Gene Summary

Gene:KDM1A; lysine demethylase 1A
Aliases: AOF2, CPRF, KDM1, LSD1, BHC110
Summary:This gene encodes a nuclear protein containing a SWIRM domain, a FAD-binding motif, and an amine oxidase domain. This protein is a component of several histone deacetylase complexes, though it silences genes by functioning as a histone demethylase. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:lysine-specific histone demethylase 1A
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (52)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Protein Binding
  • RNA, Untranslated
  • Immunohistochemistry
  • DNA Methylation
  • Epithelial-Mesenchymal Transition
  • Western Blotting
  • HEK293 Cells
  • Breast Cancer
  • Neoplasm Invasiveness
  • Enzyme Inhibitors
  • Biomarkers, Tumor
  • Transcriptional Activation
  • Prostate Cancer
  • Gene Silencing
  • Gene Knockdown Techniques
  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Down-Regulation
  • Histones
  • Chromatin
  • Antineoplastic Agents
  • siRNA
  • KDM1A
  • MicroRNAs
  • Long Noncoding RNA
  • Drug Resistance
  • Cell Movement
  • Non-Small Cell Lung Cancer
  • Methylation
  • Chromosome 1
  • RHOB
  • RNA Interference
  • Histone Demethylases
  • Leukemic Gene Expression Regulation
  • Epigenetics
  • Tumor Burden
  • RNA-Binding Proteins
  • Lung Cancer
  • Enhancer of Zeste Homolog 2 Protein
  • Apoptosis
  • Gene Expression Profiling
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KDM1A (cancer-related)

Bell CC, Fennell KA, Chan YC, et al.
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia.
Nat Commun. 2019; 10(1):2723 [PubMed] Free Access to Full Article Related Publications
Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.

Saccà CD, Gorini F, Ambrosio S, et al.
Inhibition of lysine-specific demethylase LSD1 induces senescence in Glioblastoma cells through a HIF-1α-dependent pathway.
Biochim Biophys Acta Gene Regul Mech. 2019; 1862(5):535-546 [PubMed] Related Publications
Senescence is a stress-responsive cellular program that leads to cell cycle arrest. In cancer cells, senescence has profound implications for tumor aggressiveness and clinical outcome, but the molecular events that provoke cancer cells to undergo senescence remain unclear. Herein, we provide evidence that the histone demethylase LSD1/KDM1A supports the growth of Glioblastoma tumor cells and its inhibition triggers senescence response. LSD1 is a histone modifier that participates in key aspects of gene transcription as well as in the regulation of methylation dynamics of non-histone proteins. We found that down-regulation of LSD1 inhibits Glioblastoma cell growth, impairs mTOR pathway and cell migration and induces senescence. At mechanistic level, we found that LSD1 regulates HIF-1α protein stability. Pharmacological inhibition or siRNA-mediated silencing of LSD1 expression effectively reduces HIF-1α protein levels, which suffices for the induction of senescence. Our findings elucidate a mechanism whereby LSD1 controls senescence in Glioblastoma tumor cells through the regulation of HIF-1α, and we propose the novel defined LSD1/HIF-1α axis as a new target for the therapy of Glioblastoma tumors.

Wu Y, Hu L, Qin Z, Wang X
MicroRNA‑302a upregulation mediates chemo‑resistance in prostate cancer cells.
Mol Med Rep. 2019; 19(5):4433-4440 [PubMed] Related Publications
MicroRNAs (miRNAs) are post‑transcriptional regulators that mediate the initiation and progression of human cancer. Growing evidence suggests that deregulation of miRNA expression levels underlies chemo‑resistance. To investigate whether miRNA‑302a (miR‑302a) is involved in mediating chemo‑resistance to paclitaxel in prostate cancer, a series of in vitro analyses were performed in paclitaxel‑resistant prostate cancer PC‑3PR cells and non‑resistant prostate cancer PC‑3 cells. It was demonstrated that the expression of miR‑302a was upregulated in PC‑3PR cells. Notably, ectopic expression of miR‑302a also increased resistance to paclitaxel in wild‑type PC‑3 cells. By contrast, silencing of miR‑302a in PC‑3PR cells sensitized the cells to paclitaxel. Gene and protein expression analyses suggested that the miR‑302a target gene breast cancer resistance protein (BCRP) may mediate chemo‑resistance to paclitaxel in PC‑3PR cells. In conclusion, the data suggested that elevated miR‑302a levels, in part, mediate sensitivity to paclitaxel in prostate cancer through the aberrant regulation of its downstream targets, AOF2, BCRP and permeability glycoprotein 1. These data have implications for the development of novel therapeutics in prostate cancer that may improve sensitivity to chemotherapeutics.

