Gene Summary

Gene:CDH1; cadherin 1, type 1, E-cadherin (epithelial)
Aliases: UVO, CDHE, ECAD, LCAM, Arc-1, CD324
Summary:This gene is a classical cadherin from the cadherin superfamily. The encoded protein is a calcium dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. Mutations in this gene are correlated with gastric, breast, colorectal, thyroid and ovarian cancer. Loss of function is thought to contribute to progression in cancer by increasing proliferation, invasion, and/or metastasis. The ectodomain of this protein mediates bacterial adhesion to mammalian cells and the cytoplasmic domain is required for internalization. Identified transcript variants arise from mutation at consensus splice sites. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 26 February, 2015


What does this gene/protein do?
Show (63)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 26 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Breast Cancer
  • Down-Regulation
  • p53 Protein
  • Germ-Line Mutation
  • Chromosome 16
  • Neoplasm Invasiveness
  • Messenger RNA
  • CDH1
  • Promoter Regions
  • DNA Mutational Analysis
  • CpG Islands
  • Cell Proliferation
  • Immunohistochemistry
  • Tumor Markers
  • Staging
  • Stomach Cancer
  • Liver Cancer
  • Tumor Burden
  • Gene Expression Profiling
  • Adenocarcinoma
  • Cadherins
  • rap GTP-Binding Proteins
  • Epigenetics
  • Weight Loss
  • Cell Movement
  • Gastrectomy
  • Genetic Predisposition
  • Review Literature as Topic
  • Cancer Gene Expression Regulation
  • Publication Bias
  • Base Sequence
  • Cervical Cancer
  • DNA Methylation
  • Case-Control Studies
  • Taiwan
  • RNA Interference
  • Tumor Suppressor Gene
  • Phenotype
  • Epithelial-Mesenchymal Transition
  • Risk Factors
Tag cloud generated 26 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Stomach CancerCDH1 and Stomach Cancer View Publications280
Breast CancerCDH1 and Breast Cancer View Publications166
Hereditary Diffuse Gastric Cancer (HDGC)CDH1 and Hereditary Diffuse Gastric Cancer
Germline mutations of CDH1 are detected in around 30% of people diagnosed with Hereditary Diffuse Gastric Cancer. HDGC is a rare autosomal dominant inherited condition with increase risk of early onset and diffuse gastric cancer.
View Publications111
Liver CancerCDH1 and Liver Cancer View Publications47
Cervical CancerCDH1 and Cervical Cancer View Publications18

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CDH1 (cancer-related)

Kim SH, Kang JG, Kim CS, et al.
Herbimycin A inhibits cell growth with reversal of epithelial-mesenchymal transition in anaplastic thyroid carcinoma cells.
Biochem Biophys Res Commun. 2014; 455(3-4):363-70 [PubMed] Related Publications
We aimed to elucidate the effect of herbimycin A (HMA), a heat shock protein 90 inhibitor, on cell growth and epithelial-mesenchymal transition (EMT) in anaplastic thyroid carcinoma (ATC) cells. HMA inhibited cell growth and migration concomitantly with increase of E-cadherin as well as decrease of N-cadherin and vimentin. Moreover, HMA upregulated p21 and p27, while it downregulated p53 and Akt. In HMA-treated condition, knockdown of E-cadherin and overexpression of p53 increased N-cadherin and vimentin, and mitigated the inhibitory effects of HMA on cell growth and migration. Furthermore, knockdown of p21 and p27 ameliorated inhibition of cell growth and reversal of EMT. In addition, the activation of Akt attenuated growth inhibition, cell death and EMT reversal. Therefore, we propose that HMA suppresses cell growth, and reverses EMT in conjunction with the activation of E-cadherin, p21 and p27 and the inactivation of p53 and PI3K/Akt signaling in ATC cells.

Nurwidya F, Takahashi F, Kobayashi I, et al.
Treatment with insulin-like growth factor 1 receptor inhibitor reverses hypoxia-induced epithelial-mesenchymal transition in non-small cell lung cancer.
Biochem Biophys Res Commun. 2014; 455(3-4):332-8 [PubMed] Related Publications
Insulin-like growth factor 1 receptor (IGF1R) is expressed in many types of solid tumors including non-small cell lung cancer (NSCLC), and enhanced activation of IGF1R is thought to reflect cancer progression. Epithelial-mesenchymal transition (EMT) has been established as one of the mechanisms responsible for cancer progression and metastasis, and microenvironment conditions, such as hypoxia, have been shown to induce EMT. The purposes of this study were to address the role of IGF1R activation in hypoxia-induced EMT in NSCLC and to determine whether inhibition of IGF1R might reverse hypoxia-induced EMT. Human NSCLC cell lines A549 and HCC2935 were exposed to hypoxia to investigate the expression of EMT-related genes and phenotypes. Gene expression analysis was performed by quantitative real-time PCR and cell phenotypes were studied by morphology assessment, scratch wound assay, and immunofluorescence. Hypoxia-exposed cells exhibited a spindle-shaped morphology with increased cell motility reminiscent of EMT, and demonstrated the loss of E-cadherin and increased expression of fibronectin and vimentin. Hypoxia also led to increased expression of IGF1, IGF binding protein-3 (IGFBP3), and IGF1R, but not transforming growth factor β1 (TGFβ1). Inhibition of hypoxia-inducible factor 1α (HIF1α) with YC-1 abrogated activation of IGF1R, and reduced IGF1 and IGFBP3 expression in hypoxic cells. Furthermore, inhibition of IGF1R using AEW541 in hypoxic condition restored E-cadherin expression, and reduced expression of fibronectin and vimentin. Finally, IGF1 stimulation of normoxic cells induced EMT. Our findings indicated that hypoxia induced EMT in NSCLC cells through activation of IGF1R, and that IGF1R inhibition reversed these phenomena. These results suggest a potential role for targeting IGF1R in the prevention of hypoxia-induced cancer progression and metastasis mediated by EMT.

