Gene Summary

Gene:REST; RE1 silencing transcription factor
Aliases: WT6, XBR, NRSF
Summary:This gene encodes a transcriptional repressor that represses neuronal genes in non-neuronal tissues. It is a member of the Kruppel-type zinc finger transcription factor family. It represses transcription by binding a DNA sequence element called the neuron-restrictive silencer element. The protein is also found in undifferentiated neuronal progenitor cells and it is thought that this repressor may act as a master negative regular of neurogenesis. Alternatively spliced transcript variants have been described [provided by RefSeq, Jul 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:RE1-silencing transcription factor
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (40)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Zinc Fingers
  • Lung Cancer
  • Protein Binding
  • Chromosome 4
  • Nerve Tissue Proteins
  • Repressor Proteins
  • DNA-Binding Proteins
  • Prostate Cancer
  • Breast Cancer
  • Ubiquitination
  • Stem Cells
  • Apoptosis
  • Down-Regulation
  • REST
  • Ovarian Cancer
  • Gene Knockdown Techniques
  • Messenger RNA
  • Neuroblastoma
  • Chromatin Immunoprecipitation
  • Gene Expression Profiling
  • HeLa Cells
  • Molecular Sequence Data
  • Promoter Regions
  • Neurons
  • RNA Interference
  • Sp1 Transcription Factor
  • Binding Sites
  • Gene Expression Regulation
  • Transcription
  • Cancer Gene Expression Regulation
  • Theca Cells
  • VHL
  • Transcription Factors
  • Cell Proliferation
  • Colorectal Cancer
  • Neoplastic Cell Transformation
  • VIP
  • Medulloblastoma
  • Cell Differentiation
  • Gene Expression
  • Base Sequence
  • Western Blotting
  • siRNA
  • Alternative Splicing
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: REST (cancer-related)

Yucebas M, Yilmaz Susluer S, Onur Caglar H, et al.
Expression profiling of RE1-silencing transcription factor (REST), REST corepressor 1 (RCOR1), and Synapsin 1 (SYN1) genes in human gliomas.
J BUON. 2016 Jul-Aug; 21(4):964-972 [PubMed] Related Publications
PURPOSE: The repressor element 1 (RE-1) silencing transcription factor (REST) is a transcription factor which represses the expression of neuronal differentiation-related genes including SYN1 gene. CoREST, encoded by RCOR1 gene, binds to the REST protein for remodeling of chromatin structure. Although there is a relation among REST, RCOR1, and SYN1 genes, the role of these genes in glioma tumors is still unclear. In this study, expressions of REST, RCOR1, and SYN1 genes were detected in primary cultures derived from tumor samples of diffuse astrocytoma (DA), anaplastic oligodendroglioma (AO), and glioblastoma multiforme (GBM) cases.
METHODS: Expression profiles were analysed by RT-qPCR and the copy number variations were examined with qPCR in primary cultures. ChIP assay was performed to show binding characteristics of REST and CoREST proteins on promoter region of SYN1 gene.
RESULTS: Means of relative expression for REST were as follows: 0.7898, 0.7606, and 0.7318 in DA, AO, and GBM groups, respectively. For RCOR1, expression means in DA, AO, and GBM groups were 0.7203, 0.7334, and 0.7230, respectively. SYN1 expression means were as follows: 0.3936, 0.3192, and 0.3197 in DA, AO, and GBM groups, respectively. Neither gain nor loss of copy numbers were detected for REST and RCOR1 genes in all groups. Copy loss for SYN1 was detected in primary culture of a DA case. REST and CoREST presented positive precipitation pattern on promoter region of SYN1 gene.
CONCLUSIONS: Expressions of REST and RCOR1 genes may downregulate SYN1 expression in gliomas. Low expression pattern of SYN1 may maintain cancer stem-like phenotype which contributes to development of gliomas.

Zhang D, Li Y, Wang R, et al.
Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.
Int J Mol Sci. 2016; 17(5) [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy.

Ikram F, Ackermann S, Kahlert Y, et al.
Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.
Mol Oncol. 2016; 10(2):344-59 [PubMed] Related Publications
Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma.