Wang Y, Sun L, Luo Y, He S
Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells.
Pathol Res Pract. 2019; 215(5):1054-1060 [PubMed] Related Publications
Pancreatic cancer (PC) is one of the common malignant tumors in digestive tract with a high fatality rate. The oncogenic role of lysine-specific demethylase1 (LSD1/KDM1 A) has been well recognized in PC. While, the role of its homolog LSD2 (KDM1B) in regulating PC progression is poorly understood. In this study, we attempted to evaluate the functional role of KDM1B in PC cells. The expression of KDM1B was detected by immunohistochemistry and immunoblotting in PC tissues and cells. Lentivirus-mediated shRNA was applied to silence KDM1B in PANC-1 and SW1990 cells. Cell proliferation was measured by MTT and Celigo assay. Cell apoptosis was determined by both Caspase-Glo

Bhaskaran V, Nowicki MO, Idriss M, et al.
The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma.
Nat Commun. 2019; 10(1):442 [PubMed] Free Access to Full Article Related Publications
MicroRNA deregulation is a consistent feature of glioblastoma, yet the biological effect of each single gene is generally modest, and therapeutically negligible. Here we describe a module of microRNAs, constituted by miR-124, miR-128 and miR-137, which are co-expressed during neuronal differentiation and simultaneously lost in gliomagenesis. Each one of these miRs targets several transcriptional regulators, including the oncogenic chromatin repressors EZH2, BMI1 and LSD1, which are functionally interdependent and involved in glioblastoma recurrence after therapeutic chemoradiation. Synchronizing the expression of these three microRNAs in a gene therapy approach displays significant anticancer synergism, abrogates this epigenetic-mediated, multi-protein tumor survival mechanism and results in a 5-fold increase in survival when combined with chemotherapy in murine glioblastoma models. These transgenic microRNA clusters display intercellular propagation in vivo, via extracellular vesicles, extending their biological effect throughout the whole tumor. Our results support the rationale and feasibility of combinatorial microRNA strategies for anticancer therapies.

Lee C, Rudneva VA, Erkek S, et al.
Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma.
Nat Commun. 2019; 10(1):332 [PubMed] Free Access to Full Article Related Publications
Drugs that modify the epigenome are powerful tools for treating cancer, but these drugs often have pleiotropic effects, and identifying patients who will benefit from them remains a major clinical challenge. Here we show that medulloblastomas driven by the transcription factor Gfi1 are exquisitely dependent on the enzyme lysine demethylase 1 (Kdm1a/Lsd1). We demonstrate that Lsd1 physically associates with Gfi1, and that these proteins cooperate to inhibit genes involved in neuronal commitment and differentiation. We also show that Lsd1 is essential for Gfi1-mediated transformation: Gfi1 proteins that cannot recruit Lsd1 are unable to drive tumorigenesis, and genetic ablation of Lsd1 markedly impairs tumor growth in vivo. Finally, pharmacological inhibitors of Lsd1 potently inhibit growth of Gfi1-driven tumors. These studies provide important insight into the mechanisms by which Gfi1 contributes to tumorigenesis, and identify Lsd1 inhibitors as promising therapeutic agents for Gfi1-driven medulloblastoma.

Zhong J, Pan R, Ying X, et al.
Significant association between KDM1A promoter hypomethylation and colorectal cancer in Han Chinese.
Pathol Res Pract. 2019; 215(3):532-538 [PubMed] Related Publications
Lysine-specific histone demethylase 1A gene (KDM1A) promotes tumorigenesis. The aim of this study was to investigate the association between KDM1A methylation and colorectal cancer (CRC). Currently, we collected 37 paired CRC tissues and adjacent non-tumor tissues from Jiangsu province and 75 paired CRC tissues and adjacent non-tumor tissues from Zhejiang province to conduct a two-stage experiment to study the association between KDM1A methylation and CRC. We used qMSP to measure the KDM1A promoter methylation, and the percentage of methylation reference (PMR) to quantify the KDM1A promoter methylation level. To investigate the effect of the selected KDM1A fragment on gene expression regulation, we also performed a dual luciferase reporter gene assay. In the stage I study, the KDM1A promoter methylation level in CRC tumor tissues was significantly lower than that in adjacent non-tumor tissues (median PMR: 6.93% vs 10.25%, P =  0.033). The results of the stage II study were similar to those of the stage I study (mean PMR: 12.94% versus 17.42%, P =  0.016). In addition, a clinical pathology subgroup analysis found that KDM1A hypomethylation was associated with CRC only in patients with well-differentiated CRC (stage I: P =  0.047; stage II: P =  0.040). The dual luciferase reporter assay showed that the transcriptional activity of the recombinant pGL3-KDM1A plasmid was significantly higher (fold change = 2, P =  0.0009). In conclusion, our results suggest that KDM1A hypomethylation is significantly associated with CRC.