Yao X, Ireland SK, Pham T, et al.
TLE1 promotes EMT in A549 lung cancer cells through suppression of E-cadherin.
Biochem Biophys Res Commun. 2014; 455(3-4):277-84 [PubMed] Article available free on PMC after 12/12/2015 Related Publications
The Groucho transcriptional corepressor TLE1 protein has recently been shown to be a putative lung specific oncogene, but its underlying oncogenic activity in lung cancer has not been fully elucidated. In this report, we investigated whether TLE1 regulates lung cancer aggressiveness using the human lung adenocarcinoma cell line A549 as a model system. Through a combination of genetic approaches, we found that TLE1 potentiates epithelial-to-mesenchymal transition (EMT) in A549 cells in part through suppression of the tumor suppressor gene E-cadherin. Exogenous expression of TLE1 in A549 cells resulted in heightened EMT phenotypes (enhanced fibroblastoid morphology and increased cell migratory potential) and in molecular alterations characteristic of EMT (downregulation of the epithelial marker E-cadherin and upregulation of the mesenchymal marker Vimentin). Conversely, downregulation of endogenous TLE1 expression in these cells resulted in reversal of basal EMT characterized by a cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Mechanistic studies showed that TLE1 suppresses E-cadherin expression at the transcriptional level in part by recruiting histone deacetylase (HDAC) activity to the E-cadherin promoter. Consistently, the HDAC inhibitor TSA partially reversed the TLE1-induced E-cadherin downregulation and cell migration, suggesting a role for HDACs in TLE1-mediated transcriptional repression of E-cadherin and EMT function. These findings uncover a novel role of TLE1 in regulating EMT in A549 cells through its repressive effect on E-cadherin and provide a mechanism for TLE1 oncogenic activity in lung cancer.

Pinheiro H, Oliveira C, Seruca R, Carneiro F
Hereditary diffuse gastric cancer - pathophysiology and clinical management.
Best Pract Res Clin Gastroenterol. 2014; 28(6):1055-68 [PubMed] Related Publications
Hereditary Diffuse Gastric Cancer is an autosomal dominant inherited gastric cancer syndrome caused by germline alterations in CDH1 (E-cadherin) and CTNNA1 (alpha-E-catenin) genes. Germline CDH1 alterations encompass small frameshifts, splice-site, nonsense, and missense mutations, as well as large rearrangements. Most CDH1 truncating mutations are pathogenic, and several missense CDH1 mutations have a deleterious effect on E-cadherin function. CDH1 testing should be performed in probands. Screening of at-risk individuals is indicated from the age of consent following counselling with a multidisciplinary team. In mutation-positive individuals prophylactic gastrectomy is recommended. Endoscopic surveillance is an option for those refusing/postponing gastrectomy, those with mutations of undetermined significance, and in CDH1-negative families. Ongoing research focus on the search of genetic causes other than CDH1 or CTNNA1 germline defects; assessment of the pathogenicity and penetrance of CDH1 missense mutations and identification of somatic mechanisms behind the progression from early (indolent) lesions to invasive (lethal) carcinomas.

Wang CA, Drasin D, Pham C, et al.
Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression.
Cancer Res. 2014; 74(24):7357-70 [PubMed] Article available free on PMC after 15/12/2015 Related Publications
Misexpression of developmental transcription factors occurs often in human cancers, where embryonic programs may be reinstated in a context that promotes or sustains malignant development. In this study, we report the involvement of the kidney development transcription factor Six2 in the metastatic progression of human breast cancer. We found that Six2 promoted breast cancer metastasis by a novel mechanism involving both transcriptional and epigenetic regulation of E-cadherin. Downregulation of E-cadherin by Six2 was necessary for its ability to increase soft agar growth and in vivo metastasis in an immunocompetent mouse model of breast cancer. Mechanistic investigations showed that Six2 represses E-cadherin expression by upregulating Zeb2, in part, through a microRNA-mediated mechanism and by stimulating promoter methylation of the E-cadherin gene (Cdh1). Clinically, SIX2 expression correlated inversely with CDH1 expression in human breast cancer specimens, corroborating the disease relevance of their interaction. Our findings establish Six2 as a regulator of metastasis in human breast cancers and demonstrate an epigenetic function for SIX family transcription factors in metastatic progression through the regulation of E-cadherin.

Jing H, Dai F, Zhao C, et al.
Association of genetic variants in and promoter hypermethylation of CDH1 with gastric cancer: a meta-analysis.
Medicine (Baltimore). 2014; 93(19):e107 [PubMed] Related Publications
Gastric cancer (GC) is a common cause of cancer-related death. The etiology and pathogenesis of GC remain unclear, with genetic and epigenetic factors playing an important role. Previous studies investigated the association of GC with many genetic variants in and promoter hypermethylation of E-cadherin gene (CDH1), with conflicting results reported.To clarify this inconsistency, we conducted updated meta-analyses to assess the association of genetic variants in and the promoter hypermethylation of CDH1 with GC, including C-160A (rs16260) and other less-studied genetic variants,Data sources were PubMed, Cochrane Library, Google Scholar, Web of Knowledge, and HuGE, a navigator for human genome epidemiology.Study eligibility criteria and participant details are as follows: studies were conducted on human subjects; outcomes of interest include GC; report of genotype data of individual genetic variants in (or methylation status of) CDH1 in participants with and without GC (or providing odds ratios [OR] and their variances).Study appraisal and synthesis methods included the use of OR as a measure of the association, calculated from random effects models in meta-analyses. We used I for the assessment of between-study heterogeneity, and publication bias was assessed using funnel plot and Egger test.A total of 33 studies from 30 published articles met the eligibility criteria and were included in our analyses. We found no association between C-160A and GC (OR = 0.88; 95% confidence interval [CI], 0.71-1.08; P = 0.215), assuming an additive model (reference allele C). C-160A was associated with cardia (OR = 0.21; 95% CI, 0.11-0.41; P = 2.60 × 10), intestinal (OR = 0.66; 95% CI, 0.49-0.90; P = 0.008), and diffuse GC (OR = 0.57; 95% CI, 0.40-0.82; P = 0.002). The association of C-160A with noncardia GC is of bottom line significance (OR = 0.65; 95% CI, 0.42-1.01; P = 0.054). Multiple other less-studied genetic variants in CDH1 also exhibited association with GC. Gene-based analysis indicated a significant cumulative association of genetic variants in CDH1 with GC (all Ps <10). Sensitivity analysis excluding studies not meeting Hardy-Weinberg equilibrium (HWE) yielded similar results. Analysis by ethnic groups revealed significant association of C-160A with cardia GC in both Asian and whites, significant association with noncardia GC only in Asians, and no significant association with intestinal GC in both ethnic groups. There was significant association of C160-A with diffuse GC in Asians (P = 0.011) but not in whites (P = 0.081). However, after excluding studies that violate HWE, this observed association is no longer significant (P = 0.126). We observed strong association of promoter hypermethylation of CDH1 with GC (OR = 12.23; 95% CI, 8.80-17.00; P = 1.42 × 10), suggesting that epigenetic regulation of CDH1 could play a critical role in the etiology of GC.Limitations of this study are as follows: we could not adjust for confounding factors; some meta-analyses were based on a small number of studies; sensitivity analysis was limited due to unavailability of data; we could not test publication bias for some meta-analyses due to small number of included studies.We found no significant association of the widely studied genetic variant C-160A, but identified some other genetic variants showing significant association with GC. Future studies with large sample sizes that control for confounding risk factors and/or intensively interrogate CpG sites in CDH1 are needed to validate the results found in this study and to explore additional epigenetic loci that affect GC risk.

