E2F3

Gene Summary

Gene:E2F3; E2F transcription factor 3
Aliases: E2F-3
Location:6p22.3
Summary:This gene encodes a member of a small family of transcription factors that function through binding of DP interaction partner proteins. The encoded protein recognizes a specific sequence motif in DNA and interacts directly with the retinoblastoma protein (pRB) to regulate the expression of genes involved in the cell cycle. Altered copy number and activity of this gene have been observed in a number of human cancers. There are pseudogenes for this gene on chromosomes 2 and 17. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor E2F3
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: E2F3 (cancer-related)

Gao Z, Shi R, Yuan K, Wang Y
Expression and prognostic value of E2F activators in NSCLC and subtypes: a research based on bioinformatics analysis.
Tumour Biol. 2016; 37(11):14979-14987 [PubMed] Related Publications
E2F activators (E2F1-3) codify a family of transcription factors (TFs) in higher eukaryotes. E2F activators are involved in the cell cycle regulation and synthesis of DNA in mammalian cells, and their overexpression has been detected in many human cancers. However, their clinical significance has not been deeply researched in non-small-cell lung cancer (NSCLC), and bioinformatics analysis has never been reported to explore their clinical role in NSCLC. In the current study, we investigated the expression and prognostic value of E2F activators in NSCLC patients through the "TCGA datasets" and the "Kaplan-Meier plotter" (KM plotter) database. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Compared with normal tissue samples, E2F activators were overexpressed in NSCLC tissues, in lung adenocarcinoma (LUAD) tissues, and in lung squamous cell carcinoma (LUSC) tissues. In NSCLC patients, E2F1 expression was significantly correlated with age, sex, and tumor stage. E2F2 expression was found to be significantly correlated with sex and tumor size. We further demonstrated that E2F1 and E2F2 overexpressions were significantly associated with poor prognosis. In LUAD patients, E2F1 expression was significantly correlated with tumor size and tumor stage. E2F2 expression was significantly correlated with lymph node status and tumor stage. E2F1 and E2F2 overexpression showed a significant association with poor prognosis, while E2F3 overexpression was significantly correlated to better prognosis. In LUSC patients, E2F1 was concluded to be significantly correlated with tumor stage. However, E2F activators were not found to be correlated to prognosis.

Song P, Ye LF, Zhang C, et al.
Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p.
Gene. 2016; 592(1):8-14 [PubMed] Related Publications
Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in several human malignant tumors, and its dysregulation was closed associated with tumor initiation, development and progression. Nevertheless, whether the aberrant expression of XIST in human nasopharyngeal carcinoma (NPC) is corrected with malignancy, metastasis or prognosis has not been elaborated. Here, we discovered that XIST was up-regulated in NPC tissues and higher expression of XIST contributed to a markedly poorer survival time. In addition, multivariate analysis demonstrated XIST was an independent risk factor for prognosis. XIST over-expression enhanced, while XIST silencing hampered the cell growth in NPC. Additionally, mechanistic analysis revealed that XIST up-regulated the expression of miR-34a-5p targeted gene E2F3 through acting as a competitive 'sponge' of miR-34a-5p. Taking all into account, we concluded that XIST functioned as an oncogene in NPC through up-regulating E2F3 in part through 'spongeing' miR-34a-5p.

Zhang Y, Zhang Z, Li Z, et al.
MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3.
Oncol Rep. 2016; 36(3):1293-300 [PubMed] Related Publications
Accumulating evidence indicates that microRNAs (miRNAs) play critical roles in regulating cellular processes, such as cell growth and apoptosis, as well as cancer progression and metastasis. Low expression of miR-497 has been observed in breast, colorectal and cervical cancers. Human bladder transitional cell carcinoma (BTCC) progression typically follows a complex cascade from primary malignancy to distant metastasis, but whether the aberrant expression of miR-497 in BTCC is associated with malignancy, metastasis or prognosis remains unknown. In the present study, we found that miR-497 was markedly downregulated in BTCC tissue samples when compared with that noted in adjacent normal tissues, and low expression of miR-497 was correlated with poor prognosis in BTCC patients. We also found that overexpression of miR-497 inhibited the proliferation, migration and invasion of bladder cancer cells by downregulating E2F3 (an miR-497 target gene) mRNA and protein and that siRNA against E2F3 inhibited cell proliferation, migration and invasion, which was similar to the effect of miR-497 overexpression in the BTCC cells. Our experimental data indicated that miR-497 mediates the in vitro proliferation, migration and invasion of BTCC cells. Together, these results suggest that miR-497 may represent a novel prognostic indicator, a biomarker for the early detection of metastasis and a target for gene therapy of BTCC.