Haldeman JM, Conway AE, Arlotto ME, et al.
Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing.
Nucleic Acids Res. 2019; 47(4):e23 [PubMed] Free Access to Full Article Related Publications
Genetic manipulation via transgene overexpression, RNAi, or Cas9-based methods is central to biomedical research. Unfortunately, use of these tools is often limited by vector options. We have created a modular platform (pMVP) that allows a gene of interest to be studied in the context of an array of promoters, epitope tags, conditional expression modalities, and fluorescent reporters, packaged in 35 custom destination vectors, including adenovirus, lentivirus, PiggyBac transposon, and Sleeping Beauty transposon, in aggregate >108,000 vector permutations. We also used pMVP to build an epigenetic engineering platform, pMAGIC, that packages multiple gRNAs and either Sa-dCas9 or x-dCas9(3.7) fused to one of five epigenetic modifiers. Importantly, via its compatibility with adenoviral vectors, pMAGIC uniquely enables use of dCas9/LSD1 fusions to interrogate enhancers within primary cells. To demonstrate this, we used pMAGIC to target Sa-dCas9/LSD1 and modify the epigenetic status of a conserved enhancer, resulting in altered expression of the homeobox transcription factor PDX1 and its target genes in pancreatic islets and insulinoma cells. In sum, the pMVP and pMAGIC systems empower researchers to rapidly generate purpose-built, customized vectors for manipulation of gene expression, including via targeted epigenetic modification of regulatory elements in a broad range of disease-relevant cell types.

Callegari K, Maegawa S, Bravo-Alegria J, Gopalakrishnan V
Pharmacological inhibition of LSD1 activity blocks REST-dependent medulloblastoma cell migration.
Cell Commun Signal. 2018; 16(1):60 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children. Current problems in the clinic include metastasis, recurrence, and treatment-related sequelae that highlight the need for targeted therapies. Epigenetic perturbations are an established hallmark of human MB and expression of Lysine Specific Demethylase 1 (LSD1) is elevated in MBs compared to normal tissue, suggesting that LSD1 inhibitors may have efficacy against human MB tumors.
METHODS: Expression of LSD1 was examined across a publicly-available database and correlated with patient outcomes. Sonic Hedgehog (SHH) MB samples were clustered based on expression of LSD1 and LSD1-associated RE-1 silencing transcription factor (REST) target genes as well as genes involved in metastasis. Resulting clusters were examined for patient outcomes associated with LSD1 and REST expression. Human SHH MB cell lines were transduced with a REST-transgene to create isogenic cell pairs. In vitro viability and cell migration assays were used to examine the effect of LSD1 knockdown or inhibition on these parameters.
RESULTS: We demonstrate that subsets of SHH MB tumors have elevated LSD1 expression coincident with increased expression of its deubiquitylase, USP7, and REST. Patients with co-elevation of USP7, REST, and LSD1 have poorer outcomes compared to those with lower expression of these genes. In SHH MB cell lines, REST elevation increased cell growth and LSD1 protein levels. Surprisingly, while genetic loss of LSD1 reduced cell viability, pharmacological targeting of its activity using LSD1 inhibitors did not affect cell viability. However, a reduction in REST-dependent cell migration was seen in wound healing, suggesting that REST-LSD1 interaction regulates cell migration. Ingenuity pathway analyses validated these findings and identified Hypoxia Inducible Factor 1 alpha (HIF1A) as a potential target. In line with this, ectopic expression of HIF1A rescued the loss of migration seen following LSD1 inhibition.
CONCLUSIONS: A subset of SHH patients display increased levels of LSD1 and REST, which is associated with poor outcomes. REST elevation in MB in conjunction with elevated LSD1 promotes MB cell migration. LSD1 inhibition blocks REST-dependent cell migration of MB cells in a HIF1A-dependent manner.