Oktyabri D, Tange S, Terashima M, et al.
EED regulates epithelial-mesenchymal transition of cancer cells induced by TGF-β.
Biochem Biophys Res Commun. 2014; 453(1):124-30 [PubMed] Related Publications
Histone methylation is involved in various biological and pathological processes including cancer development. In this study, we found that EED, a component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27), was involved in epithelial-mesenchymal transition (EMT) of cancer cells induced by Transforming Growth Factor-beta (TGF-β). The expression of EED was increased during TGF-β-induced EMT and knockdown of EED inhibited TGF-β-induced morphological conversion of the cells associated with EMT. EED knockdown antagonized TGF-β-dependent expression changes of EMT-related genes such as CDH1, ZEB1, ZEB2 and microRNA-200 (miR-200) family. Chromatin immunoprecipitation assays showed that EED was implicated in TGF-β-induced transcriptional repression of CDH1 and miR-200 family genes through the regulation of histone H3 methylation and EZH2 occupancies on their regulatory regions. Our study demonstrated a novel role of EED, which regulates PRC2 activity and histone methylation during TGF-β-induced EMT of cancer cells.

Liszka L
Ductal adenocarcinoma of the pancreas usually retained SMAD4 and p53 protein status as well as expression of epithelial-to-mesenchymal transition markers and cell cycle regulators at the stage of liver metastasis.
Pol J Pathol. 2014; 65(2):100-12 [PubMed] Related Publications
There are limited data on the biology of metastatic pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to compare the expression of immunohistochemical markers that may be involved in the development of metastatic disease in primary PDAC and in synchronous liver metastatic tissues. Thirty-two stains (corresponding to proteins encoded by 31 genes: SMAD4, TP53, ACTA2, CDH1, CDKN1A, CLDN1, CLDN4, CLDN7, CTNNB1, EGFR, ERBB2, FN1, KRT19, MAPK1/MAPK3, MAPK14, MKI67, MMP2, MMP9, MUC1 (3 antibodies), MUC5AC, MUC6, MTOR, MYC, NES, PTGS2, RPS6, RPS6KB1, TGFB1, TGFBR1, VIM) were evaluated using tissue microarray of 26 pairs of primary PDACs and their liver metastases. There were no significant differences in expression levels of examined proteins between primary and secondary lesions. In particular, metastatic PDAC retained the primary tumour's SMAD4 protein status in all and p53 protein status in all but one case. This surprising homogeneity also involved expression levels of markers of epithelial-to-mesenchymal transition as well as cell cycle regulators studied. In conclusion, the biological profiles of primary PDACs and their liver metastases seemed to be similar. Molecular alterations of PDAC related to a set of immunohistochemical markers examined in the present study were already present at the stage of localized disease.

Marino N, Collins JW, Shen C, et al.
Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines.
Clin Exp Metastasis. 2014; 31(7):771-86 [PubMed] Related Publications
Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.

Adhikary A, Chakraborty S, Mazumdar M, et al.
Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold/matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells.
J Biol Chem. 2014; 289(37):25431-44 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
The evolution of the cancer cell into a metastatic entity is the major cause of death in patients with cancer. It has been acknowledged that aberrant activation of a latent embryonic program, known as the epithelial-mesenchymal transition (EMT), can endow cancer cells with the migratory and invasive capabilities associated with metastatic competence for which E-cadherin switch is a well-established hallmark. Discerning the molecular mechanisms that regulate E-cadherin expression is therefore critical for understanding tumor invasiveness and metastasis. Here we report that SMAR1 overexpression inhibits EMT and decelerates the migratory potential of breast cancer cells by up-regulating E-cadherin in a bidirectional manner. While SMAR1-dependent transcriptional repression of Slug by direct recruitment of SMAR1/HDAC1 complex to the matrix attachment region site present in the Slug promoter restores E-cadherin expression, SMAR1 also hinders E-cadherin-MDM2 interaction thereby reducing ubiquitination and degradation of E-cadherin protein. Consistently, siRNA knockdown of SMAR1 expression in these breast cancer cells results in a coordinative action of Slug-mediated repression of E-cadherin transcription, as well as degradation of E-cadherin protein through MDM2, up-regulating breast cancer cell migration. These results indicate a crucial role for SMAR1 in restraining breast cancer cell migration and suggest the candidature of this scaffold matrix-associated region-binding protein as a tumor suppressor.

