GATA3

Gene Summary

Gene:GATA3; GATA binding protein 3
Aliases: HDR, HDRS
Location:10p14
Summary:This gene encodes a protein which belongs to the GATA family of transcription factors. The protein contains two GATA-type zinc fingers and is an important regulator of T-cell development and plays an important role in endothelial cell biology. Defects in this gene are the cause of hypoparathyroidism with sensorineural deafness and renal dysplasia. [provided by RefSeq, Nov 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:trans-acting T-cell-specific transcription factor GATA-3
Source:NCBIAccessed: 14 March, 2017

Ontology:

What does this gene/protein do?
Show (117)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression
  • Sequence Analysis, Protein
  • MicroRNAs
  • Estrogen Receptors
  • DNA-Binding Proteins
  • Immunohistochemistry
  • Cancer DNA
  • Mutation
  • Hepatocyte Nuclear Factor 3-alpha
  • Transcription Factors
  • Cancer Gene Expression Regulation
  • Cell Proliferation
  • Gene Expression Profiling
  • Childhood Cancer
  • Neoplasm Proteins
  • T-Box Domain Proteins
  • Chromosome 10
  • Seminal Vesicles
  • Promoter Regions
  • Lung Cancer
  • Genetic Predisposition
  • Reagent Kits, Diagnostic
  • Models, Genetic
  • Case-Control Studies
  • DNA Methylation
  • GATA3
  • Single Nucleotide Polymorphism
  • Breast Cancer
  • Polymerase Chain Reaction
  • Base Sequence
  • Neoplastic Cell Transformation
  • Urothelium
  • Estrogen Receptor alpha
  • Messenger RNA
  • Biomarkers, Tumor
  • Oligonucleotide Array Sequence Analysis
  • Genome-Wide Association Study
  • Molecular Sequence Data
  • Cell Differentiation
  • Reproducibility of Results
Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GATA3 (cancer-related)

Joensuu T, Joensuu G, Kairemo K, et al.
Multimodal Primary Treatment of Metastatic Prostate Cancer with Androgen Deprivation and Radiation.
Anticancer Res. 2016; 36(12):6439-6447 [PubMed] Related Publications
AIM: We combined anti-androgen therapy with radiotherapy in a first-line setting for metastatic prostate cancer aiming to cause maximal cancer-cell death to delay the emergence of castration-resistant disease.
MATERIALS AND METHODS: In this non-randomized retrospective series of 46 patients, the initial median prostate-specific antigen (PSA) was 98.5 μg/l (range=6.7-15,500), median Gleason score 9 and most men had at least T3N1M1 disease. All patients received luteinizing hormone releasing hormone analog or degarelix with bicalutamide. If PSA remained above 1 μg/l, docetaxel was initiated. At PSA nadir, all patients received radical radiotherapy of the prostate.
RESULTS: The median follow-up time was 4.38 years (range=0.36-11.24). Most radiotherapy-related adverse events were grade 1 and transient. There were no grade 4 events. Overall survival (OS) at 5 years was 81.3%.
CONCLUSION: The feasibility and safety of aggressive multimodality treatment were good resulting in an excellent median OS of 8.35 years.

Takita J
Genetic and epigenetic aberrations of pediatric leukemia and clinical applications.
Rinsho Ketsueki. 2016; 57(10):2294-2300 [PubMed] Related Publications
Pediatric acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Although fusion genes generated by chromosomal rearrangements are the most frequent genetic alterations in pediatric ALL, fusions are insufficient for the development of this disease, and thus, cannot serve as therapeutic targets for ALL. Recently, integrated genetic analysis using next generation sequencing technology has revealed the genetic landscapes of pediatric ALL. These studies disclosed that in addition to fusion genes, aberrations of cell proliferation pathways and epigenetic regulations are also involved in the pathogenesis of pediatric ALL. On the other hand, more recently, abnormalities of supper enhancer regions of TAL1 have been detected as a novel oncogenic mechanism of pediatric T cell ALL. Furthermore, germline mutations of ARID5B, PAX5, and GATA3 have been found to be involved in the genetic risk of developing ALL. Therefore, currently, the molecular mechanisms of pediatric ALL have been fully disclosed.