Cheng CK, Wong THY, Wan TSK, et al.
RUNX1 upregulation via disruption of long-range transcriptional control by a novel t(5;21)(q13;q22) translocation in acute myeloid leukemia.
Mol Cancer. 2018; 17(1):133 [PubMed] Free Access to Full Article Related Publications
RUNX1 encodes a Runt-related transcription factor that is critical for hematopoiesis. In this study, through a combinatorial molecular approach, we characterized a novel t(5;21)(q13;q22) translocation involving RUNX1 that was acquired during the progression of myelodysplastic syndrome to acute myeloid leukemia (AML) in a pediatric patient. We found that this translocation did not generate RUNX1 fusion but aberrantly upregulated RUNX1. This upregulation was attributed to the disruption of long-range chromatin interactions between the RUNX1 P2 promoter and a silencer in the first intron of the gene. Characterization of the silencer revealed a role of SNAG repressors and their corepressor LSD1/KDM1A in mediating the effect. Our findings suggest that chromosomal rearrangements may activate RUNX1 by perturbing its transcriptional control to contribute to AML pathogenesis, in keeping with an emerging oncogenic role of RUNX1 in leukemia.

Qin Y, Vasilatos SN, Chen L, et al.
Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade.
Oncogene. 2019; 38(3):390-405 [PubMed] Free Access to Full Article Related Publications
Immunotherapy strategies have been emerging as powerful weapons against cancer. Early clinical trials reveal that overall response to immunotherapy is low in breast cancer patients, suggesting that effective strategies to overcome resistance to immunotherapy are urgently needed. In this study, we investigated whether epigenetic reprograming by modulating histone methylation could enhance effector T lymphocyte trafficking and improve therapeutic efficacy of immune checkpoint blockade in breast cancer with focus on triple-negative breast cancer (TNBC) subtype. In silico analysis of The Cancer Genome Atlas (TCGA) data shows that expression of histone lysine-specific demethylase 1 (LSD1) is inversely associated with the levels of cytotoxic T cell-attracting chemokines (C-C motif chemokine ligand 5 (CCL5), C-X-C motif chemokine ligand 9 and 10 (CXCL9, CXCL10)) and programmed death-ligand 1 (PD-L1) in clinical TNBC specimens. Tiling chromatin immunoprecipitation study showed that re-expression of chemokines by LSD1 inhibition is associated with increased H3K4me2 levels at proximal promoter regions. Rescue experiments using concurrent treatment with small interfering RNA or inhibitor of chemokine receptors blocked LSD1 inhibitor-enhanced CD8+ T cell migration, indicating a critical role of key T cell chemokines in LSD1-mediated CD8+ lymphocyte trafficking to the tumor microenvironment. In mice bearing TNBC xenograft tumors, anti-PD-1 antibody alone failed to elicit obvious therapeutic effect. However, combining LSD1 inhibitors with PD-1 antibody significantly suppressed tumor growth and pulmonary metastasis, which was associated with reduced Ki-67 level and augmented CD8+ T cell infiltration in xenograft tumors. Overall, these results suggest that LSD1 inhibition may be an effective adjuvant treatment with immunotherapy as a novel management strategy for poorly immunogenic breast tumors.

Lillico R, Lawrence CK, Lakowski TM
Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes.
J Proteome Res. 2018; 17(8):2657-2667 [PubMed] Related Publications
Mixed lineage leukemia results from chromosomal rearrangements of the gene mixed lineage leukemia (MLL). MLL-AF9 is one such rearrangement that recruits the lysine methyltransferase, human disruptor of telomere silencing 1-like (DOT1L) and lysine specific demethylase 1 (LSD1), resulting in elevated expression of the Homeobox protein A9 (HOXA9), and leukemia. Inhibitors of LSD1 or DOT1L reduce HOXA9 expression, kill MLL-rearranged cells, and may treat leukemia. To quantify their effects on histone modifying enzyme activity and expression in MLL-rearranged leukemia, we tested inhibitors of DOT1L (EPZ-5676), LSD1 (GSK2879552), and HDAC (mocetinostat), in the MLL-AF9 cell line MOLM-13. All inhibitors reduced MOLM-13 viability but only mocetinostat induced apoptosis. EPZ-5676 increased total histone lysine dimethylation, which was attributed to a reduction in LSD1 expression, and was indistinguishable from direct LSD1 inhibition by GSK2879552. All compounds directly inhibit, or reduce the expression of, HOXA9, DOT1L and LSD1 by qPCR, increase total histone lysine methylation and acetylation by LC-MS/MS, and specifically reduce H3K79Me2 and increase H3K14Ac. Each inhibitor altered the expression of many histone modifying enzymes which may precipitate additional changes in expression. To the extent that this decreases HOXA9 expression it benefits mixed lineage leukemia treatment, all other expression changes are off-target effects.