Vladušić T, Hrašćan R, Krušlin B, et al.
Histological groups of human postpubertal testicular germ cell tumours harbour different genetic alterations.
Anticancer Res. 2014; 34(8):4005-12 [PubMed] Related Publications
BACKGROUND: Testicular germ cell tumours are the most common malignancies in young males. Molecular biology studies of these tumours are often contradictory. Two histological groups, seminoma and non-seminoma, differ both morphologically and in malignant behaviour. Although a common cytogenetic feature is seen, namely the amplification of the 12p chromosomal region, the development mechanisms of less aggressive seminomas and more aggressive non-seminomas are unknown.
MATERIALS AND METHODS: Occurrence of structural genetic alterations was analyzed in 18 seminomas and 22 non-seminomas for genes involved in the malignant tumour phenotype: cadherin 1, Type 1, E-cadherin (Epithelial), CDH1; adenomatous polyposis coli, APC; NME/NM23 nucleoside diphosphate kinase 1, NME1; tumour protein P53, TP53; cyclin-dependent kinase inhibitor 2A, CDKN2A; retinoblastoma 1, RB1; RAD51 recombinase, RAD51; mutS homolog 2, MSH2; MutL homolog 1, MLH1; breast cancer 1, early onset, BRCA1; BCL2-Associated X Protein, BAX; ATP-Binding Cassette, Sub-Family G (WHITE), Member 2, ABCG2. Genetic alterations, loss of heterozygosity and microsatellite instability, were analyzed using restriction fragment or microsatellite repeat length polymorphisms.
RESULTS: A difference in genetic alteration occurrence between seminomas and non-seminomas was observed.
CONCLUSION: Occurrence of genetic alterations correlates with clinical behaviour of these tumours and may indicate that such alterations could occur early in the development of seminomas and non-seminomas.

Myung JK, Choi SA, Kim SK, et al.
Snail plays an oncogenic role in glioblastoma by promoting epithelial mesenchymal transition.
Int J Clin Exp Pathol. 2014; 7(5):1977-87 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
BACKGROUND: The factors affecting glioblastoma progression are of great clinical importance since dismal outcomes have been observed for glioblastoma patients. The Snail gene is known to coordinate the regulation of tumor progression in diverse tumors through induction of epithelial mesenchymal transition (EMT); however, its role in glioblastoma is still uncertain. Therefore, we aimed to further define its role in vitro.
METHODS AND RESULTS: The small interfering RNA (siRNA) technique was employed to knock down Snail expression in three glioblastoma cell lines (KNS42, U87, and U373). Specific inhibition of Snail expression increased E-cadherin expression but decreased vimentin expression in all cell lines. In addition, inhibition of the expression of Snail significantly reduced the proliferation, viability, invasion, and migration of glioblastoma cells as well as increased the number of cells in the G1 phase.
CONCLUSIONS: Knockdown of Snail suppresses the proliferation, viability, migration, and invasion of cells as well as inhibits cell cycle progression by promoting EMT induction. The findings suggest that expression of this gene facilitates glioblastoma progression. Therefore, these results indicate the clinical significance of Snail for use as a potential therapeutic target for glioblastoma.

Su P, Hu J, Zhang H, et al.
Association of TRPS1 gene with different EMT markers in ERα-positive and ERα-negative breast cancer.
Diagn Pathol. 2014; 9:119 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
BACKGROUND: Breast cancer is a heterogeneous disease consisting of different subtypes. Trichorhinophalangeal syndrome type 1 (TRPS1) gene, a GATA-type transcription factor, has been found to be highly expressed in breast cancer. Epithelial-to-mesenchymal transition (EMT) is known to play an important role in tumour invasion and metastasis. Our objective was to elucidate the different roles and clinical relevance of TRPS1 in different estrogen receptor (ER) expression subtypes of breast cancer.
METHODS: An immunohistochemical study was performed. The correlation between clinicopathological features and other biomarker profiles were analysed statistically.
RESULT: TRPS1 expression was correlated with the patients' age (P=0.017). It was positively related with ERα (P<0.001), progesterone receptor (PR) (P<0.001) and ERβ (P=0.001) status, but negatively associated with Ki67 (P=0.002) and HER2 (P=0.025) status. In ERα-positive breast cancer, TRPS1 expression was positively associated with the expression of E-cadherin (P<0.001), β-catenin(P=0.001), ERβ (P=0.03), and p53 (P=0.002) status, while in ERα-negative breast cancer, TRPS1 expression was correlated with slug (P=0.004), vimentin (P=0.003), smooth muscle actin (SMA) (P=0.031), and IMP3 (P=0.005) expression.
CONCLUSIONS: Based on our findings, we conclude that TRPS1 is positively associated with E-cadherin and β-catenin status in ERα-positive breast cancer cells, while it is also significantly associated with mesenchymal markers of EMT in ERα-negative breast cancer cells. TRPS1 can be a prognostic marker depending on the type of breast cancer.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here:

Yun JA, Kim SH, Hong HK, et al.
Loss of E-Cadherin expression is associated with a poor prognosis in stage III colorectal cancer.
Oncology. 2014; 86(5-6):318-28 [PubMed] Related Publications
PURPOSE: The epithelial-mesenchymal transition (EMT) is known to be associated with tumor progression, invasion and metastasis in colorectal cancer (CRC).
MATERIALS AND METHODS: Tissue samples obtained from 409 patients with stage III CRC treated from 2006 to 2007 were examined by immunohistochemistry to reveal the expression levels of E-cadherin, fibronectin, vimentin and α-smooth muscle actin (SMA).
RESULTS: Among the 409 patients, 402 cases (98.3%) showed positive E-cadherin expression. Positive E-cadherin expression was associated with well or moderately differentiated cell types and a stable microsatellite status. In multivariate analysis, a preoperative carcinoembryonic antigen level >5 ng/ml (p = 0.021), advanced N stage (p = 0.017), positive vascular invasion (p = 0.048), positive perineural invasion (p = 0.002) and negative E-cadherin expression (p = 0.002, relative risk = 5.098, 95% CI = 1.801-14.430) were poor prognostic factors affecting disease-free survival. The declining E-cadherin expression was associated with a poor outcome in terms of overall survival in univariate (p = 0.016) but not in multivariate analyses (p = 0.303, relative risk = 1.984, 95% CI = 0.539-7.296). Fibronectin, vimentin and α-SMA were of no prognostic value in this study.
CONCLUSION: The expression pattern of EMT markers in stage III CRC suggests that declining E-cadherin expression is a possible immunohistochemical predictor of patient prognosis.