Mahamdallie SS, Hanks S, Karlin KL, et al.
Mutations in the transcriptional repressor REST predispose to Wilms tumor.
Nat Genet. 2015; 47(12):1471-4 [PubMed] Related Publications
Wilms tumor is the most common childhood renal cancer. To identify mutations that predispose to Wilms tumor, we are conducting exome sequencing studies. Here we describe 11 different inactivating mutations in the REST gene (encoding RE1-silencing transcription factor) in four familial Wilms tumor pedigrees and nine non-familial cases. Notably, no similar mutations were identified in the ICR1000 control series (13/558 versus 0/993; P < 0.0001) or in the ExAC series (13/558 versus 0/61,312; P < 0.0001). We identified a second mutational event in two tumors, suggesting that REST may act as a tumor-suppressor gene in Wilms tumor pathogenesis. REST is a zinc-finger transcription factor that functions in cellular differentiation and embryonic development. Notably, ten of 11 mutations clustered within the portion of REST encoding the DNA-binding domain, and functional analyses showed that these mutations compromise REST transcriptional repression. These data establish REST as a Wilms tumor predisposition gene accounting for ∼2% of Wilms tumor.

Zhang X, Coleman IM, Brown LG, et al.
SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer.
Clin Cancer Res. 2015; 21(20):4698-708 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The neuroendocrine phenotype is associated with the development of metastatic castration-resistant prostate cancer (CRPC). Our objective was to characterize the molecular features of the neuroendocrine phenotype in CRPC.
EXPERIMENTAL DESIGN: Expression of chromogranin A (CHGA), synaptophysin (SYP), androgen receptor (AR), and prostate-specific antigen (PSA) was analyzed by IHC in 155 CRPC metastases from 50 patients and in 24 LuCaP prostate cancer patient-derived xenografts (PDX). Seventy-one of 155 metastases and the 24 LuCaP xenograft lines were analyzed by whole-genome microarrays. REST splicing was verified by PCR.
RESULTS: Coexpression of CHGA and SYP in >30% of cells was observed in 22 of 155 metastases (9 patients); 11 of the 22 metastases were AR(+)/PSA(+) (6 patients), 11/22 were AR-/PSA- (4 patients), and 4/24 LuCaP PDXs were AR(-)/PSA(-). By IHC, of the 71 metastases analyzed by whole-genome microarrays, 5 metastases were CHGA(+)/SYP(+)/AR(-), and 5 were CHGA(+)/SYP(+)/AR(+). Only CHGA(+)/SYP(+) metastases had a neuroendocrine transcript signature. The neuronal transcriptional regulator SRRM4 transcript was associated with the neuroendocrine signature in CHGA(+)/SYP(+) metastases and all CHGA(+)/SYP(+) LuCaP xenografts. In addition, expression of SRRM4 in LuCaP neuroendocrine xenografts correlated with a splice variant of REST that lacks the transcriptional repressor domain.
CONCLUSIONS: (i) Metastatic neuroendocrine status can be heterogeneous in the same patient, (ii) the CRPC neuroendocrine molecular phenotype can be defined by CHGA(+)/SYP(+) dual positivity, (iii) the neuroendocrine phenotype is not necessarily associated with the loss of AR activity, and (iv) the splicing of REST by SRRM4 could promote the neuroendocrine phenotype in CRPC.

Lee NS, Evgrafov OV, Souaiaia T, et al.
Non-coding RNAs derived from an alternatively spliced REST transcript (REST-003) regulate breast cancer invasiveness.
Sci Rep. 2015; 5:11207 [PubMed] Free Access to Full Article Related Publications
RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30-200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.

Ren H, Gao Z, Wu N, et al.
Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro.
Biochem Biophys Res Commun. 2015; 463(4):504-9 [PubMed] Related Publications
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma.

Cho E, Moon SM, Park BR, et al.
NRSF/REST regulates the mTOR signaling pathway in oral cancer cells.
Oncol Rep. 2015; 33(3):1459-64 [PubMed] Related Publications
The neuron-restrictive silencer factor/repressor element 1-silencing transcription factor (NRSF/REST) was originally discovered as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it was recently reported to be abundantly expressed in several types of aggressive cancer cells, as well as in mature neurons. In the present study, the role of NRSF/REST in the human oral squamous cell carcinoma (SCC) KB cell line was evaluated. NRSF/REST was expressed at a higher level in KB cells when compared with that in normal human oral keratinocytes (NHOKs). Knockdown of NRSF/REST by siRNA reduced cell viability only in KB cells in a time-dependent manner, and this effect was due to the activation of apoptosis components and DNA fragmentation. In addition, knockdown of NRSF/REST disrupted the mTOR signaling pathway which is a key survival factor in many types of cancer cells. For example, the phosphorylation of elF4G, elF4E and 4E-BP1 was significantly reduced in the KΒ cells upon NRSF/REST knockdown. These results imply that NRSF/REST plays an important role in the survival of oral cancer cells by regulating the mTOR signaling pathway.