Zhang W, Chen JH, Shan T, et al.
miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation.
Lab Invest. 2018; 98(11):1397-1407 [PubMed] Free Access to Full Article Related Publications
Endometrial cancer is the most common gynecological cancer in the United States. We wanted to identify epigenetic aberrations involving microRNAs (miRNAs), whose genes become hypermethylated in endometrial primary tumors. By integrating known miRNA sequences from the miRNA database (miRBase) with DNA methylation data from methyl-CpG-capture sequencing, we identified 111 differentially methylated regions (DMRs) associated with CpG islands (CGIs) and miRNAs. Among them, 22 DMRs related to 29 miRNAs and within 8 kb of CGIs were hypermethylated in endometrial tumors but not in normal endometrium. miR-137 was further validated in additional endometrial primary tumors. Hypermethylation of miR-137 was found in both endometrioid and serous endometrial cancer (P < 0.01), and it led to the loss of miR-137 expression. Treating hypermethylated endometrial cancer cells with epigenetic inhibitors reactivated miR-137. Moreover, genetic overexpression of miR-137 suppressed cancer cell proliferation and colony formation in vitro. When transfected cancer cells were implanted into nude mice, the cells that overexpressed miR-137 grew more slowly and formed smaller tumors (P < 0.05) than vector transfectants. Histologically, xenograft tumors from cancer cells expressing miR-137 were less proliferative (P < 0.05), partly due to inhibition of EZH2 and LSD1 expression (P < 0.01) in both the transfected cancer cells and tumors. Reporter assays indicated that miR-137 targets EZH2 and LSD1. These results suggest that miR-137 is a tumor suppressor that is repressed in endometrial cancer because the promoter of its gene becomes hypermethylated.

Lu Y, Liu Y, Oeck S, Glazer PM
Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1.
Mol Cancer Res. 2018; 16(10):1458-1469 [PubMed] Free Access to Full Article Related Publications
The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth

Ismail T, Lee HK, Kim C, et al.
KDM1A microenvironment, its oncogenic potential, and therapeutic significance.
Epigenetics Chromatin. 2018; 11(1):33 [PubMed] Free Access to Full Article Related Publications
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.

Piao L, Yang Z, Jin J, et al.
B7H4 is associated with stemness and cancer progression in esophageal squamous cell carcinoma.
Hum Pathol. 2018; 80:152-162 [PubMed] Related Publications
B7H4 is overexpressed in human cancers and often correlates with poor clinical outcome. There is a lack of data on the role of B7H4 as a cancer stem cell (CSC) regulator in esophageal squamous cell carcinoma (ESCC) and its expression levels compared to other stemness genes in ESCC. In this study, we have assessed the expression of B7H4 and cancer stemness proteins in 156 paraffin-embedded ESCC tissue samples using immunohistochemistry as well as in ESCC cell lines using Western blotting and immunofluorescence imaging. The correlation of B7H4 expression with clinicopathological parameters, cell cycle regulating genes, and PI3K/Akt/NF-κB signaling genes was investigated. The expression of B7H4 in ESCC tissue was correlated with the primary tumor (pT) stage, stromal activity, and the expression of CD68 and HIF-1α. However, B7H4 expression was negatively associated with CD8+ T cell infiltration in ESCC tissues. Moreover, B7H4 was found to be strongly linked to prognostic factors leading to poor clinical outcome. B7H4-expressing cancer cells also expressed known cancer stemness proteins (Sox9, LSD1, Oct4, and LGR5). Moreover, B7H4, Sox9, LSD1, Oct4, and LGR5 were highly expressed in more poorly differentiated ESCC cell lines. Notably, B7H4 expression was positively associated with the expression of cell cycle regulators such as cyclin D1, p27, and PI3K/Akt/NFκB signaling proteins. B7H4 could be a novel cancer stem cell marker for the prognostic evaluation of ESCC patients as well as a potential therapeutic target against ESCC.

