CCND2

Gene Summary

Gene:CCND2; cyclin D2
Aliases: MPPH3, KIAK0002
Location:12p13.32
Summary:The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex with CDK4 or CDK6 and functions as a regulatory subunit of the complex, whose activity is required for cell cycle G1/S transition. This protein has been shown to interact with and be involved in the phosphorylation of tumor suppressor protein Rb. Knockout studies of the homologous gene in mouse suggest the essential roles of this gene in ovarian granulosa and germ cell proliferation. High level expression of this gene was observed in ovarian and testicular tumors. Mutations in this gene are associated with megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 3 (MPPH3). [provided by RefSeq, Sep 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:G1/S-specific cyclin-D2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCND2 (cancer-related)

Bandopadhayay P, Piccioni F, O'Rourke R, et al.
Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma.
Nat Commun. 2019; 10(1):2400 [PubMed] Free Access to Full Article Related Publications
BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.

Hua M, Qin Y, Sheng M, et al.
miR‑145 suppresses ovarian cancer progression via modulation of cell growth and invasion by targeting CCND2 and E2F3.
Mol Med Rep. 2019; 19(5):3575-3583 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNA/miRs) have been demonstrated to be critical post‑transcriptional modulators of gene expression during tumorigenesis. Numerous miRNAs have been revealed to be downregulated in human epithelial ovarian cancer (EOC). In the present study, it was observed that the expression of miR‑145 was decreased in EOC tissues and cell lines. Overexpression of miR‑145 inhibited the proliferation, migration and invasion of EOC cells. The D‑type cyclin 2, cyclin D2 (CCND2), and E2F transcription factor 3 (E2F3) were confirmed to be targets of miR‑145. In addition, restoration of these 2 genes significantly reversed the tumor suppressive effects of miR‑145. Collectively, the results indicated that miR‑145 serves a critical role in suppressing the biological behavior of EOC cells by targeting CCND2 and E2F3. Therefore, miR‑145 was suggested to be a potential miRNA‑based therapeutic target in ovarian cancer.

Singhi AD, George B, Greenbowe JR, et al.
Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted With Existing Drugs or Used as Biomarkers.
Gastroenterology. 2019; 156(8):2242-2253.e4 [PubMed] Related Publications
BACKGROUND & AIMS: It has been a challenge to select treatment for patients with pancreatic ductal adenocarcinomas (PDACs) based on genome alterations. We performed targeted genomic profile analyses of a large number of PDACs to assess the full spectrum of actionable genomic alterations.
METHODS: We performed targeted genomic profile analyses of 3594 PDAC samples from an international cohort, including capture-based targeted genomic profiling of as many as 315 cancer-associated genes and intron regions of 28 genes that are rearranged in cancer cells. Tumor mutation burden (TMB) and microsatellite instability (MSI) status were also assessed. TMB was calculated across a 1.14-megabase region; TMB-high was defined as ≥20 mutations/megabase. MSI-high status was assigned based on analysis of 114 intron homopolymer loci.
RESULTS: KRAS, TP53, CDKN2A, and SMAD4 were the most frequently altered genes in PDAC. We found KRAS mutations in 88% of samples. Among PDACs without mutations in KRAS, we found alterations in genes whose products are in the mitogen-activated protein kinase signaling pathway and are candidate drug targets (actionable targets, n = 132; 4%), as well as gene fusions (n = 51), gene amplifications (n = 35), genes with missense mutations (n = 30), and genes that contain deletions (n = 16). Many of these encode proteins in receptor tyrosine kinase, RAS, or mitogen-activated protein kinase signaling pathways. Aside from TP53, alterations in genes encoding DNA damage repair proteins (BRCA and FANC) were detected in 14% of PDACs. Among PDACs evaluated for MSI (n = 2563) and TMB (n = 1021), MSI-high and/or TMB-high phenotypes were detected in 0.5% of samples. Alterations in FGF23, CCND2, PIK3CA, and FGF6 were more commonly detected in intraductal papillary mucinous neoplasm-associated PDACs.
CONCLUSIONS: In targeted genomic profile analyses of 3594 PDACs, we found 17% to contain genomic alterations that might make the tumor cells susceptible to currently used anticancer agents. We identified mutations in genes that could contribute to progression of intraductal papillary mucinous neoplasms into malignancies. These alterations might be used as biomarkers for early detection.

Tan Y, Zhang T, Zhou L, et al.
MiR-34b-3p Represses the Multidrug-Chemoresistance of Bladder Cancer Cells by Regulating the CCND2 and P2RY1 Genes.
Med Sci Monit. 2019; 25:1323-1335 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Chemoresistance is a main limitation in chemotherapy for therapeutic cancer. MicroRNA (miRNA) has been indicated in the progression and tumorigenesis of many types of cancer, but the effect of miR-34b-3p in bladder cancer (BCa) cells is still unknown. MATERIAL AND METHODS This research compared the multidrug-sensitive (5637) BCa cell line and the multidrug-resistant (EJ) BCa cell line. We found that CCND2 (G1/S-specific cyclin-D2) and P2RY1 (purinergic receptor P2Y1) were the targets of miR-34b-3p, as further validated by qRT-PCR (quantitative real-time polymerase chain reaction) and western blot analysis. RESULTS Forced reversal of the levels of miR-34b-3p or CCND2/P2RY1 changed the chemoresistance profiles in both 5637 cells and EJ cells. Further experiments suggested that the CCND2 gene and the P2RY1 gene act in concert to negatively correlate with miR-34b-3p effect on BCa multidrug-chemoresistance. CONCLUSIONS These results not only reveal new players regulating BCa chemoresistance, but also provide clues for effective chemotherapy for BCa patients.