Dadhania V, Zhang M, Zhang L, et al.
Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use.
EBioMedicine. 2016; 12:105-117 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It has been suggested that bladder cancer can be divided into two molecular subtypes referred to as luminal and basal with distinct clinical behaviors and sensitivities to chemotherapy. We aimed to validate these subtypes in several clinical cohorts and identify signature immunohistochemical markers that would permit simple and cost-effective classification of the disease in primary care centers.
METHODS: We analyzed genomic expression profiles of bladder cancer in three cohorts of fresh frozen tumor samples: MD Anderson (n=132), Lund (n=308), and The Cancer Genome Atlas (TCGA) (n=408) to validate the expression signatures of luminal and basal subtypes and relate them to clinical follow-up data. We also used an MD Anderson cohort of archival bladder tumor samples (n=89) and a parallel tissue microarray to identify immunohistochemical markers that permitted the molecular classification of bladder cancer.
FINDINGS: Bladder cancers could be assigned to two candidate intrinsic molecular subtypes referred to here as luminal and basal in all of the datasets analyzed. Luminal tumors were characterized by the expression signature similar to the intermediate/superficial layers of normal urothelium. They showed the upregulation of PPARγ target genes and the enrichment for FGFR3, ELF3, CDKN1A, and TSC1 mutations. In addition, luminal tumors were characterized by the overexpression of E-Cadherin, HER2/3, Rab-25, and Src. Basal tumors showed the expression signature similar to the basal layer of normal urothelium. They showed the upregulation of p63 target genes, the enrichment for TP53 and RB1 mutations, and overexpression of CD49, Cyclin B1, and EGFR. Survival analyses showed that the muscle-invasive basal bladder cancers were more aggressive when compared to luminal cancers. The immunohistochemical expressions of only two markers, luminal (GATA3) and basal (KRT5/6), were sufficient to identify the molecular subtypes of bladder cancer with over 90% accuracy.
INTERPRETATION: The molecular subtypes of bladder cancer have distinct clinical behaviors and sensitivities to chemotherapy, and a simple two-marker immunohistochemical classifier can be used for prognostic and therapeutic stratification.
FUNDING: U.S. National Cancer Institute and National Institute of Health.

Singer M, Wang C, Cong L, et al.
A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells.
Cell. 2016; 166(6):1500-1511.e9 [PubMed] Article available free on PMC after 08/09/2017 Related Publications
Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8(+) tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8(+) TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact.

Verma P, Greenberg RA
Noncanonical views of homology-directed DNA repair.
Genes Dev. 2016; 30(10):1138-54 [PubMed] Article available free on PMC after 08/09/2017 Related Publications
DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.

Liu J, Prager-van der Smissen WJ, Look MP, et al.
GATA3 mRNA expression, but not mutation, associates with longer progression-free survival in ER-positive breast cancer patients treated with first-line tamoxifen for recurrent disease.
Cancer Lett. 2016; 376(1):104-9 [PubMed] Related Publications
In breast cancer, GATA3 mutations have been associated with a favorable prognosis and the response to neoadjuvant aromatase inhibitor treatment. Therefore, we investigated whether GATA3 mutations predict the outcome of tamoxifen treatment in the advanced setting. In a retrospective study consisting of 235 hormone-naive patients with ER-positive breast cancer who received tamoxifen as first-line treatment for recurrent disease, GATA3 mutations (in 14.0% of patients) did not significantly associate with either the overall response rate (ORR) or with the length of progression-free survival (PFS) after the start of tamoxifen therapy. Interestingly, among 148 patients for whom both mutation and mRNA expression data were available, GATA3 mutations associated with an increased expression of GATA3. However, only 23.7% of GATA3 high tumors had a mutation. Evaluation of the clinical significance of GATA3 mRNA revealed that it was associated with prolonged PFS, but not with the ORR, also in multivariate analysis. Thus, GATA3 mRNA expression, but not GATA3 mutation, is an independent predictor of prolonged PFS in ER-positive breast cancer patients who received first-line tamoxifen for recurrent disease. Besides GATA3 mutation, other mechanisms must exist that underlie increased GATA3 levels.