Pandey GK, Mitra S, Subhash S, et al.
The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation.
Cancer Cell. 2014; 26(5):722-37 [PubMed] Related Publications
Neuroblastoma is an embryonal tumor of the sympathetic nervous system and the most common extracranial tumor of childhood. By sequencing transcriptomes of low- and high-risk neuroblastomas, we detected differentially expressed annotated and nonannotated long noncoding RNAs (lncRNAs). We identified a lncRNA neuroblastoma associated transcript-1 (NBAT-1) as a biomarker significantly predicting clinical outcome of neuroblastoma. CpG methylation and a high-risk neuroblastoma associated SNP on chromosome 6p22 functionally contribute to NBAT-1 differential expression. Loss of NBAT-1 increases cellular proliferation and invasion. It controls these processes via epigenetic silencing of target genes. NBAT-1 loss affects neuronal differentiation through activation of the neuronal-specific transcription factor NRSF/REST. Thus, loss of NBAT-1 contributes to aggressive neuroblastoma by increasing proliferation and impairing differentiation of neuronal precursors.

Song Z, Zhao D, Zhao H, Yang L
NRSF: an angel or a devil in neurogenesis and neurological diseases.
J Mol Neurosci. 2015; 56(1):131-44 [PubMed] Related Publications
The neuron-restrictive silencer factor (NRSF) a transcriptional regulator that function as a hub that coordinately regulates multiple aspects of neurogenesis, orchestrates neural differentiation, and preserves the unique neural phenotype. NRSF also acts as an oncogene in neural tumorigenesis, although its effect differs depending on the cell type and tissues. Intriguingly, far more than above functions, potential roles for NRSF and its target genes have also been implicated in the pathogenesis and therapeutic mechanism of neurodegenerative diseases. NRSF acts as a flexible and complicated regulator in nervous system, from transcriptional repressor to activator or modulator, and plays a part in neuronal survival or neuronal death. Here, we present the mechanisms proposed to account for the multiple roles of NRSF in neurogenesis and neurological diseases and discuss the therapeutic perspective of recent advances. The mechanisms underlying this duality of NRSF are helpful to understanding the physiological and pathological conditions of neurons and provide new therapeutic approaches to neurological disorders and diseases.

Karlin KL, Mondal G, Hartman JK, et al.
The oncogenic STP axis promotes triple-negative breast cancer via degradation of the REST tumor suppressor.
Cell Rep. 2014; 9(4):1318-32 [PubMed] Free Access to Full Article Related Publications
Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 ("STP axis") cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.

Lend AK, Kazantseva A, Kivil A, et al.
Diagnostic significance of alternative splice variants of REST and DOPEY1 in the peripheral blood of patients with breast cancer.
Tumour Biol. 2015; 36(4):2473-80 [PubMed] Related Publications
Changes in alternative splicing have been linked to cancer development. We hypothesized that changes occurring in tumor tissue can also be detected in the peripheral blood of cancer patients leading to discovery of blood biomarkers of breast cancer. Alternative splicing profiles of 94 genes were examined in cancerous breast tissue. Discriminating splice variants were analyzed in the peripheral blood of early stage (BCI/II) (stage I-II; n = 26), neoadjuvant receiving locally advanced breast cancer patients (LABC) (stage IIb-IIIa, b; n = 10) and healthy volunteers (n = 26) using qRT-PCR analysis. Changes in marker expression during neoadjuvant therapy were analyzed at 15 timepoints. High expression of REST-N50, the alternatively spliced variant of REST, was detected in the blood of LABC patients but not in BCI/II and healthy controls (p = 0.0032 and p = 0.0029, respectively). Expression levels of DOPEY1v2, the alternative splice variant of DOPEY1, in the blood could differentiate cancer from healthy controls (p = 0.024) and discriminate between patient groups (BCI/II vs LABC, p = 0.002). Positive response to neoadjuvant therapy of REST-N50-positive LABC patients correlated with a decrease in REST-N50 levels (p < 0.0001). Assessment of REST-N50 and DOPEY1v2 may prove useful in diagnostic blood tests of breast cancer. REST-N50 shows a high potential as a blood biomarker for evaluating the effectiveness of therapy in the neoadjuvant setting.