Rajamani D, Bhasin MK
Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis.
Genome Med. 2016; 8(1):38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pancreatic cancer is an aggressive cancer with dismal prognosis, urgently necessitating better biomarkers to improve therapeutic options and early diagnosis. Traditional approaches of biomarker detection that consider only one aspect of the biological continuum like gene expression alone are limited in their scope and lack robustness in identifying the key regulators of the disease. We have adopted a multidimensional approach involving the cross-talk between the omics spaces to identify key regulators of disease progression.
METHODS: Multidimensional domain-specific disease signatures were obtained using rank-based meta-analysis of individual omics profiles (mRNA, miRNA, DNA methylation) related to pancreatic ductal adenocarcinoma (PDAC). These domain-specific PDAC signatures were integrated to identify genes that were affected across multiple dimensions of omics space in PDAC (genes under multiple regulatory controls, GMCs). To further pin down the regulators of PDAC pathophysiology, a systems-level network was generated from knowledge-based interaction information applied to the above identified GMCs. Key regulators were identified from the GMC network based on network statistics and their functional importance was validated using gene set enrichment analysis and survival analysis.
RESULTS: Rank-based meta-analysis identified 5391 genes, 109 miRNAs and 2081 methylation-sites significantly differentially expressed in PDAC (false discovery rate ≤ 0.05). Bimodal integration of meta-analysis signatures revealed 1150 and 715 genes regulated by miRNAs and methylation, respectively. Further analysis identified 189 altered genes that are commonly regulated by miRNA and methylation, hence considered GMCs. Systems-level analysis of the scale-free GMCs network identified eight potential key regulator hubs, namely E2F3, HMGA2, RASA1, IRS1, NUAK1, ACTN1, SKI and DLL1, associated with important pathways driving cancer progression. Survival analysis on individual key regulators revealed that higher expression of IRS1 and DLL1 and lower expression of HMGA2, ACTN1 and SKI were associated with better survival probabilities.
CONCLUSIONS: It is evident from the results that our hierarchical systems-level multidimensional analysis approach has been successful in isolating the converging regulatory modules and associated key regulatory molecules that are potential biomarkers for pancreatic cancer progression.

Chang SW, Yue J, Wang BC, Zhang XL
miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3.
Int J Clin Exp Pathol. 2015; 8(10):12853-60 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Colorectal cancer (CRC) is one of the major healthcare problems worldwide. A lot of miRNAs are aberrantly expressed in CRC and involved in its development and progression. The purpose of this study was to investigate the expression and function of miR-503 in CRC.
METHODS: miR-503 expression was detected in CRC tissues and cell lines by Quantitative real-time PCR. Cell proliferation was assessed by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Moreover, luciferase reporter assay and western blot were performed to determine the potential target of miR-503 in CRC cells.
RESULTS: miR-503 was significantly decreased in CRC tissues and cell lines in comparison with controls. Overexpression of miR-503 in CRC cells remarkably inhibited cell proliferation and induced apoptosis. Furthermore, E2F3 was identified as a direct target of miR-503 in CRC cells and down-regulation of E2F3 had a similar effect as miR-503 overexpression on CRC cells. In addition, the expression of E2F3 was negatively correlated with miR-503 level in CRC tissues.
CONCLUSIONS: miR-503 inhibits cell proliferation and induces apoptosis by directly targeting E2F3 in CRC cells, indicating its potential application in CRC diagnosis and therapy.

Dong D, Gong Y, Zhang D, et al.
miR-874 suppresses the proliferation and metastasis of osteosarcoma by targeting E2F3.
Tumour Biol. 2016; 37(5):6447-55 [PubMed] Related Publications
Increasing evidence indicates that microRNAs (miRNAs) play critical roles in osteosarcoma (OS) occurrence and development. MicroRNA-874 (miR-874) has proven to be dysregulated in several human cancers. However, the biological function and underlying molecular mechanism of miR-874 in OS remain unclear. In this study, we aimed to investigate the biological role and potential mechanism of miR-874 in OS. Here, we found that miR-874 expression was significantly decreased in OS cell lines and tissues by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and its expression was correlated with tumor-node-metastasis (TNM) stage, tumor size, and lymph node metastasis (all P < 0.01). Functional study revealed that overexpression of miR-874 in OS cells could remarkably inhibit proliferation, migration, and invasion and induce cell apoptosis. In addition, E2F transcription factor 3 (E2F3) was confirmed as a target of miR-874 in OS cells. E2F3 mRNA expression was upregulated and was inversely correlated with the level of miR-874 in OS tissues. Importantly, downregulation of E2F3 mimicked the effect of overexpression miR-874 in OS cells, and E2F3 overexpression partially attenuated the tumor-suppressive effects of miR-874 in OS cells. Taken together, these findings suggested that miR-874 might suppress the growth and metastasis of OS cells partially by targeting E2F3.

Fujii T, Shimada K, Tatsumi Y, et al.
microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1.
BMC Cancer. 2015; 15:818 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19-24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan.
METHODS: Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells.
RESULTS: Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors.
CONCLUSIONS: Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types.

Lee M, Oprea-Ilies G, Saavedra HI
Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis.
Oncotarget. 2015; 6(35):37316-34 [PubMed] Free Access to Full Article Related Publications
The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.