Hsu LI, Briggs F, Shao X, et al.
Pathway Analysis of Genome-wide Association Study in Childhood Leukemia among Hispanics.
Cancer Epidemiol Biomarkers Prev. 2016; 25(5):815-22 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: The incidence of acute lymphoblastic leukemia (ALL) is nearly 20% higher among Hispanics than non-Hispanic Whites. Previous studies have shown evidence for association between risk of ALL and variation within IKZF1, ARID5B, CEBPE, CDKN2A, GATA3, and BM1-PIP4K2A genes. However, variants identified only account for <10% of the genetic risk of ALL.
METHODS: We applied pathway-based analyses to genome-wide association study (GWAS) data from the California Childhood Leukemia Study to determine whether different biologic pathways were overrepresented in childhood ALL and major ALL subtypes. Furthermore, we applied causal inference and data reduction methods to prioritize candidate genes within each identified overrepresented pathway, while accounting for correlation among SNPs.
RESULTS: Pathway analysis results indicate that different ALL subtypes may involve distinct biologic mechanisms. Focal adhesion is a shared mechanism across the different disease subtypes. For ALL, the top five overrepresented Kyoto Encyclopedia of Genes and Genomes pathways include axon guidance, protein digestion and absorption, melanogenesis, leukocyte transendothelial migration, and focal adhesion (PFDR < 0.05). Notably, these pathways are connected to downstream MAPK or Wnt signaling pathways which have been linked to B-cell malignancies. Several candidate genes for ALL, such as COL6A6 and COL5A1, were identified through targeted maximum likelihood estimation.
CONCLUSIONS: This is the first study to show distinct biologic pathways are overrepresented in different ALL subtypes using pathway-based approaches, and identified potential gene candidates using causal inference methods.
IMPACT: The findings demonstrate that newly developed bioinformatics tools and causal inference methods can provide insights to furthering our understanding of the pathogenesis of leukemia. Cancer Epidemiol Biomarkers Prev; 25(5); 815-22. ©2016 AACR.

Dieci MV, Smutná V, Scott V, et al.
Whole exome sequencing of rare aggressive breast cancer histologies.
Breast Cancer Res Treat. 2016; 156(1):21-32 [PubMed] Related Publications
Little is known about mutational landscape of rare breast cancer (BC) subtypes. The aim of the study was to apply next generation sequencing to three different subtypes of rare BCs in order to identify new genes related to cancer progression. We performed whole exome and targeted sequencing of 29 micropapillary, 23 metaplastic, and 27 pleomorphic lobular BCs. Micropapillary BCs exhibit a profile comparable to common BCs: PIK3CA, TP53, GATA3, and MAP2K4 were the most frequently mutated genes. Metaplastic BCs presented a high frequency of TP53 (78 %) and PIK3CA (48 %) mutations and were recurrently mutated on KDM6A (13 %), a gene involved in histone demethylation. Pleomorphic lobular carcinoma exhibited high mutation rate of PIK3CA (30 %), TP53 (22 %), and CDH1 (41 %) and also presented mutations in PYGM, a gene involved in glycogen metabolism, in 8 out of 27 samples (30 %). Further analyses of publicly available datasets showed that PYGM is dramatically underexpressed in common cancers as compared to normal tissues and that low expression in tumors is correlated with poor relapse-free survival. Immunohistochemical staining on formalin-fixed paraffin-embedded tissues available in our cohort of patients confirmed higher PYGM expression in normal breast tissue compared to equivalent tumoral zone. Next generation sequencing methods applied on rare cancer subtypes can serve as a useful tool in order to uncover new potential therapeutic targets. Sequencing of pleomorphic lobular carcinoma identified a high rate of alterations in PYGM. These findings emphasize the role of glycogen metabolism in cancer progression.

Ashaie MA, Chowdhury EH
Cadherins: The Superfamily Critically Involved in Breast Cancer.
Curr Pharm Des. 2016; 22(5):616-38 [PubMed] Related Publications
Breast cancer, one of the leading causes of mortality and morbidity among females, is regulated in part by diverse classes of adhesion molecules one of which is known as cadherins. Located at adherens junctions, the members of this superfamily are responsible for upholding proper cell-cell adhesion. Cadherins possess diverse structures and functions and any alteration in their structures or functions causes impeding of normal mammary cells development and maintenance, thus leading to breast malignancy. E-, N-, P-, VE-, Proto-, desmosomal and FAT cadherins have been found to regulate breast cancer in positive as well as negative fashion, whereby both Ecadherin (CDH1) and N-cadherin (CDH2) contribute significantly towards transitioning from epithelial state to mesenchymal state (EMT) and enacting the abnormal cells to invade and metastasize nearby and distant tissues. Aberration in gene expression of cadherins can be either due to somatic or epigenetic silencing or via transcriptional factors. Besides other cadherins, E-cadherin which serves as hallmark of EMT is associated with several regulatory factors such as Snail, Slug, Twist, Zeb, KLF4, NFI, TBX2, SIX, b-Myb, COX-2, Arf6, FOXA2, GATA3 and SMAR1, which modulate E-cadherin gene transcription to promote or represses tumor invasion and colonization. Signaling molecules such as Notch, TGF-β, estrogen receptors, EGF and Wnt initiate numerous signaling cascades via these vital factors of cell programming, controlling expression of E-cadherin at transcriptional (mRNA) and protein level. Thus, interactions of cadherins with their roles in tumor suppression and oncogenic transformation can be beneficial in providing valuable insights for breast cancer diagnosis and therapeutics development.