Yang L, Ye F, Bao L, et al.
Somatic alterations of TP53, ERBB2, PIK3CA and CCND1 are associated with chemosensitivity for breast cancers.
Cancer Sci. 2019; 110(4):1389-1400 [PubMed] Free Access to Full Article Related Publications
The correlation of genetic alterations with response to neoadjuvant chemotherapy (NAC) has not been fully revealed. In this study, we enrolled 247 breast cancer patients receiving anthracycline-taxane-based NAC treatment. A next generation sequencing (NGS) panel containing 36 hotspot breast cancer-related genes was used in this study. Two different standards for the extent of pathologic complete response (pCR), ypT0/isypN0 and ypT0/is, were used as indicators for NAC treatment. TP53 mutation (n = 149, 60.3%), PIK3CA mutation (n = 109, 44.1%) and MYC amplification (n = 95, 38.5%) were frequently detected in enrolled cases. TP53 mutation (P = 0.019 for ypT0/isypN0 and P = 0.003 for ypT0/is) and ERBB2 amplification (P < 0.001 for both ypT0/isypN0 and ypT0/is) were related to higher pCR rates. PIK3CA mutation (P = 0.040 for ypT0/isypN0) and CCND2 amplification (P = 0.042 for ypT0/is) showed reduced sensitivity to NAC. Patients with MAPK pathway alteration had low pCR rates (P = 0.043 for ypT0/is). Patients with TP53 mutation (-) PIK3CA mutation (-) ERBB2 amplification (+) CCND1 amplification (-), TP53 mutation (+) PIK3CA mutation (-) ERBB2 amplification (+) CCND1 amplification (-) or TP53 mutation (+) PIK3CA mutation (+) ERBB2 amplification (+) CCND1 amplification (-)had significantly higher pCR rates (P < 0.05 for ypT0/isypN0 and ypT0/is) than wild type genotype tumors. Some cancer genetic alterations as well as pathway alterations were associated with chemosensitivity to NAC treatment. Our study may shed light on the molecular characteristics of breast cancer for prediction of NAC expectations when breast cancer is first diagnosed by biopsy.

Yao Y, Zhou Y, Fu X
miR‑671‑3p is downregulated in non‑small cell lung cancer and inhibits cancer progression by directly targeting CCND2.
Mol Med Rep. 2019; 19(3):2407-2412 [PubMed] Related Publications
MicroRNAs (miRNAs) are implicated in the development and progression of non‑small cell lung cancer (NSCLC). A previous study suggested that miR‑671‑3p suppresses the development of breast cancer. However, the role of miR‑671‑3p in NSCLC remains largely unknown. In the present study, it was identified that miR‑671‑3p was significantly upregulated in NSCLC tissues compared with adjacent normal tissues by reverse transcription quantitative polymerase chain reaction (RT‑qPCR). Similarly, decreased levels of miR‑671‑3p in NSCLC cell lines were observed compared with those in the non‑tumorigenic human bronchial epithelial NL20 cell line. Cell Counting Kit‑8 and Transwell invasion assays indicated that miR‑671‑3p overexpression suppressed the proliferation and invasion of A549 cells, and vice versa. Mechanistically, it was demonstrated that CCND2 was a direct target of miR‑671‑3p. RT‑qPCR and western blot analysis indicated that miR‑671‑3p overexpression decreased the expression of CCND2 in A549 cells. Furthermore, rescue experiments demonstrated that the restoration of CCND2 may significantly reverse the suppressive roles of miR‑671‑3p overexpression on NSCLC cell proliferation and invasion. Taken together, the present study demonstrated that miR‑671‑3p exerted its tumor‑suppressive roles via directly targeting CCND2 in NSCLC.

Callahan CL, Bonner MR, Nie J, et al.
Active and secondhand smoke exposure throughout life and DNA methylation in breast tumors.
Cancer Causes Control. 2019; 30(1):53-62 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
PURPOSE: Tobacco smoke exposure has been associated with altered DNA methylation. However, there is a paucity of information regarding tobacco smoke exposure and DNA methylation of breast tumors.
METHODS: We conducted a case-only analysis using breast tumor tissue from 493 postmenopausal and 225 premenopausal cases in the Western New York Exposures and Breast Cancer (WEB) study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A, CCND2, BRCA1, FHIT, and SYK) was measured with pyrosequencing. Participants reported their secondhand smoke (SHS) and active smoking exposure for seven time periods. Unconditional logistic regression was used to estimate odds ratios (OR) of having methylation higher than the median.
RESULTS: SHS exposure was associated with tumor DNA methylation among postmenopausal but not premenopausal women. Active smoking at certain ages was associated with increased methylation of GSTP1, FHIT, and CDKN2A and decreased methylation of SCGB3A1 and BRCA1 among both pre- and postmenopausal women.
CONCLUSION: Exposure to tobacco smoke may contribute to breast carcinogenesis via alterations in DNA methylation. Further studies in a larger panel of genes are warranted.