Fujii R, Imanishi Y, Shibata K, et al.
Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma.
J Exp Clin Cancer Res. 2014; 33:40 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
BACKGROUND: The epithelial-to-mesenchymal transition (EMT) accompanied by the downregulation of E-cadherin has been thought to promote metastasis. Cyclooxygenase-2 (Cox-2) is presumed to contribute to cancer progression through its multifaceted function, and recently its inverse relationship with E-cadherin was suggested. The aim of the present study was to investigate whether selective Cox-2 inhibitors restore the expression of E-cadherin in head and neck squamous cell carcinoma (HNSCC) cells, and to examine the possible correlations of the expression levels of EMT-related molecules with clinicopathological factors in HNSCC.
METHODS: We used quantitative real-time PCR to examine the effects of three selective Cox-2 inhibitors, i.e., celecoxib, NS-398, and SC-791 on the gene expressions of E-cadherin (CDH-1) and its transcriptional repressors (SIP1, Snail, Twist) in the human HNSCC cell lines HSC-2 and HSC-4. To evaluate the changes in E-cadherin expression on the cell surface, we used a flowcytometer and immunofluorescent staining in addition to Western blotting. We evaluated and statistically analyzed the clinicopathological factors and mRNA expressions of Cox-2, CDH-1 and its repressors in surgical specimens of 40 patients with tongue squamous cell carcinoma (TSCC).
RESULTS: The selective Cox-2 inhibitors upregulated the E-cadherin expression on the cell surface of the HNSCC cells through the downregulation of its transcriptional repressors. The extent of this effect depended on the baseline expression levels of both E-cadherin and Cox-2 in each cell line. A univariate analysis showed that higher Cox-2 mRNA expression (p = 0.037), lower CDH-1 mRNA expression (p = 0.020), and advanced T-classification (p = 0.036) were significantly correlated with lymph node metastasis in TSCC. A multivariate logistic regression revealed that lower CDH-1 mRNA expression was the independent risk factor affecting lymph node metastasis (p = 0.041).
CONCLUSIONS: These findings suggest that the appropriately selective administration of certain Cox-2 inhibitors may have an anti-metastatic effect through suppression of the EMT by restoring E-cadherin expression. In addition, the downregulation of CDH-1 resulting from the EMT may be closely involved in lymph node metastasis in TSCC.

Silva FC, Lisboa BC, Figueiredo MC, et al.
Hereditary breast and ovarian cancer: assessment of point mutations and copy number variations in Brazilian patients.
BMC Med Genet. 2014; 15:55 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
BACKGROUND: Germ line mutations in BRCA1 and BRCA2 (BRCA1/2) and other susceptibility genes have been identified as genetic causes of hereditary breast and ovarian cancer (HBOC). To identify the disease-causing mutations in a cohort of 120 Brazilian women fulfilling criteria for HBOC, we carried out a comprehensive screening of BRCA1/2, TP53 R337H, CHEK2 1100delC, followed by an analysis of copy number variations in 14 additional breast cancer susceptibility genes (PTEN, ATM, NBN, RAD50, RAD51, BRIP1, PALB2, MLH1, MSH2, MSH6, TP53, CDKN2A, CDH1 and CTNNB1).
METHODS: Capillary sequencing and multiplex ligation-dependent probe amplification (MLPA) were used for detecting point mutations and copy number variations (CNVs), respectively, for the BRCA1 and BRCA2 genes; capillary sequencing was used for point mutation for both variants TP53 R337H and CHEK2 1100delC, and finally array comparative genomic hybridization (array-CGH) was used for identifying CNVs in the 14 additional genes.
RESULTS: The positive detection rate in our series was 26%. BRCA1 pathogenic mutations were found in 20 cases, including two cases with CNVs, whereas BRCA2 mutations were found in 7 cases. We also found three patients with the TP53 R337H mutation and one patient with the CHEK2 1100delC mutation. Seven (25%) pathogenic mutations in BRCA1/2 were firstly described, including a splice-site BRCA1 mutation for which pathogenicity was confirmed by the presence of an aberrant transcript showing the loss of the last 62 bp of exon 7. Microdeletions of exon 4 in ATM and exon 2 in PTEN were identified in BRCA2-mutated and BRCA1/2-negative patients, respectively.
CONCLUSIONS: In summary, our results showed a high frequency of BRCA1/2 mutations and a higher prevalence of BRCA1 (64.5%) gene. Moreover, the detection of the TP53 R337H variant in our series and the fact that this variant has a founder effect in our population prompted us to suggest that all female breast cancer patients with clinical criteria for HBOC and negative for BRCA1/2 genes should be tested for the TP53 R337H variant. Furthermore, the presence of genomic structural rearrangement resulting in CNVs in other genes that predispose breast cancer in conjunction with BRCA2 point mutations demonstrated a highly complex genetic etiology in Brazilian breast cancer families.

Davidov T, Nagar M, Kierson M, et al.
Carbonic anhydrase 4 and crystallin α-B immunoreactivity may distinguish benign from malignant thyroid nodules in patients with indeterminate thyroid cytology.
J Surg Res. 2014; 190(2):565-74 [PubMed] Related Publications
BACKGROUND: Thyroid nodules are present in 19%-67% of the population and carry a 5%-10% risk of malignancy. Unfortunately, fine-needle aspiration biopsies are indeterminate in 20%-30% of patients, often necessitating thyroid surgery for diagnosis. Numerous DNA microarray studies including a recently commercialized molecular classifier have helped to better distinguish benign from malignant thyroid nodules. Unfortunately, these assays often require probes for >100 genes, are expensive, and only available at a few laboratories. We sought to validate these DNA microarray assays at the protein level and determine whether simple and widely available immunohistochemical biomarkers alone could distinguish benign from malignant thyroid nodules.
METHODS: A tissue microarray (TMA) composed of 26 follicular thyroid carcinomas (FTCs) and 53 follicular adenomas (FAs) from patients with indeterminate thyroid nodules was stained with 17 immunohistochemical biomarkers selected based on prior DNA microarray studies. Antibodies used included galectin 3, growth and differentiation factor 15, protein convertase 2, cluster of differentiation 44 (CD44), glutamic oxaloacetic transaminase 1 (GOT1), trefoil factor 3 (TFF3), Friedreich Ataxia gene (X123), fibroblast growth factor 13 (FGF13), carbonic anhydrase 4 (CA4), crystallin alpha-B (CRYAB), peptidylprolyl isomerase F (PPIF), asparagine synthase (ASNS), sodium channel, non-voltage gated, 1 alpha subunit (SCNN1A), frizzled homolog 1 (FZD1), tyrosine related protein 1 (TYRP1), E cadherin, type 1 (ECAD), and thyroid hormone receptor associated protein 220 (TRAP220). Of note, two of these biomarkers (GOT1 and CD44) are now used in the Afirma classifier assay. We chose to compare specifically FTC versus FA rather than include all histologic categories to create a more uniform immunohistochemical comparison. In addition, we have found that most papillary thyroid carcinoma could often be reasonably distinguished from benign disease by morphological cytology findings alone.
RESULTS: Increased immunoreactivity of CRYAB was associated with thyroid malignancy (c-statistic, 0.644; negative predictive value [NPV], 0.90) and loss of immunoreactivity of CA4 was also associated with malignancy (c-statistic, 0.715; NPV, 0.90) in indeterminate thyroid specimens. The combination of CA4 and CRYAB for discriminating FTC from FA resulted in a better c-statistic of 0.75, sensitivity of 0.76, specificity of 0.59, positive predictive value (PPV) of 0.32, and NPV of 0.91. When comparing widely angioinvasive FTC from FA, the resultant c-statistic improved to 0.84, sensitivity of 0.75, specificity of 0.76, PPV of 0.11, and NPV of 0.99.
CONCLUSIONS: Loss of CA4 and increase in CRYAB immunoreactivity distinguish FTC from FA in indeterminate thyroid nodules on a thyroid TMA with an NPV of 91%. Further studies in preoperative patient fine needle aspiration (FNAs) are needed to validate these results.