Aumsuwan P, Khan SI, Khan IA, et al.
The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro.
Arch Biochem Biophys. 2016; 591:98-110 [PubMed] Related Publications
Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 μM) in MDA-MB-231 cells. DS (5.76 μM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 μM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer.

Ye K, Wang J, Jayasinghe R, et al.
Systematic discovery of complex insertions and deletions in human cancers.
Nat Med. 2016; 22(1):97-104 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1, TP53, ARID1A, GATA3 and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR, whereas frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN and ATRX. Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR, MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research.

Takaku M, Grimm SA, Wade PA
GATA3 in Breast Cancer: Tumor Suppressor or Oncogene?
Gene Expr. 2015; 16(4):163-8 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
GATA3 is a highly conserved, essential transcription factor expressed in a number of tissues, including the mammary gland. GATA3 expression is required for normal development of the mammary gland where it is estimated to be the most abundant transcription factor in luminal epithelial cells. In breast cancer, GATA3 expression is highly correlated with the luminal transcriptional program. Recent genomic analysis of human breast cancers has revealed high-frequency mutation in GATA3 in luminal tumors, suggesting "driver" function(s). Here we discuss mutation of GATA3 in breast cancer and the potential mechanism(s) by which mutation may lead to a growth advantage in cancer.

Encinas G, Maistro S, Pasini FS, et al.
Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis.
Rev Assoc Med Bras (1992). 2015 Sep-Oct; 61(5):474-83 [PubMed] Related Publications
OBJECTIVE: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC).
METHODS: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤ 35 and ≤ 40 years, respectively. Age groups were also classified in < 30 years and every 10 years thereafter.
RESULTS: twenty six (1,980 patients, 111 younger) and 16 studies (598, 41 younger), were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER) status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients.
CONCLUSION: frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.

de Smith AJ, Walsh KM, Hansen HM, et al.
Somatic Mutation Allelic Ratio Test Using ddPCR (SMART-ddPCR): An Accurate Method for Assessment of Preferential Allelic Imbalance in Tumor DNA.
PLoS One. 2015; 10(11):e0143343 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The extent to which heritable genetic variants can affect tumor development has yet to be fully elucidated. Tumor selection of single nucleotide polymorphism (SNP) risk alleles, a phenomenon called preferential allelic imbalance (PAI), has been demonstrated in some cancer types. We developed a novel application of digital PCR termed Somatic Mutation Allelic Ratio Test using Droplet Digital PCR (SMART-ddPCR) for accurate assessment of tumor PAI, and have applied this method to test the hypothesis that heritable SNPs associated with childhood acute lymphoblastic leukemia (ALL) may demonstrate tumor PAI. These SNPs are located at CDKN2A (rs3731217) and IKZF1 (rs4132601), genes frequently lost in ALL, and at CEBPE (rs2239633), ARID5B (rs7089424), PIP4K2A (rs10764338), and GATA3 (rs3824662), genes located on chromosomes gained in high-hyperdiploid ALL. We established thresholds of AI using constitutional DNA from SNP heterozygotes, and subsequently measured allelic copy number in tumor DNA from 19-142 heterozygote samples per SNP locus. We did not find significant tumor PAI at these loci, though CDKN2A and IKZF1 SNPs showed a trend towards preferential selection of the risk allele (p = 0.17 and p = 0.23, respectively). Using a genomic copy number control ddPCR assay, we investigated somatic copy number alterations (SCNA) underlying AI at CDKN2A and IKZF1, revealing a complex range of alterations including homozygous and hemizygous deletions and copy-neutral loss of heterozygosity, with varying degrees of clonality. Copy number estimates from ddPCR showed high agreement with those from multiplex ligation-dependent probe amplification (MLPA) assays. We demonstrate that SMART-ddPCR is a highly accurate method for investigation of tumor PAI and for assessment of the somatic alterations underlying AI. Furthermore, analysis of publicly available data from The Cancer Genome Atlas identified 16 recurrent SCNA loci that contain heritable cancer risk SNPs associated with a matching tumor type, and which represent candidate PAI regions warranting further investigation.