Igci M, Arslan A, Erturhan S, et al.
Loss of heterozygosity of chromosome 13q33-34 region and molecular analysis of ING1 and p53 genes in bladder carcinoma.
Mol Biol Rep. 2015; 42(2):507-16 [PubMed] Related Publications
Cancer is a consequence of accumulation of genetic and epigenetic alterations in the cell which can lead to activation of oncogenes or inactivation of tumor suppressor genes (TSG). Since members of ING family were discovered as TSGs in different cancer types, it was aimed to analyze the chromosome 13q33-34 region, ING1 and p53 genes in bladder cancer. 30 paired normal and tumor tissues were investigated in terms of microdeletion of chromosome 13q33-34 region, ING1 expression and mutation status of ING1 and p53 genes. Because there is no data available about the transcription factors which bind to ING1 promoter, the promoter sequence was analyzed via Genomatix-MatInspector and TFSEARCH softwares. Used DS markers were D13S285, D13S1315, D13S796, D13S278, D13S158, and D13S779 where loss of heterozygosity (LOH) results were as 23.3, 20, 6.7, 3.3, 6.7, and 0 %, respectively. The highest LOH scores were obtained with markers D13S285 and D13S1315 which are flanking the ING1. Seven of 30 cases showed alteration in expression (p > 0.05). However, no mutation was detected in the exons of ING1. One patient showed a two-nucleotide deletion in p53 gene. However no significant TSG activity of ING1 was observed while higher activity was reported in different cancer types. As for the LOH data 13q33-34 region may contain different candidate TSGs like COL4A1, COL4A2 and SOX1. As a result of computational promoter analysis, some factors like ABL, E2F, HIF1, SOX, P53, BPTF, NRSF, c-Rel and c-ETS were associated with the promoter region. Molecular analysis of ING1 promoter warrants further analysis.

Formisano L, Guida N, Laudati G, et al.
Extracellular signal-related kinase 2/specificity protein 1/specificity protein 3/repressor element-1 silencing transcription factor pathway is involved in Aroclor 1254-induced toxicity in SH-SY5Y neuronal cells.
J Neurosci Res. 2015; 93(1):167-77 [PubMed] Related Publications
Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity.

Nair S, Bora-Singhal N, Perumal D, Chellappan S
Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner.
Mol Cancer. 2014; 13:173 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Inhibitor of DNA binding/Differentiation 1 (ID1) is a helix loop helix transcription factor that lacks the basic DNA binding domain. Over-expression of ID1 has been correlated with a variety of human cancers; our earlier studies had shown that reported ID1 is induced by nicotine or EGF stimulation of non-small cell lung cancer (NSCLC) cells and its down regulation abrogates cell proliferation, invasion and migration. Here we made attempts to identify downstream targets of ID1 that mediate these effects.
METHODS: A microarray analysis was done on two different NSCLC cell lines (A549 and H1650) that were transfected with a siRNA to ID1 or a control, non-targeting siRNA. Cells were stimulated with nicotine and genes that were differentially expressed upon nicotine stimulation and ID1 depletion were analyzed to identify potential downstream targets of ID1. The prospective role of the identified genes was validated by RT-PCR. Additional functional assays were conducted to assess the role of these genes in nicotine induced proliferation, invasion and migration. Experiments were also conducted to elucidate the role of ID1, which does not bind to DNA directly, affects the expression of these genes at transcriptional level.
RESULTS: A microarray analysis showed multiple genes are affected by the depletion of ID1; we focused on two of them: Stathmin-like3 (STMN3), a microtubule destabilizing protein, and GSPT1, a protein involved in translation termination; these proteins were induced by both nicotine and EGF in an ID1 dependent fashion. Overexpression of ID1 in two different cell lines induced STMN3 and GSPT1 at the transcriptional level, while depletion of ID1 reduced their expression. STMN3 and GSPT1 were found to facilitate the proliferation, invasion and migration of NSCLC cells in response to nAChR activation. Attempts made to assess how ID1, which is a transcriptional repressor, induces these genes showed that ID1 down regulates the expression of two transcriptional co-repressors, NRSF and ZBP89, involved in the repression of these genes.
CONCLUSIONS: Collectively, our data suggests that nicotine and EGF induce genes such as STMN3 and GSPT1 to promote the proliferation, invasion and migration of NSCLC, thus enhancing their tumorigenic properties. These studies thus reveal a central role for ID1 and its downstream targets in facilitating lung cancer progression.

Liang J, Tong P, Zhao W, et al.
The REST gene signature predicts drug sensitivity in neuroblastoma cell lines and is significantly associated with neuroblastoma tumor stage.
Int J Mol Sci. 2014; 15(7):11220-33 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma is the most common and deadly solid tumor in children, and there is currently no effective treatment available for neuroblastoma patients. The repressor element-1 silencing transcription (REST) factor has been found to play important roles in the regulation of neural differentiation and tumorigenesis. Recently, a REST signature consisting of downstream targets of REST has been reported to have clinical relevance in both breast cancer and glioblastoma. However it remains unclear how the REST signature works in neuroblastoma. Publicly available datasets were mined and bioinformatic approaches were used to investigate the utility of the REST signature in neuroblastoma with both preclinical and real patient data. The REST signature was found to be associated with drug sensitivity in neuroblastoma cell lines. Further, neuroblastoma patients with enhanced REST activity are significantly associated with higher clinical stages. Loss of heterozygosity on chromosome 11q23, which occurs in a large subset of high-risk neuroblastomas, tends to be correlated with high REST activity, with marginal significance. In conclusion, the REST signature has important implications for targeted therapy, and it is a prognostic factor in neuroblastoma patients.