Deng QW, He BS, Pan YQ, et al.
Roles of E-cadherin (CDH1) genetic variations in cancer risk: a meta-analysis.
Asian Pac J Cancer Prev. 2014; 15(8):3705-13 [PubMed] Related Publications
E-Cadherin (CDH1) genetic variations may be involved in invasion and metastasis of various cancers by altering gene transcriptional activity of epithelial cells. However, published studies on the association of CDH1 gene polymorphisms and cancer risk remain contradictory, owing to differences in living habits and genetic backgrounds. To derive a more better and comprehensive conclusion, the present meta-analysis was performed including 57 eligible studies of the association between polymorphisms of CDH1 gene promoter -160 C>A, -347 G>GA and 3'-UTR +54 C>T and cancer risk. Results showed that these three polymorphisms of CDH1 were significantly associated with cancer risk. For -160 C>A polymorphism, -160A allele carriers (CA and CA+AA) had an increased risk of cancer compared with the homozygotes (CC), and the similar result was discovered for the -160A allele in the overall analyses. In the subgroup analyses, obvious elevated risk was found with -160A allele carriers (AA, CA, CA+AA and A allele) for prostate cancer, while a decreased colorectal cancer risk was shown with the AA genotype. For the -347 G>GA polymorphism, the GAGA genotype was associated with increased cancer risk in the overall analysis with homozygous and recessive models. In addition, results of subgroup analysis indicated that the elevated risks were observed in colorectal cancer and Asian descendants. For +54 C>T polymorphism, a decreased risk of cancer was found in heterozygous, dominant and allele models. Moreover, +54T allele carriers (CT, CT+TT genotype and T allele) showed a potential protective factor in gastric cancer and Asian descendants.

Schneider MR, Hiltwein F, Grill J, et al.
Evidence for a role of E-cadherin in suppressing liver carcinogenesis in mice and men.
Carcinogenesis. 2014; 35(8):1855-62 [PubMed] Related Publications
The cell adhesion molecule E-cadherin has critical functions in development and carcinogenesis. Impaired expression of E-cadherin has been associated with disrupted tissue homeostasis, progression of cancer and a worse patient prognosis. So far, the role of E-cadherin in homeostasis and carcinogenesis of the liver is not well understood. By use of a mouse model with liver-specific deletion of E-cadherin and administration of the carcinogen diethylnitrosamine, we demonstrate that loss of E-cadherin expression in hepatocytes results in acceleration of the growth of hepatocellular carcinoma (HCC). In contrast, liver regeneration is not disturbed in mice lacking E-cadherin expression in hepatocytes. In human HCC, we observed four different expression patterns of E-cadherin. Notably, atypical cytosolic expression of E-cadherin was positively correlated with a poorer patient prognosis. The median overall survival of patients with HCC expressing E-cadherin on the membrane only was 221 weeks (95% confidence interval: 51-391) compared with 131 weeks in patients with cytosolic expression (95% confidence interval: 71-191 weeks; P < 0.05). In conclusion, we demonstrate that impaired expression of E-cadherin promotes hepatocellular carcinogenesis and is associated with a worse prognosis in humans.

Sung JY, Park SY, Kim JH, et al.
Interferon consensus sequence-binding protein (ICSBP) promotes epithelial-to-mesenchymal transition (EMT)-like phenomena, cell-motility, and invasion via TGF-β signaling in U2OS cells.
Cell Death Dis. 2014; 5:e1224 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
Interferon consensus sequence-binding protein (ICSBP) is a transcription factor induced by interferon gamma (IFN-γ) and a member of the interferon regulatory factor (IRF) family. ICSBP is predominantly expressed in hematopoietic cells and regulates the immune response and cell growth and differentiation. However, little is known about its function in non-hematopoietic cells. Here we show a novel function for ICSBP in epithelial-to-mesenchymal transition (EMT)-like phenomena (ELP), cell motility, and invasion in human osteosarcoma cell lines, including U2OS cells. IFN-γ treatment induced ICSBP expression and EMT-like morphological change in U2OS cells, which were suppressed by ICSBP knockdown. To further investigate the role of ICSBP in ELP, we established a stable U2OS cell line that overexpresses ICSBP. ICSBP expression caused U2OS cells to have a more elongated shape and an increased vimentin and fibronectin expression. ICSBP expression also promoted adhesiveness, motility, and invasiveness of U2OS cells. ICSBP upregulated transforming growth factor (TGF)-β receptors and activated TGF-β signaling cascades, which were responsible for ELP as well as increased cell motility and invasion. In addition, ICSBP-induced TGF-β receptor activation resulted in the upregulation of Snail. Knockdown of Snail attenuated the ICSBP-induced augmentation of cell motility and invasion. Upregulation of Snail, ELP, and increased invasion by ICSBP expression were also observed in other osteosarcoma cell lines, such as Saos-2 and 143B. Furthermore, ICSBP and TGF-β receptor I were expressed in 45/54 (84%) and 47/54 (87%) of human osteosarcoma tissues, respectively, and showed significant correlation (r=0.47, P=0.0007) with respect to their expression levels. Taken altogether, these data demonstrate a novel function for ICSBP in ELP, cell motility, and invasion through the TGF-β and Snail signaling pathways.