Oldridge DA, Wood AC, Weichert-Leahey N, et al.
Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism.
Nature. 2015; 528(7582):418-21 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells. Here we investigate the causal DNA variant at this locus and the mechanism by which it leads to neuroblastoma tumorigenesis. We first imputed all possible genotypes across the LMO1 locus and then mapped highly associated single nucleotide polymorphism (SNPs) to areas of chromatin accessibility, evolutionary conservation and transcription factor binding sites. We show that SNP rs2168101 G>T is the most highly associated variant (combined P = 7.47 × 10(-29), odds ratio 0.65, 95% confidence interval 0.60-0.70), and resides in a super-enhancer defined by extensive acetylation of histone H3 lysine 27 within the first intron of LMO1. The ancestral G allele that is associated with tumour formation resides in a conserved GATA transcription factor binding motif. We show that the newly evolved protective TATA allele is associated with decreased total LMO1 expression (P = 0.028) in neuroblastoma primary tumours, and ablates GATA3 binding (P < 0.0001). We demonstrate allelic imbalance favouring the G-containing strand in tumours heterozygous for this SNP, as demonstrated both by RNA sequencing (P < 0.0001) and reporter assays (P = 0.002). These findings indicate that a recently evolved polymorphism within a super-enhancer element in the first intron of LMO1 influences neuroblastoma susceptibility through differential GATA transcription factor binding and direct modulation of LMO1 expression in cis, and this leads to an oncogenic dependency in tumour cells.

Li R, Campos J, Iida J
A Gene Regulatory Program in Human Breast Cancer.
Genetics. 2015; 201(4):1341-8 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Molecular heterogeneity in human breast cancer has challenged diagnosis, prognosis, and clinical treatment. It is well known that molecular subtypes of breast tumors are associated with significant differences in prognosis and survival. Assuming that the differences are attributed to subtype-specific pathways, we then suspect that there might be gene regulatory mechanisms that modulate the behavior of the pathways and their interactions. In this study, we proposed an integrated methodology, including machine learning and information theory, to explore the mechanisms. Using existing data from three large cohorts of human breast cancer populations, we have identified an ensemble of 16 master regulator genes (or MR16) that can discriminate breast tumor samples into four major subtypes. Evidence from gene expression across the three cohorts has consistently indicated that the MR16 can be divided into two groups that demonstrate subtype-specific gene expression patterns. For example, group 1 MRs, including ESR1, FOXA1, and GATA3, are overexpressed in luminal A and luminal B subtypes, but lowly expressed in HER2-enriched and basal-like subtypes. In contrast, group 2 MRs, including FOXM1, EZH2, MYBL2, and ZNF695, display an opposite pattern. Furthermore, evidence from mutual information modeling has congruently indicated that the two groups of MRs either up- or down-regulate cancer driver-related genes in opposite directions. Furthermore, integration of somatic mutations with pathway changes leads to identification of canonical genomic alternations in a subtype-specific fashion. Taken together, these studies have implicated a gene regulatory program for breast tumor progression.

Nagel S, Meyer C, Kaufmann M, et al.
Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma.
Oncotarget. 2015; 6(37):40112-26 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB - all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region.