Yang H, Zheng W, Shuai X, et al.
MicroRNA-424 inhibits Akt3/E2F3 axis and tumor growth in hepatocellular carcinoma.
Oncotarget. 2015; 6(29):27736-50 [PubMed] Free Access to Full Article Related Publications
By comparing the expression profiles of miRNAs in different subtypes of HCC, we identified miR-424 as a HCC related miRNA. We found that the expression of miR-424 was significantly decreased in HCC tissues and six liver cancer cell lines. Significantly, its expression levels were correlated with tumor size, multiple nodules, vein invasion, TNM stage and overall survival of HCC. We showed that up-regulated miR-424 suppressed HCC cell proliferation in vivo and in vitro. Multi-pathway reporter arrays suggested that miR-424 suppressed the pRb-E2F pathway. Consistently, Akt3 and E2F3 were identified as the targets of miR-424 as evidenced by that ectopic miR-424 expression suppressed Akt3 and E2F3 expressions. Silencing Akt3 and E2F3 by siRNA pheno-copied the effect of ectopic miR-424 on HCC growth. Whereas, overexpression of Akt3 and E2F3 attenuated the effect of miR-424 on HCC growth. Together, our data demonstrated a tumor suppressor role for miR-424 in HCC development and progression with therapeutic implications. The strong correlation of miR-424 expression with HCC patient survival suggests that miR-424 could be a valuable biomarker for HCC prognosis.

Zhou X, Ji G, Ke X, et al.
MiR-141 Inhibits Gastric Cancer Proliferation by Interacting with Long Noncoding RNA MEG3 and Down-Regulating E2F3 Expression.
Dig Dis Sci. 2015; 60(11):3271-82 [PubMed] Related Publications
BACKGROUND: MiR-141 and long noncoding RNA MEG3 have been independently reported to be tumor suppressor genes in various cancers. However, their expression has never been previously associated with gastric cancer (GC).
AIMS: To investigate the interaction of miR-141 and MEG3 in GC.
METHODS: QRT-PCR was used to detect miR-141, MEG3, and E2F3 in gastric tissues and cells. CCK-8 and flow cytometry analysis were used to detect cell functions. Western blot and luciferase activity were used to identify E2F3 as one of the direct targets of miR-141.
RESULTS: We found that expression of both miR-141 and MEG3 was significantly reduced in GC compared with levels in matched nonmalignant tissues. Positive correlation between miR-141 and MEG3 was found in both tumor tissues and control tissues. Furthermore, the over-expression of either miR-141 or MEG3 in 7901 and MKN45 cells inhibited cell proliferation and cell cycle progression and promoted cell apoptosis. E2F3 was identified as a target of miR-141, and its inhibition significantly reduced MEG3 expression. E2F3 expression was also found to be negatively associated with both MEG3 and miR-141. E2F3 over-expression partly reversed the changes caused by transfection of miR-141 mimic, and inhibition of miR-141 or MEG3 overrides MEG3- or miR-141-induced modulation of cell growth in GC.
CONCLUSIONS: These findings together suggested that miR-141 could be interacting with MEG3 and targeting E2F3, and these factors may play important anti-tumor effects in GC pathogenesis and provide therapeutic targets in the clinics.

Park SA, Platt J, Lee JW, et al.
E2F8 as a Novel Therapeutic Target for Lung Cancer.
J Natl Cancer Inst. 2015; 107(9) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown.
METHODS: E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided.
RESULTS: LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047).
CONCLUSIONS: We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment.

Qiu M, Liang Z, Chen L, et al.
MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma.
Urol Oncol. 2015; 33(7):332.e9-18 [PubMed] Related Publications
BACKGROUND: MicroRNA-429 (miR-429), a short noncoding RNA belonging to the miR-200 superfamily, plays a crucial role in tumorigenesis and tumor progression. It also acts as a modulator of epithelial-to-mesenchymal transition, a cell development regulating process that affects tumor development and metastasis. The aim of this study was to investigate the potential role of miR-429 in regulating growth and metastasis of renal cell carcinoma.
METHODS: miR-429 expression was stably up-regulated or down-regulated in the renal cell carcinoma ACHN and A498 cell lines, and cell proliferation and metastasis were assessed.
RESULTS: miR-429 overexpression inhibited cell proliferation, colony formation, migration, and invasion. Suppression of endogenous miR-429 promoted cell growth and metastasis. miR-429 was shown to directly target the 3' untranslated regions of B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) and E2F transcription factor 3 (E2F3) transcripts, regulating their expression, as well as that of the downstream epithelial-to-mesenchymal transition markers E-cadherin, N-cadherin, vimentin, p14, and p16.
CONCLUSIONS: These results revealed a tumor suppressive role for miR-429 in renal cell carcinoma through directly targeting BMI1 and E2F3.