Chen N, Yin D, Lun B, Guo X
LncRNA GAS8-AS1 suppresses papillary thyroid carcinoma cell growth through the miR-135b-5p/CCND2 axis.
Biosci Rep. 2019; 39(1) [PubMed] Article available free on PMC after 07/01/2020 Related Publications
The aim of the present study was to investigate the potential role of GAS8 antisense RNA 1 (GAS8-AS1) in papillary thyroid carcinoma (PTC). PcDNA3.1-GAS8-AS1 and si-GAS8-AS1, miR-135b-5p mimic and si-CCND2 were transfected into PTC cells. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8). QRT-PCR was used to determine expressions of GAS8-AS1, miR-135b-5p, and CCND2, and Western blot were detected protein level of CCND2. The miRNA target gene prediction site TargetScan was used to predict potential targets of GAS8-AS1 and miR-135b-5p. Cell cycle progression was analyzed by flow cytometry. We found that GAS8-AS1 was down-regulated in PTC cell lines and inhibited proliferation and cycle of PTC cell. GAS8-AS1 directly targets miR-135b-5p, and GAS8-AS1 could regulate a downstream target of miR-135b-5p, Cyclin G2 (CCNG2), in an miR-135b-5p-mediated manner. In addition, we also proved that overexpressed GAS8-AS1 inhibited tumor formation

Hung CS, Wang SC, Yen YT, et al.
Hypermethylation of CCND2 in Lung and Breast Cancer Is a Potential Biomarker and Drug Target.
Int J Mol Sci. 2018; 19(10) [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Lung and breast cancer are the leading causes of mortality in women worldwide. The discovery of molecular alterations that underlie these two cancers and corresponding drugs has contributed to precision medicine. We found that CCND2 is a common target in lung and breast cancer. Hypermethylation of the

Martinez-Soria N, McKenzie L, Draper J, et al.
The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation.
Cancer Cell. 2018; 34(4):626-642.e8 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML.

Li L, Wang R, He S, et al.
The identification of induction chemo-sensitivity genes of laryngeal squamous cell carcinoma and their clinical utilization.
Eur Arch Otorhinolaryngol. 2018; 275(11):2773-2781 [PubMed] Related Publications
PURPOSE: To identify potential molecular markers for induction chemotherapy of Laryngeal squamous cell carcinoma (LSCC).
METHODS: Differently expressed genes between chemo-sensitive group (seven cases) and chemo-insensitive (five cases) group after induction chemotherapy by TPF were identified by microarrays. Bayes network and Random forest analyses were employed to identify core genes for induction chemotherapy. The diagnostic value of these core genes was also evaluated by ROC analysis.
RESULTS: Six genes (SPP1, FOLR3, KYNU, LOC653219, ADH7 and XAGE1A) are highly expressed, while seven gene (CADM1, NDUFA4L2, CCND2, RARRES3, ERAP2, LYD6 and CNTNAP2) present significantly low expression. Among these genes, genes CADM1, FOLR3, KYNU, and CNTNAP2 are core candidates for LSCC chemo-sensitivity. And that the low expression of CADM1 may result in chemo-sensitivity, which leads to high expression of gene FOLR3 and KYNU, and low expression of gene CNTNAP2. Besides, ROC analysis shows that these four genes exhibit effective diagnostic value for induction chemo-sensitivity.
CONCLUSIONS: CADM1 may be a potential molecular marker for LSCC induction chemotherapy, while CADM1, FOLR3, KYNU, and CNTNAP2 may provide essential guidance for LSCC diagnosis and follow-up treatment strategies.

Xu M, Chen X, Lin K, et al.
The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p.
Mol Cancer. 2018; 17(1):141 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Mounting evidence demonstrates that long noncoding RNAs (lncRNAs) have critical roles during the initiation and progression of cancers. In this study, we report that the small nucleolar RNA host gene 1 (SNHG1) is involved in colorectal cancer progression.
METHODS: We analyzed RNA sequencing data to explore abnormally expressed lncRNAs in colorectal cancer. The effects of SNHG1 on colorectal cancer were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, EdU assay, xenograft model, immunohistochemistry, and western blot). The mechanism of SNHG1 action was explored through bioinformatics, RNA fluorescence in situ hybridization, luciferase reporter assay, RNA pull-down assay, chromatin immunoprecipitation assay and RNA immunoprecipitation assay.
RESULTS: Our analysis revealed that SNHG1 was upregulated in human colorectal cancer tissues, and high SNHG1 expression was associated with reduced patient survival. We also found that high SNHG1 expression was partly induced by SP1. Moreover, SNHG1 knockdown significantly repressed colorectal cancer cells growth both in vitro and in vivo. Mechanistic investigations demonstrated that SNHG1 could directly interact with Polycomb Repressive Complex 2 (PRC2) and modulate the histone methylation of promoter of Kruppel like factor 2 (KLF2) and Cyclin dependent kinase inhibitor 2B (CDKN2B) in the nucleus. In the cytoplasm, SNHG1 acted as a sponge for miR-154-5p, reducing its ability to repress Cyclin D2 (CCND2) expression.
CONCLUSIONS: Taken together, the results of our studies illuminate how SNHG1 formed a regulatory network to confer an oncogenic function in colorectal cancer and suggest that SNHG1 may serve as a potential target for colorectal cancer diagnosis and treatment.