Chong HK, Wang T, Lu HM, et al.
The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay.
PLoS One. 2014; 9(5):e97408 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
Breast cancer is the most commonly diagnosed cancer in women, with 10% of disease attributed to hereditary factors. Although BRCA1 and BRCA2 account for a high percentage of hereditary cases, there are more than 25 susceptibility genes that differentially impact the risk for breast cancer. Traditionally, germline testing for breast cancer was performed by Sanger dideoxy terminator sequencing in a reflexive manner, beginning with BRCA1 and BRCA2. The introduction of next-generation sequencing (NGS) has enabled the simultaneous testing of all genes implicated in breast cancer resulting in diagnostic labs offering large, comprehensive gene panels. However, some physicians prefer to only test for those genes in which established surveillance and treatment protocol exists. The NGS based BRCAplus test utilizes a custom tiled PCR based target enrichment design and bioinformatics pipeline coupled with array comparative genomic hybridization (aCGH) to identify mutations in the six high-risk genes: BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11. Validation of the assay with 250 previously characterized samples resulted in 100% detection of 3,025 known variants and analytical specificity of 99.99%. Analysis of the clinical performance of the first 3,000 BRCAplus samples referred for testing revealed an average coverage greater than 9,000X per target base pair resulting in excellent specificity and the sensitivity to detect low level mosaicism and allele-drop out. The unique design of the assay enabled the detection of pathogenic mutations missed by previous testing. With the abundance of NGS diagnostic tests being released, it is essential that clinicians understand the advantages and limitations of different test designs.

Wang K, Yuen ST, Xu J, et al.
Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer.
Nat Genet. 2014; 46(6):573-82 [PubMed] Related Publications
Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and epigenetic perturbations and unique mutational signatures. We identified previously known (TP53, ARID1A and CDH1) and new (MUC6, CTNNA2, GLI3, RNF43 and others) significantly mutated driver genes. Specifically, we found RHOA mutations in 14.3% of diffuse-type tumors but not in intestinal-type tumors (P < 0.001). The mutations clustered in recurrent hotspots affecting functional domains and caused defective RHOA signaling, promoting escape from anoikis in organoid cultures. The top perturbed pathways in gastric cancer included adherens junction and focal adhesion, in which RHOA and other mutated genes we identified participate as key players. These findings illustrate a multidimensional and comprehensive genomic landscape that highlights the molecular complexity of gastric cancer and provides a road map to facilitate genome-guided personalized therapy.

Wheler JJ, Parker BA, Lee JJ, et al.
Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.
Oncotarget. 2014; 5(9):2349-54 [PubMed] Article available free on PMC after 12/09/2015 Related Publications
Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

Rhodes LV, Tate CR, Segar HC, et al.
Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators.
Breast Cancer Res Treat. 2014; 145(3):593-604 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. We previously showed the pan-deacetylase inhibitor LBH589 induces CDH1 expression in TNBC cells, suggesting regulation of EMT. The purpose of this study was to examine the effects of LBH589 on the metastatic qualities of TNBC cells and the role of EMT in this process. A panel of breast cancer cell lines (MCF-7, MDA-MB-231, and BT-549), drugged with LBH589, was examined for changes in cell morphology, migration, and invasion in vitro. The effect on in vivo metastasis was examined using immunofluorescent staining of lung sections. EMT gene expression profiling was used to determine LBH589-induced changes in TNBC cells. ZEB overexpression studies were conducted to validate requirement of ZEB in LBH589-mediated proliferation and tumorigenesis. Our results indicate a reversal of EMT by LBH589 as demonstrated by altered morphology and altered gene expression in TNBC. LBH589 was shown to be a more potent inhibitor of EMT than other HDAC inhibitors, SAHA and TMP269. Additionally, we found that LBH589 inhibits metastasis of MDA-MB-231 cells in vivo. These effects of LBH589 were mediated in part by inhibition of ZEB, as overexpression of ZEB1 or ZEB2 mitigated the effects of LBH589 on MDA-MB-231 EMT-associated gene expression, migration, invasion, CDH1 expression, and tumorigenesis. These data indicate therapeutic potential of LBH589 in targeting EMT and metastasis of TNBC.

Mielcarek-Kuchta D, Paluszczak J, Seget M, et al.
Prognostic factors in oral and oropharyngeal cancer based on ultrastructural analysis and DNA methylation of the tumor and surgical margin.
Tumour Biol. 2014; 35(8):7441-9 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Oral and oropharyngeal cancers are characterized by relatively low 5- year survival rates due to many factors, including local recurrence. The identification of new molecular markers may serve for the estimation of prognosis and thus augment treatment decisions and affect therapy outcome. The aim of this study was to describe the morphological characteristics and the DNA methylation status of the CDKN2A,CDH1, ATM, FHIT and RAR- genes in the central and peripheral part of the tumor and the surgical margin and evaluate their prognostic significance. 53 patients with oral and oropharyngeal cancer were enrolled to the prospective study, and had been primarily treated surgically. Correlations between morphological data, hypermethylation status and clinicopathological data, as well as prognosis, were assessed. Nuclei polymorphism highly correlated with T stage (p < 0.0001), N stage (p < 0.046), and metastases to the lymph nodes pN (p < 0.004 ). Also, the number of cells in irregular mitosis correlated with T stage (p < 0.004), and highly with pN (p < 0.009). The significance of CDKN2A hypermethylation as a good prognostic factor was also established in the Kaplan-Meir test. The ultrastructural analysis showed that none of the examined tumors had homogenous texture and that resection margin specimens clean in HE stained tissue samples frequently contained single tumor cells or few cells in groups surrounded by connective tissue. This indicates the superiority of electron microscopy over standard histopathological analysis. Thus, a combination of such morphological examination with epigenetic parameters described herein could result in the discovery of promising new prognostic markers of the disease.