Zhu Y, Liu C, Cui Y, et al.
Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST).
Prostate. 2014; 74(11):1086-94 [PubMed] Related Publications
BACKGROUND: Paracrine interleukin-6 (IL-6) can mediate neuroendocrine (NE) features, including the acquisition of a neurite-like phenotype and growth arrest in prostate cancer cells. However, little is known about the mechanisms underlying neuroendocrine differentiation induced by IL-6.
METHODS: Immunoblotting was performed to determine the status of RE1-silencing transcription factor (REST) and of neuroendocrine markers such as Neuron-specific Enolase (NSE), chromogranin A and synaptophysin in LNCaP cells treated with IL-6. To further study the impact of REST-mediated repression on neuroendocrine differentiation (NED) in LNCaP cells, either wild-type REST or a dominant-positive form of REST, REST-VP16, in which both repressor domains of REST were replaced with the activation domain of the herpes simplex virus protein VP16, was introduced into LNCaP cells.
RESULTS: In this study, we show that REST is suppressed in IL-6-induced neuroendocrine differentiation in LNCaP cells. Overexpression of exogenous REST abrogated IL-6-induced NED in prostate cancer cells. Expression of the recombinant REST-VP16 fusion protein activated REST target genes and other neuronal differentiation genes and produced neuronal physiological properties. In addition, REST protein turnover was accelerated in IL-6 induced NE differentiated LNCaP cells via the ubiquitin-proteasome pathway, accompanied by a decrease in the expression of the deubiquitylase HAUSP, indicating that pathway(s) priming REST degradation may be involved in IL-6 induced NE differentiation.
CONCLUSIONS: These results demonstrate that REST functions as a major switch of IL-6 induced neuroendocrine differentiation in LNCaP cells.

Gebhardt ML, Reuter S, Mrowka R, Andrade-Navarro MA
Similarity in targets with REST points to neural and glioblastoma related miRNAs.
Nucleic Acids Res. 2014; 42(9):5436-46 [PubMed] Free Access to Full Article Related Publications
There are groups of genes that need coordinated repression in multiple contexts, for example if they code for proteins that work together in a pathway or in a protein complex. Redundancy of biological regulatory networks implies that such coordinated repression might occur at both the pre- and post-transcriptional level, though not necessarily simultaneously or under the same conditions. Here, we propose that such redundancy in the global regulatory network can be detected by the overlap between the putative targets of a transcriptional repressor, as identified by a ChIP-seq experiment, and predicted targets of a microRNA (miRNA). To test this hypothesis, we used publicly available ChIP-seq data of the neural transcriptional repressor RE1 silencing transcription factor (REST) from 15 different cell samples. We found 20 miRNAs, each of which shares a significant amount of predicted targets with REST. The set of predicted associations between these 20 miRNAs and the overlapping REST targets is enriched in known miRNA targets. Many of the detected miRNAs have functions related to neural identity and glioblastoma, which could be expected from their overlap in targets with REST. We propose that the integration of experimentally determined transcription factor binding sites with miRNA-target predictions provides functional information on miRNAs.

Chang PC, Wang TY, Chang YT, et al.
Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells.
PLoS One. 2014; 9(2):e88556 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE) tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ) markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA), a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results reveal the potential of targeting autophagy as part of a combined therapeutic regime for NE tumors.

Zhou Z, Yu L, Kleinerman ES
EWS-FLI-1 regulates the neuronal repressor gene REST, which controls Ewing sarcoma growth and vascular morphology.
Cancer. 2014; 120(4):579-88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RE1-silencing transcription factor (REST), a neuronal repressor gene, regulates neuronal stem cell differentiation. Ewing sarcoma may originate from neural crest cells. In the current study, the authors investigated whether REST plays a role in the growth of this tumor.
METHODS: REST expression was determined by Western blot analysis and reverse transcription-polymerase chain reaction in 3 human Ewing sarcoma cell lines and 7 patient tumor samples. The role of REST in tumor growth and tumor vascular morphology was determined using a Ewing sarcoma xenograft model. Immunofluorescence staining, Hypoxyprobe, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays were performed to investigate the impact of REST on pericyte marker expression, hypoxia, and apoptosis in vivo.
RESULTS: High levels of REST were expressed in all 3 human Ewing sarcoma cell lines and in 6 of the 7 patient tumor samples. Overexpression of EWS-FLI-1 in human mesenchymal stem cells and human neural progenitor cells was found to increase REST expression. Inhibition of EWS-FLI-1 using small interfering RNA decreased REST expression in human Ewing sarcoma cells. Inhibition of REST did not affect EWS-FLI-1, but significantly suppressed tumor growth in vivo, reduced the tumor vessel pericyte markers α- smooth muscle actin (SMA) and desmin, increased hypoxia and apoptosis in tumor tissues, and decreased the expression of delta-like ligand 4 (DLL4) and Hes1.
CONCLUSIONS: Inhibition of REST suppressed tumor growth, inhibited pericyte marker expression, and increased tumor hypoxia and apoptosis. Because tumor vessel function has been linked to tumor growth and metastases, REST may be a new therapeutic target in patients with Ewing sarcoma.