He X, Chen SY, Yang Z, et al.
miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2).
J Exp Clin Cancer Res. 2018; 37(1):230 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Non-small cell lung cancer (NSCLC) is a leading cause of death worldwide. MicroRNAs (miRNAs) have been indicated as crucial actors in cancer biology. Accumulating evidence suggests that miRNAs can be used as diagnostic and prognostic markers for NSCLC.
METHODS: The purpose of this study was to characterize and identify the novel biomarker miR-4317 and its targets in NSCLC. The expression of miR-4317 was analyzed by in situ hybridization (ISH) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effect of miR-4317 on proliferation was evaluated through 3-4,5-dimethylthiazol-2-yl-5-3-carboxymethoxyphenyl-2-4-sulfophenyl-2H-tetrazolium (MTS) and colony formation assays, and cell migration and invasion were evaluated through transwell assays. The expression of target proteins and downstream molecules was analyzed by qRT-PCR and western blot. Dual-luciferase reporter assay was used to assess the target genes of miR4317 in NSCLC cells.
RESULTS: Our results demonstrated that miR-4317 was downregulated in NSCLC tissues and serum, particularly in lymph node metastasis and advanced clinical stage tissues. Kaplan-Meier survival analysis showed that NSCLC patients with high expression of miR-4317 exhibited better overall survival (OS). Enhanced expression of miR-4317 significantly inhibited proliferation, colony formation, migration and invasion, and hampered cycles of NSCLC cell lines in vitro. Our results suggested that miR-4317 functions by directly targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). In concordance with in vitro studies, mouse xenograft, lung, and brain metastatic studies validated that miR-4317 functions as a potent suppressor miRNA of NSCLC in vivo. Systemically delivered agomiR-4317 reduced tumor growth and inhibited FGF9 and CCND2 protein expression. Reintroduction of FGF9 and CCND2 attenuated miR-4317-mediated suppression of migration and invasion in NSCLC.
CONCLUSIONS: Our results indicate that miR-4317 can reduce NSCLC cell growth and metastasis by targeting FGF9 and CCND2. These findings provide new evidence of miR-4317 as a potential non-invasive biomarker and therapeutic target for NSCLC.

Chang L, Guo R, Yuan Z, et al.
LncRNA HOTAIR Regulates CCND1 and CCND2 Expression by Sponging miR-206 in Ovarian Cancer.
Cell Physiol Biochem. 2018; 49(4):1289-1303 [PubMed] Related Publications
BACKGROUND/AIMS: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer.
METHODS: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay.
RESULTS: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer.
CONCLUSION: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.

Song N, Zhong J, Hu Q, et al.
FGF18 Enhances Migration and the Epithelial-Mesenchymal Transition in Breast Cancer by Regulating Akt/GSK3β/Β-Catenin Signaling.
Cell Physiol Biochem. 2018; 49(3):1019-1032 [PubMed] Related Publications
BACKGROUND/AIMS: Fibroblast growth factors (FGFs) and their high-affinity receptors contribute to autocrine and paracrine growth stimulation in several human malignant tumors, including breast cancer. However, the mechanisms underlying the carcinogenic actions of FGF18 remain unclear.
METHODS: The transcription level of FGF18 under the hypoxic condition was detected with quantitative PCR (qPCR). A wound-healing assay was performed to assess the role of FGF18 in cell migration. A clonogenicity assay was used to determine whether FGF18 silencing affected cell clonogenicity. Western blotting was performed to investigate Akt/GSK3β/β-catenin pathway protein expression. Binding of β-catenin to the target gene promoter was determined by chromatin immunoprecipitation (ChIP) assays.
RESULTS: FGF18 promoted the epithelial-mesenchymal transition (EMT) and migration in breast cancer cells through activation of the Akt/GSK3β/β-catenin pathway. FGF18 increased Akt-Ser473 and -Thr308 phosphorylation, as well as that of GSK3β-Ser9. FGF18 also enhanced the transcription of proliferation-related genes (CDK2, CCND2, Ki67), metastasis-related genes (TGF-β, MMP-2, MMP-9), and EMT markers (Snail-1, Snail-2, N-cadherin, vimentin, TIMP1). β-catenin bound to the target gene promoter on the ChIP assay.
CONCLUSION: FGF18 contributes to the migration and EMT of breast cancer cells following activation of the Akt/GSK3β/β-catenin pathway. FGF18 expression may be a potential prognostic therapeutic marker for breast cancer.