Zhang FG, He ZY, Wang Q
Transcriptome profiling of the cancer and normal tissues from gastric cancer patients by deep sequencing.
Tumour Biol. 2014; 35(8):7423-7 [PubMed] Related Publications
Gastric cancer is the second highest cause of global cancer mortality. Genome-wide screening of transcriptome dysregulation between cancer and normal tissues would provide insights into the molecular basis of gastric cancer initiation and progression. Recently, next-generation sequencing technique has started to revolutionize biomedical studies. RNA-seq method has become a superior approach in cancer studies, which enables accurate measurement of gene expression levels. In this work, we used RNA-seq data from tumor and matched normal samples to investigate their transcriptional changes. We totally identified 114 significantly differentially expressed genes, and these genes are highly enriched in some gene ontology (GO) categories, such as "digestive system process," "regulation of body fluid levels," "secretion," "digestion," etc. This study provided the preliminary survey of the transcriptome of Chinese gastric cancer patients, which provides better insights into the complexity of regulatory changes during tumorgenesis.

Sahlberg SH, Spiegelberg D, Glimelius B, et al.
Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.
PLoS One. 2014; 9(4):e94621 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

Yue D, Li H, Che J, et al.
Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas.
J Exp Clin Cancer Res. 2014; 33:34 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
BACKGROUND: Squamous cell carcinomas (SCC) account for approximately 30% of non-small cell lung cancer. Investigation of the mechanism of invasion and metastasis of lung SCC will be of great help for the development of meaningful targeted therapeutics. This study is intended to understand whether the activation of Hedgehog (Hh) pathway is involved in lung SCC, and whether activated Hh signaling regulates metastasis through epithelial-mesenchymal transition (EMT) in lung SCC.
METHODS: Two cohorts of patients with lung SCC were studied. Protein expression was examined by immunohistochemistry, Western blot, or immunofluorescence. Protein expression levels in tissue specimens were scored and correlations were analyzed. Vismodegib and a Gli inhibitor were used to inhibit Shh/Gli activity, and recombinant Shh proteins were used to stimulate the Hh pathway in lung SCC cell lines. Cell migration assay was performed in vitro.
RESULTS: Shh/Gli pathway components were aberrantly expressed in lung SCC tissue samples. Gli1 expression was reversely associated with the expression of EMT markers E-Cadherin and β-Catenin in lung SCC specimens. Inhibition of the Shh/Gli pathway suppressed migration and up-regulated E-Cadherin expression in lung SCC cells. Stimulation of the pathway increased migration and down-regulated E-Cadherin expression in lung SCC cells.
CONCLUSIONS: Our results suggested that the Shh/Gli pathway may be critical for lung SCC recurrence, metastasis and resistance to chemotherapy. Inhibition of the Shh/Gli pathway activity/function is a potential therapeutic strategy for the treatment of lung SCC patients.

Kupfer SS, Skol AD, Hong E, et al.
Shared and independent colorectal cancer risk alleles in TGFβ-related genes in African and European Americans.
Carcinogenesis. 2014; 35(9):2025-30 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Genome-wide association studies (GWAS) in colorectal cancer (CRC) identified five regions near transforming growth factor β-related genes BMP4, GREM1, CDH1, SMAD7 and RPHN2. The true risk alleles remain to be identified in these regions, and their role in CRC risk in non-European populations has been understudied. Our previous work noted significant genetic heterogeneity between African Americans (AAs) and European Americans (EAs) for single nucleotide polymorphisms (SNPs) identified in GWAS. We hypothesized that associations may not have been replicated in AAs due to differential or independent genetic structures. In order to test this hypothesis, we genotyped 195 tagging SNPs across these five gene regions in 1194 CRC cases (795 AAs and 399 EAs) and 1352 controls (985 AAs and 367 EAs). Imputation was performed, and association testing of genotyped and imputed SNPs included ancestry, age and sex as covariates. In two of the five genes originally associated with CRC, we found evidence for association in AAs including rs1862748 in CDH1 (OR(Add) = 0.82, P = 0.02) and in GREM1 the SNPs rs10318 (OR(Rec) = 60.1, P = 0.01), rs11632715 (OR(Rec) = 2.36; P = 0.004) and rs12902616 (OR(Rec) = 1.28, P = 0.005), the latter which is in linkage disequilibrium with the previously identified SNP rs4779584. Testing more broadly for associations in these gene regions in AAs, we noted three statistically significant association peaks in GREM1 and RHPN2 that were not identified in EAs. We conclude that some CRC risk alleles are shared between EAs and AAs and others are population specific.

Liao XH, Wang Y, Wang N, et al.
Human chorionic gonadotropin decreases human breast cancer cell proliferation and promotes differentiation.
IUBMB Life. 2014; 66(5):352-60 [PubMed] Related Publications
Human chorionic gonadotropin (hCG) is a glycoprotein produced by placental trophoblasts. Previous studies indicated that hCG could be responsible for the pregnancy-induced protection against breast cancer in women. It is reported that hCG decreases proliferation and invasion of breast cancer MCF-7 cells. Our research also demonstrates that hCG can reduce the proliferation of MCF-7 cells by downregulating the expression of proliferation markers, proliferating cell nuclear antigen (PCNA), and proliferation-related Ki-67 antigen (Ki-67). Interestingly, we find here that hCG elevates the state of cellular differentiation, as characterized by the upregulation of differentiation markers, β-casein, cytokeratin-18 (CK-18), and E-cadherin. Inhibition of hCG secretion or luteinizing hormone/hCG receptors (LH/hCGRs) synthesis can weaken the effect of hCG on the induction of cell differentiation. Furthermore, hCG can suppress the expression of estrogen receptor alpha. hCG activated receptor-mediated cyclic adenosine monophosphate/protein kinase A signaling pathway. These findings indicated that a protective effect of hCG against breast cancer may be associated with its growth inhibitory and differentiation induction function in breast cancer cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CDH1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 26 February, 2015     Cancer Genetics Web, Established 1999