Zehavi L, Schayek H, Jacob-Hirsch J, et al.
MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma.
Mol Cancer. 2015; 14:68 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The incidence of cutaneous malignant melanoma continues to rise, and once the disease metastasizes it is almost inevitably fatal. We recently reported that a large miRNAs cluster on human chromosome 14q32, implicated in many types of cancers, is significantly down-regulated in melanoma. miR-377, one of the miRNAs located within this cluster, was studied here.
METHODS: qRT-pCR was used to quantify miR-377 levels in melanoma cell lines and samples. Melanoma cell lines ectopically expressing miR-377 were generated by stable transfection, mRNA expression was assessed using mRNA arrays and protein expression was assessed by Western blot analysis. Potential targets of miR-377 were identified through luciferase reporter assays. Cellular proliferation, migration and soft-agar colony formation were monitored in control and miR-377-expressing cells using cell biology techniques.
RESULTS: miR-377 is expressed in normal melanocytes but not in melanoma cell lines or samples. Its ectopic stable expression in melanoma cell lines decreased their proliferative and migratory capacity and their colony-forming capability. mRNA arrays of melanoma cells over-expressing miR-377 pointed to several down-regulated mRNAs that have putative binding sites for miR-377 in their 3'UTR, of which both E2F3 and MAP3K7 were found to be direct targets of miR-377. E2F3, a potent transcriptional inducer of cell-cycle progression, was found to be elevated in melanoma cell lines, but decreased following ectopic expression of miR-377. Ectopic miR-377 also led to a decrease in the activity of a reporter plasmid containing three E2F DNA-binding sites linked to a luciferase cDNA sequence, demonstrating that miR-377 down-regulates E2F3-induced transcription. MAP3K7 (known as TAK1), a serine/threonine kinase along the MAPK signaling pathway, was over-expressed in melanoma but decreased following ectopic expression of miR-377. MAP3K7 is involved in the activation of NF-κB. MiR-377 over-expression led to decreased activity of a reporter plasmid containing two NF-κB DNA-binding sites and to decreased output along the NF-kB signaling pathway.
CONCLUSION: Our results suggest that miR-377 is an important negative regulator of E2F and MAP3K7/NF-kB signaling pathway in melanoma cells; it is tempting to speculate that its silencing in melanoma promotes the tumorigenic and metastatic potential of the cells through activation of these pathways.

Bambury RM, Bhatt AS, Riester M, et al.
DNA copy number analysis of metastatic urothelial carcinoma with comparison to primary tumors.
BMC Cancer. 2015; 15:242 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: To date, there have been no reports characterizing the genome-wide somatic DNA chromosomal copy-number alteration landscape in metastatic urothelial carcinoma. We sought to characterize the DNA copy-number profile in a cohort of metastatic samples and compare them to a cohort of primary urothelial carcinoma samples in order to identify changes that are associated with progression from primary to metastatic disease.
METHODS: Using molecular inversion probe array analysis we compared genome-wide chromosomal copy-number alterations between 30 metastatic and 29 primary UC samples. Whole transcriptome RNA-Seq analysis was also performed in primary and matched metastatic samples which was available for 9 patients.
RESULTS: Based on a focused analysis of 32 genes in which alterations may be clinically actionable, there were significantly more amplifications/deletions in metastases (8.6% vs 4.5%, p < 0.001). In particular, there was a higher frequency of E2F3 amplification in metastases (30% vs 7%, p = 0.046). Paired primary and metastatic tissue was available for 11 patients and 3 of these had amplifications of potential clinical relevance in metastases that were not in the primary tumor including ERBB2, CDK4, CCND1, E2F3, and AKT1. The transcriptional activity of these amplifications was supported by RNA expression data.
CONCLUSIONS: The discordance in alterations between primary and metastatic tissue may be of clinical relevance in the era of genomically directed precision cancer medicine.

Li X, Li H, Zhang R, et al.
MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer.
Cell Physiol Biochem. 2015; 35(5):2033-42 [PubMed] Related Publications
BACKGROUND: MicroRNA-449a is a tumor suppressor that is down-regulated in multiple tumors types. However, the role of miR-449a in gastric cancer (GC) remains largely unknown.
METHODS: MiR-449a expression was up-regulated using miR-449a mimics, and the role of miR-449a in GC was assessed using cell viability and apoptosis assays. miR-449a target genes were confirmed using luciferase activity, RT-PCR and western blot assays.
RESULTS: miR-449a was downregulated in gastric cancer cell lines and gastric cancer tissues. Restoration of miR-449a expression inhibited gastric cancer cell proliferation and colony formation. Significant G0/G1 arrest was observed in gastric cancer cells transfected with miR-449a mimics. Furthermore, combination therapy with miR-449a with cisplatin displayed greater anti-tumor effects than treatment with cisplatin alone. We also identified E2F3 (E2F transcription factor 3), an important transcription factor involved in the proliferation and metastasis of tumor cells, as a direct target gene of miR-449a. Furthermore, silencing E2F3 elicits similar a repressive effect as overexpression of miR-449a in gastric cancer cells, and E2F3 overexpression rescued the repressing effects of miR-449a mimics.
CONCLUSIONS: This study indicates that the miR-449a/E2F3 axis plays an important role in proliferation and apoptosis in gastric cancer. Therefore, miR-449a represents a novel target for gastric cancer therapy.