Azim HA, Nguyen B, Brohée S, et al.
Genomic aberrations in young and elderly  breast cancer patients.
BMC Med. 2015; 13:266 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Age at breast cancer diagnosis is a known prognostic factor. Previously, several groups including ours have shown that young age at diagnosis is associated with higher prevalence of basal-like tumors and aggressive tumor phenotypes. Yet the impact of age at diagnosis on the genomic landscape of breast cancer remains unclear. In this study, we examined the pattern of somatic mutations, chromosomal copy number variations (CNVs) and transcriptomic profiles in young and elderly breast cancer patients.
METHODS: Analyses were performed on The Cancer Genome Atlas (TCGA) dataset. Patients with metastatic disease at diagnosis, classified as normal-like by PAM50 or had missing clinical information were excluded. Young patients were defined as ≤45 years of age, while elderly patients were those ≥70 years of age at breast cancer diagnosis. The remaining patients were classified as "intermediate". We evaluated the association between age at diagnosis and somatic mutations, CNV and gene expression in a logistic regression model adjusting for tumor size, nodal status, histology and breast cancer subtype. All analyses were corrected for multiple testing using the Benjamini-Hochberg approach.
RESULTS: In this study, 125, 486 and 169 patients were ≤45, 46-69 and ≥70 years of age, respectively. Older patients had more somatic mutations (n = 44 versus 35 versus 31; P = 0.0009) and more CNVs, especially in ductal tumors (P = 0.02). Eleven mutations were independently associated with age at diagnosis, of which only GATA3 was associated with young age (15.2% versus 8.2% versus 9%; P = 0.003). Only two CNV events were independently associated with age, with more chr18p losses in older patients and more chr6q27 deletions in younger ones. Younger age at diagnosis was associated with higher expression of gene signatures related to proliferation, stem cell features and endocrine resistance.
CONCLUSIONS: Age adds a layer of biological complexity beyond breast cancer molecular subtypes, classic pathological and clinical variables, worthy of further consideration in future drug development as we seek to refine therapeutic strategies in the era of personalized medicine.

Wang L, Song G, Tan W, et al.
MiR-573 inhibits prostate cancer metastasis by regulating epithelial-mesenchymal transition.
Oncotarget. 2015; 6(34):35978-90 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The metastastic cascade is a complex process that is regulated at multiple levels in prostate cancer (PCa). Recent evidence suggests that microRNAs (miRNAs) are involved in PCa metastasis and hold great promise as therapeutic targets. In this study, we found that miR-573 expression is significantly lower in metastatic tissues than matched primary PCa. Its downregulation is correlated with high Gleason score and cancer-related mortality of PCa patients (P = 0.041, Kaplan-Meier analysis). Through gain- and loss-of function experiments, we demonstrated that miR-573 inhibits PCa cell migration, invasion and TGF-β1-induced epithelial-mesenchymal transition (EMT) in vitro and lung metastasis in vivo. Mechanistically, miR573 directly targets the fibroblast growth factor receptor 1 (FGFR1) gene. Knockdown of FGFR1 phenocopies the effects of miR-573 expression on PCa cell invasion, whereas overexpression of FGFR1 partially attenuates the functions of miR-573. Consequently, miR-573 modulates the activation of FGFR1-downstream signaling in response to fibroblast growth factor 2 (FGF2). Importantly, we showed that GATA3 directly increases miR-573 expression, and thus down-regulates FGFR1 expression, EMT and invasion of PCa cells in a miR-573-dependent manner, supporting the involvement of GATA3, miR-573 and FGFR1 in controlling the EMT process during PCa metastasis. Altogether, our findings demonstrate a novel mechanism by which miR-573 modulates EMT and metastasis of PCa cells, and suggest miR-573 as a potential biomarker and/or therapeutic target for PCa management.

Kataoka K, Nagata Y, Kitanaka A, et al.
Integrated molecular analysis of adult T cell leukemia/lymphoma.
Nat Genet. 2015; 47(11):1304-15 [PubMed] Related Publications
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.

Ciribilli Y, Singh P, Spanel R, et al.
Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas.
Oncotarget. 2015; 6(31):31569-92 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The c-Myc gene codes for a basic-helix-loop-helix-leucine zipper transcription factor protein and is reported to be frequently over-expressed in human cancers. Given that c-Myc plays an essential role in neoplastic transformation we wished to define its activity in lung cancer and therefore studied its targeted expression to respiratory epithelium in a transgenic mouse disease model. Using histological well-defined tumors, transcriptome analysis identified novel c-Myc responsive cell cycle and apoptosis genes that were validated as direct c-Myc targets using EMSA, Western blotting, gene reporter and ChIP assays.Through computational analyses c-Myc cooperating transcription factors emerged for repressed and up-regulated genes in cancer samples, namely Klf7, Gata3, Sox18, p53 and Elf5 and Cebpα, respectively. Conversely, at promoters of genes regulated in transgenic but non-carcinomatous lung tissue enriched binding sites for c-Myc, Hbp1, Hif1 were observed. Bioinformatic analysis of tumor transcriptomic data revealed regulatory gene networks and highlighted mortalin and moesin as master regulators while gene reporter and ChIP assays in the H1299 lung cancer cell line as well as cross-examination of published ChIP-sequence data of 7 human and 2 mouse cell lines provided strong evidence for the identified genes to be c-Myc targets. The clinical significance of findings was established by evaluating expression of orthologous proteins in human lung cancer. Taken collectively, a molecular circuit for c-Myc-dependent cellular transformation was identified and the network analysis broadened the perspective for molecularly targeted therapies.