Xu TP, Wang WY, Ma P, et al.
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer.
Oncogene. 2018; 37(36):5020-5036 [PubMed] Related Publications
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.

Wei Y, Han T, Wang R, et al.
LSD1 negatively regulates autophagy through the mTOR signaling pathway in ovarian cancer cells.
Oncol Rep. 2018; 40(1):425-433 [PubMed] Related Publications
Lysine-specific demethylase 1 (LSD1) plays a key role in cell proliferation, differentiation and carcinogenesis. In the present study we revealed that LSD1 functioned as an autophagy suppressor in ovarian cancer HO8910 cells. Pharmacological inhibition or genetic knockdown of LSD1 resulted in the elevation of the LC3‑II protein, enhancement of autophagosomal formation and stimulation of the autophagic flux. In addition, knockdown of LSD1 further promoted the serum starvation- and rapamycin-induced autophagy. Furthermore, we demonstrated that LSD1 regulated autophagy via the mTOR signaling pathway. Collectively, our findings identified LSD1 as a novel negative regulator of autophagy through the mTOR signaling pathway in ovarian cancer HO8910 cells and indicated that LSD1 may function as a driving factor of ovarian cancer progression via deregulating autophagy.

Xu Y, Yao Y, Jiang X, et al.
SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma.
J Exp Clin Cancer Res. 2018; 37(1):81 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Accumulating evidence has indicated that long non-coding RNAs (lncRNAs) behave as a novel class of transcription products during multiple cancer processes. However, the mechanisms responsible for their alteration in cholangiocarcinoma (CCA) are not fully understood.
METHODS: The expression of SPRY4-IT1 in CCA tissues and cell lines was determined by RT-qPCR, and the association between SPRY4-IT1 transcription and clinicopathologic features was analyzed. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to explore whether SP1 could bind to the promoter region of SPRY4-IT1 and activate its transcription. The biological function of SPRY4-IT1 in CCA cells was evaluated both in vitro and in vivo. ChIP, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays were performed to determine the molecular mechanism of SPRY4-IT1 in cell proliferation, apoptosis and invasion.
RESULTS: SPRY4-IT1 was abnormally upregulated in CCA tissues and cells, and this upregulation was correlated with tumor stage and tumor node metastasis (TNM) stage in CCA patients. SPRY4-IT1 overexpression was also an unfavorable prognostic factor for patients with CCA. Additionally, SP1 could bind directly to the SPRY4-IT1 promoter region and activate its transcription. Furthermore, SPRY4-IT1 silencing caused tumor suppressive effects via reducing cell proliferation, migration and invasion; inducing cell apoptosis and reversing the epithelial-to-mesenchymal transition (EMT) process in CCA cells. Mechanistically, enhancer of zeste homolog 2 (EZH2) along with the lysine specific demethylase 1 (LSD1) or DNA methyltransferase 1 (DNMT1) were recruited by SPRY4-IT1, which functioned as a scaffold. Importantly, SPRY4-IT1 positively regulated the expression of EZH2 through sponging miR-101-3p.
CONCLUSIONS: Our data illustrate how SPRY4-IT1 plays an oncogenic role in CCA and may offer a potential therapeutic target for treating CCA.

Cao C, Wu H, Vasilatos SN, et al.
HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulforaphane in human breast cancer cells.
Int J Cancer. 2018; 143(6):1388-1401 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Our recent studies have shown that cross-talk between histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) facilitates breast cancer progression. In this work, we demonstrated that regulatory activity at -356 to -100 bp promoter element plays a critical role in governing HDAC5 transcription. By using DNA affinity precipitation and mass spectrometry, we identified a group of factors that bind to this element. Among these factors, Upstream Transcription Factor 1 (USF1) was shown to play a critical role in controlling HDAC5 transcription. Through screening a panel of epigenetic modifying drugs, we showed that a natural bioactive HDAC inhibitor, sulforaphane, downregulated HDAC5 transcription by blocking USF1 activity. Sulforaphane facilitated LSD1 ubiquitination and degradation in an HDAC5-dependent manner. A comparative microarray analysis demonstrated a genome wide cooperative effect of HDAC5 and LSD1 on cancer-related gene expression. shRNA knockdown and sulforaphane inhibition of HDAC5/LSD1 exhibited similar effects on expression of HDAC5/LSD1 target genes. We also showed that coordinated cross-talk of HDAC5 and LSD1 is essential for the antitumor efficacy of sulforaphane. Combination treatment with sulforaphane and a potent LSD1 inhibitor resulted in synergistic growth inhibition in breast cancer cells, but not in normal breast epithelial cells. Furthermore, combined therapy with sulforaphane and LSD1 inhibitor exhibited superior inhibitory effect on MDA-MB-231 xenograft tumor growth. Taken together, our work demonstrates that HDAC5-LSD1 axis is an effective drug target for breast cancer. Inhibition of HDAC5-LSD1 axis with sulforaphane blocks breast cancer growth and combined treatment with LSD1 inhibitor improves the therapeutic efficacy of sulforaphane.