Jiang S, Willox B, Zhou H, et al.
Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A.
Proc Natl Acad Sci U S A. 2014; 111(1):421-6 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr virus nuclear antigen 3C (EBNA3C) repression of CDKN2A p14(ARF) and p16(INK4A) is essential for immortal human B-lymphoblastoid cell line (LCL) growth. EBNA3C ChIP-sequencing identified >13,000 EBNA3C sites in LCL DNA. Most EBNA3C sites were associated with active transcription; 64% were strong H3K4me1- and H3K27ac-marked enhancers and 16% were active promoters marked by H3K4me3 and H3K9ac. Using ENCODE LCL transcription factor ChIP-sequencing data, EBNA3C sites coincided (±250 bp) with RUNX3 (64%), BATF (55%), ATF2 (51%), IRF4 (41%), MEF2A (35%), PAX5 (34%), SPI1 (29%), BCL11a (28%), SP1 (26%), TCF12 (23%), NF-κB (23%), POU2F2 (23%), and RBPJ (16%). EBNA3C sites separated into five distinct clusters: (i) Sin3A, (ii) EBNA2/RBPJ, (iii) SPI1, and (iv) strong or (v) weak BATF/IRF4. EBNA3C signals were positively affected by RUNX3, BATF/IRF4 (AICE) and SPI1/IRF4 (EICE) cooccupancy. Gene set enrichment analyses correlated EBNA3C/Sin3A promoter sites with transcription down-regulation (P < 1.6 × 10(-4)). EBNA3C signals were strongest at BATF/IRF4 and SPI1/IRF4 composite sites. EBNA3C bound strongly to the p14(ARF) promoter through SPI1/IRF4/BATF/RUNX3, establishing RBPJ-, Sin3A-, and REST-mediated repression. EBNA3C immune precipitated with Sin3A and conditional EBNA3C inactivation significantly decreased Sin3A binding at the p14(ARF) promoter (P < 0.05). These data support a model in which EBNA3C binds strongly to BATF/IRF4/SPI1/RUNX3 sites to enhance transcription and recruits RBPJ/Sin3A- and REST/NRSF-repressive complexes to repress p14(ARF) and p16(INK4A) expression.

Liang H, Studach L, Hullinger RL, et al.
Down-regulation of RE-1 silencing transcription factor (REST) in advanced prostate cancer by hypoxia-induced miR-106b~25.
Exp Cell Res. 2014; 320(2):188-99 [PubMed] Free Access to Full Article Related Publications
Clinically aggressive prostate cancer (PCa) is linked to androgen resistance, metastasis, and expression of neuroendocrine markers. To understand mechanism(s) of neuroendocrine differentiation (NED) of PCa epithelia, we compared neuronal differentiation occurring during embryogenesis, in primary cultures of neural crest (NC) cells, and NED in PCa cell lines (LNCaP and PC3). We demonstrate, hypoxia promotes neuronal and neuroendocrine differentiation of NC cells and PCa cells, respectively, by inducing the miR-106 b~25 cluster. In turn, miR-106b~25 comprised of miR-106b, miR-93 and miR-25, down-regulates the transcriptional repressor REST, which represses neuron-specific protein-coding and miRNA genes. In prostate tumors of high Gleason score (≥ 8), an inverse trend was observed between REST and miR-106b~25 induction. Employing miRNA PCR arrays, we identified miRNAs up-regulated by hypoxia in LNCaP cells and REST-knockdown in NC cells. Significantly, a subset of miRNAs (miR-9, miR-25, miR-30d and miR302b) is up-regulated in high Gleason score (≥ 8) PCa, suggesting a mechanism by which NED contributes to PCa malignancy. We propose that loss of REST and induction of this set of microRNAs can serve as potential novel clinical markers of advanced PCa.