Li F, Chen H, Huang Y, et al.
miR-34c plays a role of tumor suppressor in HEC‑1-B cells by targeting E2F3 protein.
Oncol Rep. 2015; 33(6):3069-74 [PubMed] Related Publications
Endometrial carcinoma (EC) is a common malignancy of the female genital tract with a poor prognosis. It has been reported that miR-34c is significantly reduced in EC, but research concerning its function in EC is rare. In the present study, the expression of miR-34c was upregulated in the EC cell line, HEC-1-B, by transfecting the cells with hsa-miR-34c-5p mimics. Then, after determining the transfection efficiency by RT-qPCR, we analyzed the effects of miR-34c on the HEC-1-B cells. We found that overexpression of miR-34c significantly inhibited cell proliferation, colony formation, migration and invasion and induced cell cycle arrest and apoptosis. Finally, western blot analysis demonstrated that the expression of E2F3 was reduced after upregulation of the expression of miR-34c in the HEC-1-B cells, and the effects of miR-34c are likely associated with the reduction in E2F3 protein. In conclusion, our study demonstrated that miR-34c plays a role of tumor suppressor in HEC-1-B cells, and E2F3 protein may be a target of miR-34c.

Chang S, Gao L, Yang Y, et al.
miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells.
Oncotarget. 2015; 6(10):7675-85 [PubMed] Free Access to Full Article Related Publications
VitaminD3 signaling is involved in inhibiting the development and progression of gastric cancer (GC), while the active vitamin D metabolite 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated gene regulatory mechanisms in GC remain unclear. We found that miR-145 is induced by 1,25(OH)2D3 in a dose- and vitamin D receptor (VDR)-dependent manner in GC cells. Inhibition of miR-145 reverses the antiproliferative effect of 1,25(OH)2D3. Furthermore, miR-145 expression was lower in tumors compared with matched normal samples and correlated with increased the E2F3 transcription factor protein staining. Overexpression of miR-145 inhibited colony formation, cell viability and induced cell arrest in S-phase in GC cells by targeting E2F3 and CDK6. miR-145 inhibition consistently abrogates the 1,25(OH)2D3-mediated suppression of E2F3, CDK6, CDK2 and CCNA2 genes. Altogether, our results indicate that miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 in GC cells and might hold promise for prognosis and therapeutic strategies for GC treatment.

Lee JM, Heo MJ, Lee CG, et al.
Increase of miR-199a-5p by protoporphyrin IX, a photocatalyzer, directly inhibits E2F3, sensitizing mesenchymal tumor cells to anti-cancer agents.
Oncotarget. 2015; 6(6):3918-31 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Protoporphyrin IX (PPIX) has been used for photodynamic therapy. Mesenchymal cancer cells adapt to tumor microenvironments for growth and metastasis possibly in association with miRNA dysregulation. In view of the effect of PPIX on cancer-related genes, and its potential to inhibit tumor growth and migration/invasion, this study investigated whether PPIX enables mesenchymal liver tumor to restore dysregulated miRNAs, and if so, whether it sensitizes the cancer cells to chemotherapy. In addition, we explored new target(s) of the miRNA(s) that contribute to the anti-cancer effects. Of the ten miRNAs predicted by the 3'-UTR of HIF-1α mRNA, PPIX treatment increased miR-199a-5p, leading to the inhibition of E2F3 expression which is upregulated in mesenchymal liver tumor. miR-199a-5p levels were downregulated in HCC with E2F3 overexpression. An approach modulating epithelial-mesenchymal transition provided the expected changes in miR-199a-5p and E2F3 in vivo. PPIX prevented tumor cell growth and migration/invasion, and had a synergistic anti-cancer effect when combined with chemotherapeutics. In a xenograft model, PPIX treatment decreased overall growth and average tumor volume, which paralleled E2F3 inhibition. Overall, PPIX inhibited growth advantage and migratory ability of cancer cells and sensitized mesenchymal liver tumor cells to chemotherapeutics.

Schwentner R, Papamarkou T, Kauer MO, et al.
EWS-FLI1 employs an E2F switch to drive target gene expression.
Nucleic Acids Res. 2015; 43(5):2780-9 [PubMed] Free Access to Full Article Related Publications
Cell cycle progression is orchestrated by E2F factors. We previously reported that in ETS-driven cancers of the bone and prostate, activating E2F3 cooperates with ETS on target promoters. The mechanism of target co-regulation remained unknown. Using RNAi and time-resolved chromatin-immunoprecipitation in Ewing sarcoma we report replacement of E2F3/pRB by constitutively expressed repressive E2F4/p130 complexes on target genes upon EWS-FLI1 modulation. Using mathematical modeling we interrogated four alternative explanatory models for the observed EWS-FLI1/E2F3 cooperation based on longitudinal E2F target and regulating transcription factor expression analysis. Bayesian model selection revealed the formation of a synergistic complex between EWS-FLI1 and E2F3 as the by far most likely mechanism explaining the observed kinetics of E2F target induction. Consequently we propose that aberrant cell cycle activation in Ewing sarcoma is due to the de-repression of E2F targets as a consequence of transcriptional induction and physical recruitment of E2F3 by EWS-FLI1 replacing E2F4 on their target promoters.