Wei Y, Liang J, Zhang R, et al.
Epigenetic modifications in
Clin Epigenetics. 2018; 10:41 [PubMed] Article available free on PMC after 15/09/2019 Related Publications

Sehrawat A, Gao L, Wang Y, et al.
LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.
Proc Natl Acad Sci U S A. 2018; 115(18):E4179-E4188 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Medical castration that interferes with androgen receptor (AR) function is the principal treatment for advanced prostate cancer. However, clinical progression is universal, and tumors with AR-independent resistance mechanisms appear to be increasing in frequency. Consequently, there is an urgent need to develop new treatments targeting molecular pathways enriched in lethal prostate cancer. Lysine-specific demethylase 1 (LSD1) is a histone demethylase and an important regulator of gene expression. Here, we show that LSD1 promotes the survival of prostate cancer cells, including those that are castration-resistant, independently of its demethylase function and of the AR. Importantly, this effect is explained in part by activation of a lethal prostate cancer gene network in collaboration with LSD1's binding protein, ZNF217. Finally, that a small-molecule LSD1 inhibitor-SP-2509-blocks important demethylase-independent functions and suppresses castration-resistant prostate cancer cell viability demonstrates the potential of LSD1 inhibition in this disease.

Liu Y, Liu Y, Wu J, et al.
Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection.
Proc Natl Acad Sci U S A. 2018; 115(14):E3230-E3237 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: (

Wei X, Calvo-Vidal MN, Chen S, et al.
Germline Lysine-Specific Demethylase 1 (
Cancer Res. 2018; 78(10):2747-2759 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Given the frequent and largely incurable occurrence of multiple myeloma, identification of germline genetic mutations that predispose cells to multiple myeloma may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell (PC). Here, we identified familial and early-onset multiple myeloma kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. In addition, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in patients with multiple myeloma unselected for family history compared with controls. Both monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma cells have significantly lower KDM1A transcript levels compared with normal PCs. Transcriptome analysis of multiple myeloma cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacologic inhibition of KDM1A promoted PC expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show that KDM1A is the first autosomal-dominant multiple myeloma germline predisposition gene providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B-cell differentiation.

Jia L, Wu D, Wang Y, et al.
Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.
Oncogene. 2018; 37(25):3340-3355 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

Maes T, Mascaró C, Tirapu I, et al.
ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia.
Cancer Cell. 2018; 33(3):495-511.e12 [PubMed] Related Publications
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.

Zheng Y, Zeng Y, Qiu R, et al.
The Homeotic Protein SIX3 Suppresses Carcinogenesis and Metastasis through Recruiting the LSD1/NuRD(MTA3) Complex.
Theranostics. 2018; 8(4):972-989 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
The homeodomain transcription factor SIX3 was recently reported to be a negative regulator of the Wnt pathway and has an emerging role in cancer. However, how SIX3 contributes to tumorigenesis and metastasis is poorly understood.
METHODS: We employed affinity purification and mass spectrometry (MS) to identify the proteins physically associated with SIX3. Genome-wide analysis of the SIX3/LSD1/NuRD(MTA3) complex using a chromatin immunoprecipitation-on-chip approach identified a cohort of target genes including
RESULTS: We demonstrate that the SIX3/LSD1/NuRD(MTA3) complex inhibits carcinogenesis in breast cancer cells and suppresses metastasis in breast cancer. SIX3 expression is downregulated in various human cancers and high SIX3 is correlated with improved prognosis.
CONCLUSION: Our study revealed an important mechanistic link between the loss of function of SIX3 and tumor progression, identified a molecular basis for the opposing actions of MTA1 and MTA3, and may provide new potential prognostic indicators and targets for cancer therapy.