Hu W, Liu Q, Pan J, Sui Z
MiR-373-3p enhances the chemosensitivity of gemcitabine through cell cycle pathway by targeting CCND2 in pancreatic carcinoma cells.
Biomed Pharmacother. 2018; 105:887-898 [PubMed] Related Publications
OBJECTIVE: This study aimed to detect the expression of miR-373-3p and CCND2 in gemcitabine-resistance pancreatic carcinoma (PC) cells, investigate the relationship between miR-373-3p and CCND2, and explore their effects on PC propagation, migration, invasion and apoptosis.
METHODS: R software was applied for analyzing differentially expressed genes (DEGs) in cell samples. The potential biological pathway was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software. The gemcitabine-resistance PC cells were screened out using MTT assay, and they were applied in the next experiments. MiR-373-3p and CCND2 expression in GEM-PANC-1 cells were measured by qRT-PCR. After transfection, the expression of CCND2 protein was examined via western blot assay. Cells viability and apoptosis were confirmed by MTT proliferation assay and Flow cytometry, whereas cells migration and invasion were analyzed by transwell assay. The targeting relationship between miR-373-3p and CCND2 was identified by dual-luciferase reporter assay.
RESULTS: MiR-373-3p was found to be low expressed in GEM-PANC-1 cells while CCND2 was highly expressed in GEM-PANC-1 cells. MiR-373-3p negatively regulated CCND2 expression through KEGG_Cell_Cycle_Signaling_Pathway. The targeted relationship between miR-373-3p and CCND2 could be verified using dual luciferase reporter assay. MTT proliferation assay, transwell assay and Annexin V assay demonstrated that miR-373-3p suppressed GEM-PANC-1 cells propagation and invasion and promoted cell apoptosis, while CCND2 showed totally reverse effects compared with miR-373-3p. All the results suggested that miR-373-3p could enhance the chemosensitivity of GEM-PANC-1 cells by regulating CCND2.
CONCLUSION: MiR-373-3p inhibited cell propagation, migration and invasion and boosted apoptosis in gemcitabine resistance pancreatic carcinoma cells by targeting CCND2.

Pei Y, Singh RK, Shukla SK, et al.
Epstein-Barr Virus Nuclear Antigen 3C Facilitates Cell Proliferation by Regulating Cyclin D2.
J Virol. 2018; 92(18) [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Cell cycle regulation is one of the hallmarks of virus-mediated oncogenesis. Epstein-Barr virus (EBV)-induced lymphomas express a repertoire of essential viral latent proteins that regulate expression of cell cycle-related proteins to dysregulate this process, thereby facilitating the proliferation of infected cells. We now demonstrate that the essential EBV latent protein 3C (EBNA3C) stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2 and they colocalize together in nuclear compartments. We show that EBNA3C regulates the promoter of cyclin D2 through cooperation with master transcription factor Bcl6 and enhances its stability by inhibiting its ubiquitin-dependent degradation. EBNA3C also promoted cell proliferation in the presence of cyclin D2, suggesting that cyclin D2 contributes to EBNA3C-mediated cell cycle progression. These results provide new clues as to the role of this essential viral latent protein and its ability to regulate expression of cellular factors, which drives the oncogenic process.

Liu Z, Meng J, Li X, et al.
Identification of Hub Genes and Key Pathways Associated with Two Subtypes of Diffuse Large B-Cell Lymphoma Based on Gene Expression Profiling via Integrated Bioinformatics.
Biomed Res Int. 2018; 2018:3574534 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
There is a significant difference in prognosis between the germinal center B-cell (GCB) and activated B-cell (ABC) subtypes of diffuse large B-cell lymphoma (DLBCL). However, the signaling pathways and driver genes involved in these disparate subtypes are ambiguous. This study integrated three cohort profile datasets, including 250 GCB samples and 250 ABC samples, to elucidate potential candidate hub genes and key pathways involved in these two subtypes. Differentially expressed genes (DEGs) were identified. After Gene Ontology functional enrichment analysis of the DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. Subsequently, the Oncomine database and the cBioportal online tool were employed to verify the alterations and differential expression of the 8 hub genes (MME, CD44, IRF4, STAT3, IL2RA, ETV6, CCND2, and CFLAR). Gene set enrichment analysis was also employed to identify the intersection of the key pathways (JAK-STAT, FOXO, and NF-

Zhong H, Yang J, Zhang B, et al.
LncRNA GACAT3 predicts poor prognosis and promotes cell proliferation in breast cancer through regulation of miR-497/CCND2.
Cancer Biomark. 2018; 22(4):787-797 [PubMed] Related Publications
Breast cancer is the most common malignancy in women which increases gradually all over the world. LncRNA GACAT3 has been found to be increased in gastric cancer and associated with tumor malignancy. However, whether GACAT3 plays a role in the regulation of breast cancer is not known. In the present study, we found that GACAT3 expression was increased in breast cancer tissues and cells compared with adjacent normal tissues and normal cells. High GACAT3 expression was correlated with the poor prognosis of breast cancer patients. GACAT3 and cyclin D2 (CCND2) contained a binding site of miR-497. miR-497 was decreased in breast cancer tissues and cells compared with adjacent normal tissues and normal cells. Low miR-497 expression was correlated with the poor prognosis of breast cancer patients. In breast cancer tissues, the expression of miR-497 was negatively correlated with GACAT3. Downregulation of GACAT3 increased miR-497 expression. miR-497 mimic reduced the luciferase of GACAT3 and CCND2. Anti-miR-497 reversed the effects of GACAT3 downregulation. We also found that GACAT3 may act as a ceRNA for miR-497, enhancing the expression of CCND2. In conclusion, GACAT3 promotes breast cancer malignancy by sponging miR-497, leading to the enhancement of its endogenous target CCND2. These results suggest that GACAT3/miR-497/CCND2 is a potential therapeutic target and biomarker for breast cancer.