Weiner-Gorzel K, Dempsey E, Milewska M, et al.
Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells.
Cancer Med. 2015; 4(5):745-58 [PubMed] Free Access to Full Article Related Publications
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.

Geng D, Song X, Ning F, et al.
MiR-34a Inhibits Viability and Invasion of Human Papillomavirus-Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin.
Int J Gynecol Cancer. 2015; 25(4):707-13 [PubMed] Related Publications
OBJECTIVE: Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells.
METHODS: MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells.
RESULTS: The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells.
CONCLUSIONS: This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.

Niu Z, Liu H, Zhou M, et al.
Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells.
Acta Biochim Biophys Sin (Shanghai). 2015; 47(3):183-91 [PubMed] Related Publications
The proto-oncogene c-Myc encodes a transcription factor that is involved in the regulation of cellular proliferation, differentiation, and apoptosis. Several studies indicate that the over-expression of c-Myc is a frequent genetic abnormality in nasopharyngeal carcinoma (NPC). Therefore, specifically reducing its level by genetic means in established NPC cell lines helps to better understand its role in the pathogenesis of NPC. In this study, for the first time, we successfully established and characterized NPC 5-8F cell line with stably suppressed c-Myc expression by employing a DNA-based RNA interference approach. The suppression of c-Myc resulted in reduced cell growth, colony formation, and cell cycle progression in 5-8F cells. In vivo tumor formation assays revealed that the knockdown of c-Myc reduced the tumorigenic potential of 5-8F cells in nude mice. At the molecular level, we found that the knockdown of c-Myc could decrease the expression of several critical molecules involved in the Cdk/Rb/E2F pathway, including CDK4, cyclin D1, CDK2, pRb, E2F3, and DP2, and significantly reduced the promoter activity of cyclin D1. Taken together, these findings provide valuable mechanistic insights into the role of c-Myc in nasopharyngeal carcinogenesis and suggest that the knockdown of c-Myc may be a potential therapeutic approach for the treatment of NPC.

Tang G, Wu J, Xiao G, Huo L
MiR-203 sensitizes glioma cells to temozolomide and inhibits glioma cell invasion by targeting E2F3.
Mol Med Rep. 2015; 11(4):2838-44 [PubMed] Related Publications
Glioma is the most common malignant and fatal primary tumor in the central nervous system in adults. Recent data has suggested a profound role for microRNAs (miRs) in cancer progression. The present study demonstrated, via quantitative polymerase chain reaction (qPCR) analysis, that miR-203 expression was markedly lower in highly invasive U87MG glioma cells and glioma tissues. Wound healing and Transwell assays demonstrated that restoration of miR-203 expression inhibited U87MG cell migration and invasion. Restoration of miR-203 expression additionally sensitized the cells to temozolomide (TMZ) as determined by MTS assay. By contrast, miR-203 inhibition in A172 cells exerted opposite effects. Bioinformatic analysis combined with experimental analysis revealed that miR-203 directly targeted E2F3 via the conserved miR-203 target site within the E2F3 3'-untranslational region. E2F3 knockdown with specific small hairpin RNA also inhibited U87MG cell migration and invasion, and sensitized them to TMZ. Importantly, miR-203 and E2F3 showed inverse expression patterns in invasive glioma tissues, as demonstrated by qPCR and luciferase assay. These results suggested that miR-203 may function as a tumor suppressor in glioma progression and that the miR-203/E2F3 axis may be a novel candidate in the development of rational therapeutic strategies for glioma.

Liu L, Qiu M, Tan G, et al.
miR-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3.
J Transl Med. 2014; 12:305 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNA-200c (miR-200c) is one of the short noncoding RNAs that play crucial roles in tumorigenesis and tumor progression. It also acts as considerable modulator in the process of epithelial-to-mesenchymal transition (EMT), a cell development regulating process that affects tumor development and metastasis. However, the role of miR-200c in bladder cancer cells and its mechanism has not been well studied. The purpose of this study was to determine the potential role of miR-200c in regulating EMT and how it contributed to bladder cancer cells in invasion, migration and proliferation.
METHODS: Real-time reverse transcription-PCR was used to identify and validate the differential expression of MiR-200c involved in EMT in 4 bladder cancer cell lines and clinical specimens. A list of potential miR-200 direct targets was identified through the TargetScan database. The precursor of miR-200c was over-expressed in UMUC-3 and T24 cells using a lentivirus construct, respectively. Protein expression and signaling pathway modulation were validated through Western blot analysis and confocal microscopy, whereas BMI-1 and E2F3, direct target of miR-200c, were validated by using the wild-type and mutant 3'-untranslated region BMI-1/E2F3 luciferase reporters.
RESULTS: We demonstrate that MiR-200c is down-regulated in bladder cancer specimens compared with adjacent ones in the same patient. Luciferase assays showed that the direct down-regulation of BMI-1 and E2F3 were miR-200c-dependent because mutations in the two putative miR-200c-binding sites have rescued the inhibitory effect. Over-expression of miR-200c in bladder cancer cells resulted in significantly decreased the capacities of cell invasion, migration and proliferation. miR-200c over-expression resulted in conspicuous down-regulation of BMI-1 and E2F3 expression and in a concomitant increase in E-cadherin levels.
CONCLUSIONS: miR-200c appears to control the EMT process through BMI-1 in bladder cancer cells, and it inhibits their proliferation through down-regulating E2F3. The targets of miR-200c include BMI-1 and E2F3, which are a novel regulator of EMT and a regulator of proliferation, respectively.