Boysen G, Barbieri CE, Prandi D, et al.
SPOP mutation leads to genomic instability in prostate cancer.
Elife. 2015; 4 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics.

Al-Obaide MA, Alobydi H, Abdelsalam AG, et al.
Multifaceted roles of 5'-regulatory region of the cancer associated gene B4GALT1 and its comparison with the gene family.
Int J Oncol. 2015; 47(4):1393-404 [PubMed] Related Publications
β1,4-Galactosylransferases are a family of enzymes encoded by seven B4GALT genes and are involved in the development of anticancer drug resistance and metastasis. Among these genes, the B4GALT1 shows significant variations in the transcript origination sites in different cell types/tissues and encodes an interesting dually partitioning β-1, 4-galactosyltransferase protein. We identified at 5'-end of B4GALT1 a 1.454 kb sequence forming a transcription regulatory region, referred to by us as the TR1-PE1, had all characteristics of a bidirectional promoter directing the transcription of B4GALT1 in a divergent manner along with its long non-coding RNA (lncRNA) antisense counterpart B4GALT1-AS1. The TR1-PE1 showed unique dinucleotide base-stacking energy values specific to transcription factor binding sites (TFBSs), INR and BRE, and harbored CpG Island (CGI) that showed GC skew with potential for R-loop formation at the transcription starting sites (TSSs). The 5'-regulatory axis of B4GALT1 also included five more novel TFBSs for CTCF, GLI1, TCF7L2, GATA3 and SOX5, in addition to unique (TG)18 repeats in conjunction with 22 nucleotide TG-associated sequence (TGAS). The five lncRNA B4GALT1-AS1 transcripts showed significant complementarity with B4GALT1 mRNA. In contrast, the rest of B4GALT genes showed fewer lncRNAs, and all lacked the (TG)18 and TGAS. Our results are strongly supported by the FANTOM5 study which showed tissue-specific variations in transcript origination sites for this gene. We suggest that the unique expression patterns for the B4GALT1 in normal and malignant tissues are controlled by a differential usage of 5'-B4GALT1 regulatory units along with a post-transcriptional regulation by the antisense RNA, which in turn govern the cell-matrix interactions, neoplastic progression, anticancer drug sensitivity, and could be utilized in personalized therapy.

Du F, Yuan P, Wang T, et al.
The Significance and Therapeutic Potential of GATA3 Expression and Mutation in Breast Cancer: A Systematic Review.
Med Res Rev. 2015; 35(6):1300-15 [PubMed] Related Publications
GATA3 is a critical transcription factor in the development of various human systems. The notion that GATA3 expression is required for the differentiation and maintenance of normal breast tissue has been well established. Recently, GATA3 is found to actively participate in the multistep process leading breast cancer pathogenesis, including tumorigenesis, tumor differentiation, epithelial mesenchymal transition, and metastasis through regulation of various target genes. On the other hand, several studies have raised questions and highlighted the role of GATA3-low or GATA3-negative cells during the malignant development of breast cancer. In addition to gene expression, GATA3 mutations provide another dimension of complexity. As one of the most frequently mutated genes in breast cancer, GATA3 mutations may have an effect on DNA-binding ability, protein production, and transactivation activity. Recognition of the multiple function of GATA3 in breast cancer will serve to deepen our understanding of the nature of this disease and develop novel therapeutic approaches.

Yang Z, Zhuan B, Yan Y, et al.
Integrated analyses of copy number variations and gene differential expression in lung squamous-cell carcinoma.
Biol Res. 2015; 48:47 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV).
RESULTS: A higher burden of the CNVs was found in 10-50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity IIIa, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA1, GATA2, GATA3) jointly regulated the expression of TP63.
CONCLUSIONS: The above CNV-driven genes might be potential contributors to the development of lung SCC.