Gu W, Sun Y, Zheng X, et al.
Identification of Gastric Cancer-Related Circular RNA through Microarray Analysis and Bioinformatics Analysis.
Biomed Res Int. 2018; 2018:2381680 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Gastric cancer is one of the common malignant tumors worldwide. Increasing studies have indicated that circular RNAs (circRNAs) play critical roles in the cancer progression and have shown great potential as useful markers and therapeutic targets. However, the precise mechanism and functions of most circRNAs are still unknown in gastric cancer. In the present study, we performed a microarray analysis to detect circRNA expression changes between tumor samples and adjacent nontumor samples. The miRNA expression profiles were obtained from the National Center of Biotechnology Information Gene Expression Omnibus (GEO). The differentially expressed circRNAs and miRNAs were identified through fold change filtering. The interactions between circRNAs and miRNAs were predicted by Arraystar's home-made miRNA target prediction software. After circRNA-related miRNAs and dysregulated miRNAs were intersected, 23 miRNAs were selected. The target mRNAs of miRNAs were predicted by TarBase v7.0. Gene ontology (GO) enrichment analysis and pathway analysis were performed using standard enrichment computational methods for the target mRNAs. The results of pathway analysis showed that p53 signaling pathway and hippo signal pathway were significantly enriched and CCND2 was a cross-talk gene associated with them. Finally, a circRNA-miRNA-mRNA regulation network was constructed based on the gene expression profiles and bioinformatics analysis results to identify hub genes and hsa_circRNA_101504 played a central role in the network.

Wei X, Calvo-Vidal MN, Chen S, et al.
Germline Lysine-Specific Demethylase 1 (
Cancer Res. 2018; 78(10):2747-2759 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Given the frequent and largely incurable occurrence of multiple myeloma, identification of germline genetic mutations that predispose cells to multiple myeloma may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell (PC). Here, we identified familial and early-onset multiple myeloma kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. In addition, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in patients with multiple myeloma unselected for family history compared with controls. Both monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma cells have significantly lower KDM1A transcript levels compared with normal PCs. Transcriptome analysis of multiple myeloma cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacologic inhibition of KDM1A promoted PC expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show that KDM1A is the first autosomal-dominant multiple myeloma germline predisposition gene providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B-cell differentiation.

Huang F, Zhao H, Du Z, Jiang H
miR-615 Inhibits Prostate Cancer Cell Proliferation and Invasion by Directly Targeting Cyclin D2.
Oncol Res. 2019; 27(3):293-299 [PubMed] Related Publications
Previous studies have reported that miR-615 exerts a tumor suppressor role in some tumors, such as esophageal squamous cell carcinoma and non-small cell lung cancer. However, the role of miR-615 in prostate cancer has not been defined. Here we found that miR-615 was downregulated in prostate cancer tissues and cell lines. Overexpression of miR-615 in PC-3 cells significantly inhibited cellular proliferation, migration, and invasion. Moreover, overexpression of miR-615 delayed tumor growth in vivo. In terms of mechanism, we found that cyclin D2 (CCND2) is a target gene of miR-615 in prostate cancer. We showed that miR-615 could bind to the 3'-UTR region of CCND2 mRNA and inhibit its expression. There was a negative correlation between the expression of miR-615 and CCND2 in prostate cancer tissues. Moreover, restoration of cyclin D2 abolished the inhibitory effects of miR-615 on the proliferation, migration, and invasion of prostate cancer cells. Taken together, our study identified miR-615 as a tumor suppressor by targeting cyclin D2 in prostate cancer.

Hanna JA, Garcia MR, Lardennois A, et al.
PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma.
Oncogene. 2018; 37(15):1991-2007 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.

Xia E, Bhandari A, Shen Y, et al.
LncRNA CCND2-AS1 promotes proliferation, migration, and invasion in papillary thyroid carcinoma.
Biochem Biophys Res Commun. 2018; 496(2):628-632 [PubMed] Related Publications
In decades, a lot of long non-coding RNAs (LncRNAs) have been proven to exert influences on tumorigenesis in vitro and in vivo. Many lncRNAs have been reported as effective therapeutic targets and biomarkers in various cancers. However, whether LncRNAs are associated with the progression of PTC remains largely unknown. In this study, we measured the expression of CCND2-AS1 in PTC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR).We found that CCND2-AS1 expression was significantly over-expressed in PTC cell lines compared to normal thyroid epithelial cells. Gain-and loss-of-function experiments were performed to investigate the role of CCND2-AS1 in PTC cells. In vitro experiments, we proved that CCND2-AS1 knockdown in TPC1 significantly suppressed cell proliferation, migration, and invasion, while CCND2-AS1 overexpression in BCPAP had the opposite effects. Meanwhile, we also found that CCND2-AS1 could regulate N-cadherin and Vimentin expression, which may influence invasion and migration. Our findings indicate that the lncRNA CCND2-AS1 is a gene associated with PTC and might become a potential therapeutic target.

