inducing a M2 to M1 shift in glioma-associated microglia. Our data reveal that interference with the MIF signaling pathway represents a viable therapeutic option for the restoration of IFN-γ-driven immune surveillance.

Lim SM, Kim EY, Kim HR, et al.
Genomic profiling of lung adenocarcinoma patients reveals therapeutic targets and confers clinical benefit when standard molecular testing is negative.
Oncotarget. 2016; 7(17):24172-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Identification of clinically relevant oncogenic drivers in advanced cancer is critical in selecting appropriate targeted therapy. Using next-generation sequencing (NGS)-based clinical cancer gene assay, we performed comprehensive genomic profiling (CGP) of advanced cases of lung adenocarcinoma.
METHODS: Formalin-fixed paraffin-embedded tumors from 51 lung adenocarcinoma patients whose tumors previously tested negative for EGFR/KRAS/ALK by conventional methods were collected, and CGP was performed via hybridization capture of 4,557 exons from 287 cancer-related genes and 47 introns from 19 genes frequently rearranged in cancer.
RESULTS: Genomic profiles of all 51 cases were obtained, with a median coverage of 564x and a total of 190 individual genomic alterations (GAs). GAs per specimen was a mean of 3.7 (range 0-10).Cancer genomes are characterized by 50% (80/190) non-synonymous base substitutions, 15% (29/190) insertions or deletion, and 3% (5/190) splice site mutation. TP53 mutation was the most common GAs (15%, n=29/190), followed by CDKN2A homozygous loss (5%, n=10/190), KRAS mutation (4%, n=8/190), EGFR mutation (4%, n=8/190) and MDM2 amplification (2%, n=5/190). As per NCCN guidelines, targetable GAs were identified in 16 patients (31%) (BRAF mutation [n=1], EGFR mutation [n=8], ERBB2 mutation [n=4], MET amplification [n=1], KIF5B-RET rearrangement [n=2], CCDC6-RET rearrangement [n=1], CD74-ROS1 rearrangement [n=1], EZR-ROS1 rearrangement [n=5], and SLC34A2-ROS1 rearrangement [n=1]).
CONCLUSION: Fifty eight percent of patients wild type by standard testing for EGFR/KRAS/ALK have GAs identifiable by CGP that suggest benefit from target therapy. CGP used when standard molecular testing for NSCLC is negative can reveal additional avenues of benefit from targeted therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD74, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999