Elgamal OA, Park JK, Gusev Y, et al.
Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation.
PLoS One. 2013; 8(10):e76402 [PubMed] Free Access to Full Article Related Publications
Identifying targets of dysregulated microRNAs (miRNAs) will enhance our understanding of how altered miRNA expression contributes to the malignant phenotype of breast cancer. The expression of miR-205 was reduced in four breast cancer cell lines compared to the normal-like epithelial cell line MCF10A and in tumor and metastatic tissues compared to adjacent benign breast tissue. Two predicted binding sites for miR-205 were identified in the 3' untranslated region of the high mobility group box 3 gene, HMGB3. Both dual-luciferase reporter assay and Western blotting confirmed that miR-205 binds to and regulates HMGB3. To further explore miR-205 targeting of HMGB3, WST-1 proliferation and in vitro invasion assays were performed in MDA-MB-231 and BT549 cells transiently transfected with precursor miR-205 oligonucleotide or HMGB3 small interfering RNA (siRNA). Both treatments reduced the proliferation and invasion of the cancer cells. The mRNA and protein levels of HMGB3 were higher in the tumor compared to adjacent benign specimens and there was an indirect correlation between the expression of HMGB3 mRNA and patient survival. Treatment of breast cancer cells with 5-Aza/TSA derepressed miR-205 and reduced HMGB3 mRNA while knockdown of the transcriptional repressor NRSF/REST, reduced miR-205 and increased HMGB3. In conclusion, regulation of HMGB3 by miR-205 reduced both proliferation and invasion of breast cancer cells. Our findings suggest that modulating miR-205 and/or targeting HMGB3 are potential therapies for advanced breast cancer.

Tivnan A, Zhao J, Johns TG, et al.
The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma.
Tumour Biol. 2014; 35(2):1459-65 [PubMed] Related Publications
Reduced levels of specific microRNA in cancer are frequently reported and associated with attenuated cancer genes and associated pathways. We previously reported a loss of miR-124a in glioblastoma (GBM) patient specimens; however, the upstream causes of this loss are largely unknown. Loss of miR-124a has been attributed to hypermethylation while other studies have shown miR-124a to be regulated by the repressor-element-1-silencing transcription factor (REST, also known as neuron-restrictive silencing factor). This current study looked at both epigenetic and transcription factor regulation as potential mechanisms resulting in the loss of miR-124a expression in GBM patient specimens and cell lines. Hypermethylation of miR-124a was observed in 82 % of GBM patient specimens (n = 56). In vitro miR-124a expression levels also increased after treatment of several patient-derived cell lines with 5-aza-2'-deoxycytidine. Additionally, we also demonstrated a positive interaction between REST activity and miR-124a using a luciferase-binding assay and we correlated the reciprocal expression of REST and miR-124a in our clinical cohort. This result indicates that miR-124a expression may also be modulated through the upstream targeting of REST. Preclinical studies involving inhibitors of REST and treatment with demethylating agents with the intent to increase miR-124a levels could be interesting.

Shimojo M, Shudo Y, Ikeda M, et al.
The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100).
Mol Cancer Res. 2013; 11(10):1258-68 [PubMed] Related Publications
UNLABELLED: Small cell lung cancer (SCLC) is a highly malignant form of cancer, which originates from primitive neuroendocrine cells in the lung. SCLC cells express several autocrine neurotransmitters/neuropeptides and their respective receptors. Expression of these neuronal markers is frequently regulated by RE1-silencing transcription factor (REST). In SCLC cells, an SCLC-specific isoform of REST (sREST) is highly expressed, whereas REST expression is undetectable, suggesting that the expression of sREST correlates with the pathogenesis of SCLC. Expression of sREST, which is derived through alternative splicing of REST, is abnormally regulated in SCLC cells, but the mechanism is unknown. Most recently, nSR100 (SRRM4) was described as an activator of REST alternative splicing. We now show that nSR100 is highly expressed in SCLC cells correlating with high sREST and low REST expression. Adhesion to the extracellular matrix (ECM) is thought to enhance tumorigenicity and confer resistance to apoptosis. Interestingly, nSR100 expression is enhanced in cells grown with ECM. Overexpression of REST caused repression of sREST and nSR100, the latter containing RE1 element controlled by REST. Culturing the SCLC cell line NCI-N417 cells with ECM also upregulated RE1-containing gene, the voltage-gated calcium channel subunit. Inhibition of the PI3K/Akt/mTOR pathway by LY294002 induced nSR100 expression, whereas the specific MEK/ERK inhibitor U0126 inhibited nSR100 expression. Repressing nSR100 by siRNA effectively repressed sREST, and conversely increased REST in NCI-N417 cells. Taken together, this report clarifies the ECM-dependent signaling pathway that impacts nSR100 expression and its regulation of alternative splicing in SCLC.
IMPLICATIONS: The splicing factor nSR100 may be novel SCLC-specific biomarker, as well as a therapeutic target.