Nanok C, Jearanaikoon P, Proungvitaya S, Limpaiboon T
Aberrant methylation of HTATIP2 and UCHL1 as a predictive biomarker for cholangiocarcinoma.
Mol Med Rep. 2018; 17(3):4145-4153 [PubMed] Related Publications
Cholangiocarcinoma (CCA) is the most common primary liver cancer in Northeastern Thailand where liver fluke infection is highly endemic. Although aberrant DNA methylation in CCA has been reported by several investigators, little is known regarding the associations between them. In the present study, the results obtained from our previously published methylation array were analyzed and 10 candidate genes involved in DNA repair [protein phosphatase 4 catalytic subunit (PPP4C)], apoptosis [runt related transcription factor 3 (RUNX3), interferon regulatory factor 4 (IRF4), ubiquitin C‑terminal hydrolase L1 (UCHL1) and tumor protein p53 inducible protein 3 (TP53I3)], cell proliferation [cyclin D2 (CCND2) and Ras association domain family member 1 (RASSF1)], drug metabolism [aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and solute carrier family 29 member 1 (SLC29A1)] and angiogenesis [human immunodeficiency virus‑1 tat interactive protein 2 (HTATIP2)] were selected for quantification of their methylation levels in 54 CCA and 19 adjacent normal tissues using methylation‑sensitive high‑resolution melting. The associations between the methylation status of the individual genes and clinical parameters were statistically analyzed. High methylation levels were observed in UCHL1, IRF4, CCND2, HTATIP2 and TP53I3. The median methylation level of UCHL1 was 57.3% (range, 3.15 to 88.7%) and HTATIP2 was 13.6% (range, 7.5 to 36.7%). By contrast, low methylation of HTATIP2 and UCHL1 was identified in adjacent normal tissues. The methylation status of HTATIP2 and UCHL1 was associated with patients' overall survival. CCA patients with high methylation of HTATIP2 and low methylation of UCHL1 exhibited longer overall survival. In addition, multivariate Cox regression analysis demonstrated that UCHL1 methylation was an independent factor for CCA with hazard ratio of 1.81 (95% confidence interval, 1.01‑3.25) in high methylation group. The combination of HTATIP2 and UCHL1 methylation status strongly supported their potential predictive biomarker in which patients with CCA who had high methylation of HTATIP2 and low methylation of UCHL1 showed longer overall survival than those with low HTATIP2 methylation and high UCHL1 methylation. In conclusion, the present study revealed the value of aberrant DNA methylation of HTATIP2 and UCHL1, which may serve as a potential predictive biomarker for CCA.

Matveeva A, Kovalevska L, Kholodnyuk I, et al.
The TGF-beta - SMAD pathway is inactivated in cronic lymphocytic leukemia cells.
Exp Oncol. 2017; 39(4):286-290 [PubMed] Related Publications
AIM: To study the status of the tumor growth factor beta (TGFB) pathway in chronic lymphocytic leukemia (CLL) cells and to uncover molecular details underlying CLL cell genesis.
OBJECTS AND METHODS: The study was conducted on peripheral blood samples of patients with CLL using the following methods: RNA isolation, analysis of expression of transcription factors using RT2 profiler assay, bioinformatics analysis of publicly available data bases on expression.
RESULTS: We have shown that the TGFB - SMAD canonical pathway is not active in CLL cells. SMAD-responsive genes, such as BCL2L1 (BCL-XL), CCND2 (Cyclin D2), and MYC, are down-regulated in CLL cells compared with peripheral blood B cells of healthy donors.
CONCLUSIONS: The TGFB-mediated signaling is not active in CLL cells due to low (or absent) expression of SMAD1, -4, -5, -9, and ATF-3. Expression and phosphorylation status of SMAD2 and -3 should be further elucidated in the future studies.

Oh S, Ko JY, Oh C, Yoo KH
Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer.
Adv Exp Med Biol. 2017; 1026:287-313 [PubMed] Related Publications
Breast cancer is one of complex diseases that are influenced by environment. Various genetic and epigenetic alterations are provoking causes of breast carcinogenesis. Dynamic epigenetic regulation including DNA methylation and histone modification induces dysregulation of genes related to proliferation, apoptosis, and metastasis in breast cancer. DNA methylation is strongly associated with the repression of transcription through adding to the methyl group by DNA methyltransferases (DNMTs), and tumor suppressor genes such as CCND2 and RUNX3 have been investigated to undergo hypermethylation at promoter region in breast cancer. In addition, histone deacetylases (HDACs) contribute to transcriptional repression by removing acetyl group at lysine residues leading to tumorigenesis. Since epigenetic changes are reversible, therapeutic approaches have been applied with epigenetic modification drugs such as DNMT inhibitors and HDAC inhibitors. In this chapter, we will summarize the feature of epigenetic markers in breast cancer cells and the effect of single or combination of epigenetic reagents for breast cancer therapy.