Ping N, Qiu H, Wang Q, et al.
Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion.
J Hematol Oncol. 2015; 8:100 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 fusion transcript, which is a recurrent alteration in B cell acute lymphoblastic leukemia. Our results suggest that the JIH-5 cell line may serve as a tool for the study of mixed-phenotype acute leukemia or EP300-ZNF384.

Wang Z, Zhao Z, Lu J, et al.
A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells.
PLoS One. 2015; 10(8):e0133728 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
OBJECTIVES: To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells.
MATERIALS AND METHODS: A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.
RESULTS: After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.
CONCLUSIONS: 125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.

Abba MC, Gong T, Lu Y, et al.
A Molecular Portrait of High-Grade Ductal Carcinoma In Situ.
Cancer Res. 2015; 75(18):3980-90 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Ductal carcinoma in situ (DCIS) is a noninvasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer whereas others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome, and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty-two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor-intrinsic subtypes, proliferative, immune scores, and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like, or ERBB2(+)) displayed signatures characteristic of activated Treg cells (CD4(+)/CD25(+)/FOXP3(+)) and CTLA4(+)/CD86(+) complexes indicative of a tumor-associated immunosuppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly, ncRNA and methylation profiles reproduce changes observed postinvasion. Among the most significant findings, we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a preinvasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer.

Fukuda T, Wu W, Okada M, et al.
Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage.
Cancer Sci. 2015; 106(8):1050-6 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BRCA1 and 53BP1 antagonistically regulate homology-directed repair (HDR) and non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB). The histone deacetylase (HDAC) inhibitor trichostatin A directly inhibits the retention of 53BP1 at DSB sites by acetylating histone H4 (H4ac), which interferes with 53BP1 binding to dimethylated histone H4 Lys20 (H4K20me2). Conversely, we recently found that the retention of the BRCA1/BARD1 complex is also affected by another methylated histone residue, H3K9me2, which can be suppressed by the histone lysine methyltransferase (HKMT) inhibitor UNC0638. Here, we investigate the effects of the class I HDAC inhibitors MS-275 and FK228 compared to UNC0638 on histone modifications and the DNA damage response. In addition to H4ac, the HDAC inhibitors induce H3K9ac and inhibit H3K9me2 at doses that do not affect the expression levels of DNA repair genes. By contrast, UNC0638 selectively inhibits H3K9me2 without affecting the levels of H3K9ac, H3K56ac or H4ac. Reflecting their effects on histone modifications, the HDAC inhibitors inhibit ionizing radiation-induced foci (IRIF) formation of BRCA1 and BARD1 as well as 53BP1 and RIF1, whereas UNC0638 suppresses IRIF formation of BRCA1 and BARD1 but not 53BP1 and RIF1. Although HDAC inhibitors suppressed HDR, they did not cooperate with the poly(ADP-ribose) polymerase inhibitor olaparib to block cancer cell growth, possibly due to simultaneous suppression of NHEJ pathway components. Collectively, these results suggest the mechanism by that HDAC inhibitors inhibit both the HDR and NHEJ pathways, whereas HKMT inhibitor inhibits only the HDR pathway; this finding may affect the chemosensitizing effects of the inhibitors.

Si W, Huang W, Zheng Y, et al.
Dysfunction of the Reciprocal Feedback Loop between GATA3- and ZEB2-Nucleated Repression Programs Contributes to Breast Cancer Metastasis.
Cancer Cell. 2015; 27(6):822-36 [PubMed] Related Publications
How loss-of-function of GATA3 contributes to the development of breast cancer is poorly understood. Here, we report that GATA3 nucleates a transcription repression program composed of G9A and MTA3-, but not MTA1- or MTA2-, constituted NuRD complex. Genome-wide analysis of the GATA3/G9A/NuRD(MTA3) targets identified a cohort of genes including ZEB2 that are critically involved in epithelial-to-mesenchymal transition and cell invasion. We demonstrate that the GATA3/G9A/NuRD(MTA3) complex inhibits the invasive potential of breast cancer cells in vitro and suppresses breast cancer metastasis in vivo. Strikingly, the expression of GATA3, G9A, and MTA3 is concurrently downregulated during breast cancer progression, leading to an elevated expression of ZEB2, which, in turn, represses the expression of G9A and MTA3 through the recruitment of G9A/NuRD(MTA1).

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GATA3, Cancer Genetics Web: http://www.cancer-genetics.org/GATA3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999