Tobin NP, Harrell JC, Lövrot J, et al.
Molecular subtype and tumor characteristics of breast cancer metastases as assessed by gene expression significantly influence patient post-relapse survival.
Ann Oncol. 2015; 26(1):81-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We and others have recently shown that tumor characteristics are altered throughout tumor progression. These findings emphasize the need for re-examination of tumor characteristics at relapse and have led to recommendations from ESMO and the Swedish Breast Cancer group. Here, we aim to determine whether tumor characteristics and molecular subtypes in breast cancer metastases confer clinically relevant prognostic information for patients.
PATIENTS AND METHODS: The translational aspect of the Swedish multicenter randomized trial called TEX included 111 patients with at least one biopsy from a morphologically confirmed locoregional or distant breast cancer metastasis diagnosed from December 2002 until June 2007. All patients had detailed clinical information, complete follow-up, and metastasis gene expression information (Affymetrix array GPL10379). We assessed the previously published gene expression modules describing biological processes [proliferation, apoptosis, human epidermal receptor 2 (HER2) and estrogen (ER) signaling, tumor invasion, immune response, and angiogenesis] and pathways (Ras, MAPK, PTEN, AKT-MTOR, PI3KCA, IGF1, Src, Myc, E2F3, and β-catenin) and the intrinsic subtypes (PAM50). Furthermore, by contrasting genes expressed in the metastases in relation to survival, we derived a poor metastasis survival signature.
RESULTS: A significant reduction in post-relapse breast cancer-specific survival was associated with low-ER receptor signaling and apoptosis gene module scores, and high AKT-MTOR, Ras, and β-catenin module scores. Similarly, intrinsic subtyping of the metastases provided statistically significant post-relapse survival information with the worst survival outcome in the basal-like [hazard ratio (HR) 3.7; 95% confidence interval (CI) 1.3-10.9] and HER2-enriched (HR 4.4; 95% CI 1.5-12.8) subtypes compared with the luminal A subtype. Overall, 25% of the metastases were basal-like, 32% HER2-enriched, 10% luminal A, 28% luminal B, and 5% normal-like.
CONCLUSIONS: We show that tumor characteristics and molecular subtypes of breast cancer metastases significantly influence post-relapse patient survival, emphasizing that molecular investigations at relapse provide prognostic and clinically relevant information. CLINICALTRIALS.GOV: This is the translational part of the Swedish multicenter and randomized trial TEX, clinicaltrials.gov identifier nct01433614 (http://www.clinicaltrials.gov/ct2/show/nct01433614).

Benavente CA, Finkelstein D, Johnson DA, et al.
Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression.
Oncotarget. 2014; 5(20):9594-608 [PubMed] Free Access to Full Article Related Publications
The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis. However, whether the roles of the different E2fs are interchangeable in controlling development and tumorigenesis in the retina or if they have selective functions remains unknown. In this study, we found that E2f family members play distinct roles in the development and tumorigenesis. In Rb;p107-deficient retinae, E2f1 and E2f3 inactivation rescued tumor formation but only E2f1 rescued the retinal development phenotype. This allowed the identification of key target genes for Rb/E2f family signaling contributing to tumorigenesis and those contributing to developmental defects. We found that Sox4 and Sox11 genes contribute to the developmental phenotype and Hells and Uhrf1 contribute to tumorigenesis. Using orthotopic human xenografts, we validated that upregulation of HELLS and UHRF1 is essential for the tumor phenotype. Also, these epigenetic regulators are important for the regulation of SYK.