Callahan CL, Bonner MR, Nie J, et al.
Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors.
Environ Res. 2018; 161:418-424 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: We previously reported increased risk of breast cancer associated with early life exposure to two measures of air pollution exposure, total suspended particulates (TSP) and traffic emissions (TE), possible proxies for exposure to polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs has been shown to be associated with aberrant patterns of DNA methylation in peripheral blood of healthy individuals. Exposure to PAHs and methylation in breast tumor tissue has received little attention. We examined the association of early life exposure to TSP and TE with patterns of DNA methylation in breast tumors.
METHODS: We conducted a study of women enrolled in the Western New York Exposures and Breast Cancer (WEB) Study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A CCND2, BRCA1, FHIT, and SYK) was assessed using bisulfite-based pyrosequencing. TSP exposure at each woman's home address at birth, menarche, and when she had her first child was estimated. TE exposure was modeled for each woman's residence at menarche, her first birth, and twenty and ten years prior to diagnosis. Unconditional logistic regression was employed to estimate odds ratios (OR) of having methylation greater than the median value, adjusting for age, secondhand smoke exposure before age 20, current smoking status, and estrogen receptor status.
RESULTS: Exposure to higher TSP at a woman's first birth was associated with lower methylation of SCGB3A1 (OR = 0.48, 95% CI: 0.23-0.99) and higher methylation of SYK (OR = 1.86, 95% CI: 1.03-3.35). TE at menarche was associated with increased methylation of SYK (OR = 2.37, 95% CI: 1.05-5.33). TE at first birth and ten years prior to diagnosis was associated with decreased methylation of CCND2 (OR ten years prior to diagnosis=0.48, 95% CI: 0.26-0.89). Although these associations were nominally significant, none were significant after adjustment for multiple comparisons (p < 0.01).
CONCLUSIONS: We observed suggestive evidence that exposure to ambient air pollution throughout life, measured as TSP and TE, may be associated with DNA methylation of some tumor suppressor genes in breast tumor tissue. Future studies with a larger sample size that assess methylation of more sites are warranted.

Hou J, Wang L, Wu D
The root of Actinidia chinensis inhibits hepatocellular carcinomas cells through LAMB3.
Cell Biol Toxicol. 2018; 34(4):321-332 [PubMed] Related Publications
The root of Actinidia chinensis, as traditional Chinese medicine, has been shown to inhibit cell proliferation in numerous cancer cells. However, the mechanisms underlying its inhibitory activity remain unclear. Death rates of hepatocellular carcinoma (HCC) are increasing, but therapies for advanced HCC are not well developed. We choose the extract from root of Actinidia chinensis (ERAC) to treat the HCC cell lines in vitro, displaying distinct effects on cell proliferation, S-phase cell cycle arrest, and apoptosis. LAMB3, the gene encoding laminin subunit beta-3, plays a key role in the proliferation suppression and S-phase cell cycle arrest of HepG2 cells treated with ERAC. The downstream genes ITGA3, CCND2, and TP53 in LAMB3 pathway show the same response to ERAC as LAMB3. Thus, LAMB3 pathways, along with extracellular matrix-receptor interaction, pathways in cancer, and focal adhesion, are involved in the ERAC-induced suppressive response in HepG2.

Wang Y, Xue J, Kuang H, et al.
microRNA-1297 Inhibits the Growth and Metastasis of Colorectal Cancer by Suppressing Cyclin D2 Expression.
DNA Cell Biol. 2017; 36(11):991-999 [PubMed] Related Publications
microRNAs (miR) can potentially be used for categorizing the various subtypes of colorectal cancer (CRC) and predicting a patient's response to treatment with traditional anti-CRC therapies. We investigated how miR-1297 and its potential target molecule cyclin D2 (CCND2) might affect the progression of CRC. Thirty-two pairs of CRC specimens and corresponding samples of para-tumor tissue were collected and examined for their levels of miR-1297 and CCND2 expression. We also examined miR-1297 and CCND2 expression in cultured SW480 cells. The effects of modulated levels of miR-1297 and CCND2 on cell viability, anchorage-independent growth ability, proliferation, apoptosis, cell cycle distribution, migration, and invasion were detected using specific techniques. The possible regulatory effect of miR-1297 on CCND2 was investigated using dual luciferase assays. Our results showed that miR-1297 expression was downregulated in clinical CRC specimens, and such downregulation was associated with upregulated levels of CCND2 expression. Upregulation of miR-1297 and downregulation of CCND2 reduced the proliferation and metastasis potential of SW480 cells, but did not affect the apoptotic process. In addition, miR-1297 regulated CCND2 function by directly binding to the promoter sequence of the CCND2 gene, which would block CCND2-related signaling at the transcription level. Our findings validate the anti-CRC function of miR-1297 and pro-CRC function of CCND2. Our findings may assist in developing miR-based therapies against CRC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCND2, Cancer Genetics Web: http://www.cancer-genetics.org/CCND2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999