Doghman M, Figueiredo BC, Volante M, et al.
Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation.
Nucleic Acids Res. 2013; 41(19):8896-907 [PubMed] Free Access to Full Article Related Publications
Steroidogenic Factor-1 (SF-1) is a nuclear receptor that has a pivotal role in the development of adrenal glands and gonads and in the control of steroid hormone production, being also implicated in the pathogenesis of adrenocortical tumors. We have analyzed the mechanisms how SF-1 controls gene expression in adrenocortical cells and showed that it regulates different categories of genes according to its dosage. Significant correlations exist between the localization of SF-1-binding sites in chromatin under different dosage conditions and dosage-dependent regulation of gene expression. Our study revealed unexpected functional interactions between SF-1 and Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription Factor (NRSF/REST), which was first characterized as a repressor of neuronal gene expression in non-neuronal tissues, in the regulation of gene expression in steroidogenic cells. When overexpressed, SF-1 reshapes the repertoire of NRSF/REST-regulated genes, relieving repression of key steroidogenic genes. These data show that NRSF/REST has a novel function in regulating gene expression in steroidogenic cells and suggest that it may have a broad role in regulating tissue-specific gene expression programs.

Chen GL, Miller GM
Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer.
PLoS One. 2013; 8(4):e62217 [PubMed] Free Access to Full Article Related Publications
The repressor element silencing transcription factor (REST) is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS) of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons) that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ) which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of REST gene expression and function, and provide potential biomarkers and therapeutic targets for cancer.

Amalraj J, Cutler SJ, Ghazawi I, et al.
REST negatively and ISGF3 positively regulate the human STAT1 gene in melanoma.
Mol Cancer Ther. 2013; 12(7):1288-98 [PubMed] Related Publications
STAT1 plays a pivotal role in signal transduction and transcriptional activation in response to type I and II IFNs. Regulation of STAT1 expression has significant consequences in human cancer cells, where STAT1 deficiencies have been associated with cellular resistance to type I IFN. Distinct promoter, enhancer, and repressor regions have previously been described in the regulatory part of the human STAT1 gene extending as far as the second intron. A putative IFN-stimulated response element sequence in the STAT1 promoter is inducible by type I IFN and binds the IFN-α/β-induced complex, ISGF3. Together with the previously characterized IRF-E/GAS/IRF-E (IGI) motif, these positive regulatory elements provide a means for intracellular amplification of STAT1 expression, which is necessary for increasing cell responsiveness to the IFNs. In contrast, the transcriptional repressor REST binds to an RE-1 element in the STAT1 repressor region and in doing so represses transcription from the STAT1 gene regulatory region in melanoma cells lines. Repression significantly decreased in a REST-null cell line. Altering REST function from a transcriptional repressor into an activator as REST-VP16 increased expression from RE-1-targeted reporters. RNA expression of 65 melanoma cell lines by microarray and selected lines with known IFN responsiveness showed significant inverse correlations between STAT1/REST that were related to cellular responses to IFN. Thus REST, through the intronic RE-1 element, provides a means for downregulating STAT1 expression, affecting melanoma responsiveness to IFN. Intracellular levels of REST may be a useful marker to test for IFN resistance and as a novel therapeutic target in IFN-resistant melanomas.

Negrini S, Prada I, D'Alessandro R, Meldolesi J
REST: an oncogene or a tumor suppressor?
Trends Cell Biol. 2013; 23(6):289-95 [PubMed] Related Publications
The Repressor Element-1 (RE-1) Silencing Transcription (REST) factor, which is highly expressed in stem cells and non-neural cells, with low expression in neurons and other neural cells, orchestrates neural differentiation and preserves the unique neural phenotype. REST also plays a role in proliferation, although its effect differs depending on the cell type. It acts as an oncogene in neural cells and tumors (medulloblastomas, neuroblastomas, glioblastomas) and as a tumor suppressor in carcinomas of the lung, breast, and colon. The mechanisms underlying this duality have started to emerge recently and new therapeutic approaches based on these findings are being developed. Here, we present the mechanisms proposed to account for the oncogenic and antioncogenic roles of REST and discuss the therapeutic perspective of recent advances, particularly for small-cell lung cancer.

Varghese BV, Koohestani F, McWilliams M, et al.
Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway.
Proc Natl Acad Sci U S A. 2013; 110(6):2187-92 [PubMed] Free Access to Full Article Related Publications
Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase-protein kinase B/AKT-mammalian target of rapamycin (PI3K/AKT-mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K-AKT-mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. REST, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999