Yu Y, Schleich K, Yue B, et al.
Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma.
Cancer Cell. 2018; 33(2):322-336.e8 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Oncogene-induced senescence, e.g., in melanocytic nevi, terminates the expansion of pre-malignant cells via transcriptional silencing of proliferation-related genes due to decoration of their promoters with repressive trimethylated histone H3 lysine 9 (H3K9) marks. We show here that structurally distinct H3K9-active demethylases-the lysine-specific demethylase-1 (LSD1) and several Jumonji C domain-containing moieties (such as JMJD2C)-disable senescence and permit Ras/Braf-evoked transformation. In mouse and zebrafish models, enforced LSD1 or JMJD2C expression promoted Braf-V600E-driven melanomagenesis. A large subset of established melanoma cell lines and primary human melanoma samples presented with a collective upregulation of related and unrelated H3K9 demethylase activities, whose targeted inhibition restored senescence, even in Braf inhibitor-resistant melanomas, evoked secondary immune effects and controlled tumor growth in vivo.

Xu Y, Yu X, Wei C, et al.
Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and β-catenin in gastric cancer.
J Exp Clin Cancer Res. 2018; 37(1):13 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
BACKGROUND: Recently, the pesudogenes have emerged as critical regulators in human cancers tumorigenesis and progression, and been identified as a key revelation in post-genomic biology. However, the expression pattern, biological function and mechanisms responsible for these molecules in human gastric cancer (GC) are not fully understood.
METHODS: In this study, we globally assessed the transcriptomic differences of pesudogenes in gastric cancer using publicly available microarray data. DUXAP10 expression levels in GC tissues and cells was detected using quantitative real-time PCR (qPCR). DUXAP10 siRNAs and over-expression vector were transfected into GC cells to down-regulate or up-regulate DUXAP10 expression. Loss- and gain-of function assays were performed to investigate the role of DUXAP10 in GC cells cell proliferation, and invasion. RIP, RNA pulldown, and ChIP assays were used to determine the mechanism of DUXAP10's regulation of underlying targets.
RESULTS: The pesudogene DUXAP10 is the only pseudogene that significantly over-expressed in all four GEO datasets, and frequently over-expressed in many other cancers including Liver Hepatocellular carcinoma, Bladder cancer, and Esophageal Cancer. High DUXAP10 expression is associated with GC patients poor prognosis, and knockdown of DUXAP10 significantly inhibits cells proliferation, migration and invasion in GC. Mechanistic investigation shows that DUXAP10 can interact with PRC2 and LSD1 to repress LATS1 expression at transcriptional level, and bind with HuR to maintain the stability of β-catenin mRNA and increase its protein levels at post-transcriptional level.
CONCLUSIONS: Overall, our findings illuminate how increased DUXAP10 confers an oncogenic function in GC development and progression that may serve as a candidate prognostic biomarker and target for clinical management of GC.

Boulding T, McCuaig RD, Tan A, et al.
LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer.
Sci Rep. 2018; 8(1):73 [PubMed] Article available free on PMC after 15/09/2019 Related Publications
Complex regulatory networks control epithelial-to-mesenchymal transition (EMT) but the underlying epigenetic control is poorly understood. Lysine-specific demethylase 1 (LSD1) is a key histone demethylase that alters the epigenetic landscape. Here we explored the role of LSD1 in global epigenetic regulation of EMT, cancer stem cells (CSCs), the tumour microenvironment, and therapeutic resistance in breast cancer. LSD1 induced pan-genomic gene expression in networks implicated in EMT and selectively elicits gene expression programs in CSCs whilst repressing non-CSC programs. LSD1 phosphorylation at serine-111 (LSD1-s111p) by chromatin anchored protein kinase C-theta (PKC-θ), is critical for its demethylase and EMT promoting activity and LSD1-s111p is enriched in chemoresistant cells in vivo. LSD1 couples to PKC-θ on the mesenchymal gene epigenetic template promotes LSD1-mediated gene induction. In vivo, chemotherapy reduced tumour volume, and when combined with an LSD1 inhibitor, abrogated the mesenchymal signature and promoted an innate, M1 macrophage-like tumouricidal immune response. Circulating tumour cells (CTCs) from metastatic breast cancer (MBC) patients were enriched with LSD1 and pharmacological blockade of LSD1 suppressed the mesenchymal and stem-like signature in these patient-derived CTCs. Overall, LSD1 inhibition may serve as a promising epigenetic adjuvant therapy to subvert its pleiotropic roles in breast cancer progression and treatment resistance.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KDM1A, Cancer Genetics Web: http://www.cancer-genetics.org/KDM1A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999