Zhang W, Wang YE, Zhang Y, et al.
Global epigenetic regulation of microRNAs in multiple myeloma.
PLoS One. 2014; 9(10):e110973 [PubMed] Free Access to Full Article Related Publications
Epigenetic changes frequently occur during tumorigenesis and DNA hypermethylation may account for the inactivation of tumor suppressor genes in cancer cells. Studies in Multiple Myeloma (MM) have shown variable DNA methylation patterns with focal hypermethylation changes in clinically aggressive subtypes. We studied global methylation patterns in patients with relapsed/refractory MM and found that the majority of methylation peaks were located in the intronic and intragenic regions in MM samples. Therefore, we investigated the effect of methylation on miRNA regulation in MM. To date, the mechanism by which global miRNA suppression occurs in MM has not been fully described. In this study, we report hypermethylation of miRNAs in MM and perform confirmation in MM cell lines using bisulfite sequencing and methylation-specific PCR (MSP) in the presence or absence of the DNA demethylating agent 5-aza-2'-deoxycytidine. We further characterized the hypermethylation-dependent inhibition of miR-152, -10b-5p and -34c-3p which was shown to exert a putative tumor suppressive role in MM. These findings were corroborated by the demonstration that the same miRNAs were down-regulated in MM patients compared to healthy individuals, alongside enrichment of miR-152-, -10b-5p, and miR-34c-3p-predicted targets, as shown at the mRNA level in primary MM cells. Demethylation or gain of function studies of these specific miRNAs led to induction of apoptosis and inhibition of proliferation as well as down-regulation of putative oncogene targets of these miRNAs such as DNMT1, E2F3, BTRC and MYCBP. These findings provide the rationale for epigenetic therapeutic approaches in subgroups of MM.

Cui H, Seubert B, Stahl E, et al.
Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes.
Oncogene. 2015; 34(28):3640-50 [PubMed] Related Publications
Tissue inhibitor of metalloproteinases-1 (TIMP-1) recently emerged as a pro-metastatic factor highly associated with poor prognosis in a number of cancers. This correlation seemed paradox as TIMP-1 is best described as an inhibitor of pro-tumourigenic matrix metalloproteinases. Only recently, TIMP-1 has been revealed as a signalling molecule that can regulate cancer progression independent of its inhibitory properties. In the present study, we demonstrate that an increase of both exogenous and endogenous TIMP-1 led to the upregulation of miR-210 in a CD63/PI3K/AKT/HIF-1-dependent pathway in lung adenocarcinoma cells. TIMP-1 induced P110/P85 PI3K-signalling and AKT phosphorylation. It also led to increase of HIF-1α protein levels positively correlating with HIF-1-regulated mRNA expression and upregulation of the microRNA miR-210. Downstream targets of miR-210, namely FGFRL1, E2F3, VMP-1, RAD52 and SDHD, were decreased in the presence of TIMP-1. Upon the overexpression of TIMP-1 in tumour cells, miR-210 was accumulated in exosomes in vitro and in vivo. These exosomes promoted tube formation activity in human umbilical vein endothelial cell (HUVECs), which was reflected in increased angiogenesis in A549L-derived tumour xenografts. Activation and elevation of PI3K, AKT, HIF-1A and miR-210 in tumours additionally confirmed our in vitro data. This new pro-tumourigenic signalling function of TIMP-1 may explain why elevated TIMP-1 levels in lung cancer patients are highly correlated with poor prognosis.

Xu Y, Huang Z, Liu Y
Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3.
Mol Med Rep. 2014; 10(5):2601-8 [PubMed] Related Publications
Emerging evidence suggests that altered expression of microRNAs (miRNAs) is involved in cancer progression. However, the role of miR-125a-5p in gastric carcinogenesis remains unknown. Quantitative real-time PCR analysis revealed that the expression of miR-125a-5p was significantly decreased in >80% of gastric cancer tissues compared with their adjacent non-tumor tissues, and was markedly reduced in ~95% of intestinal-type gastric cancer tissues. The downregulated miR-125a-5p was significantly associated with gastric cancer metastasis. Ectopic expression of miR-125a-5p substantially inhibited the proliferation, migration and invasion activities of gastric cancer cells. Furthermore, forced expression of miR-125a-5p repressed the activity of a luciferase reporter carrying the 3'-untranslated (3'-UTR) region of E2F3, which was eliminated by mutation of the predicted miR-125a-binding site, indicating that E2F3 may be a potential target gene of miR-125a-5p. These data suggest that by targeting E2F3, miR-125a-5p may be important as a potential tumor suppressor gene in gastric carcinogenesis.

Canturk KM, Ozdemir M, Can C, et al.
Investigation of key miRNAs and target genes in bladder cancer using miRNA profiling and bioinformatic tools.
Mol Biol Rep. 2014; 41(12):8127-35 [PubMed] Related Publications
Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs' regulatory networks. In this study, we aimed to construct potential networks of bladder-cancer-related miRNAs and their known target genes using miRNA expression profiling and bioinformatics tools and to investigate potential key molecules that might play roles in bladder cancer regulatory networks. Global miRNA expression profiles were obtained using microarray followed by RT-qPCR validation using two randomly selected miRNAs. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of three selected KEGG pathways were visualized by Cytoscape software. We finally gained 19 deregulated miRNAs, including 5 ups- and 14 down regulated in 27 bladder-cancer tissue samples and 8 normal urothelial tissue samples. The enrichment results of deregulated miRNAs and known target genes showed that most pathways were related to cancer or cell signaling pathways. We determined the hub CDK6, BCL2, E2F3, PTEN, MYC, RB, and ERBB3 target genes and hub hsa-let-7c, hsa-miR-195-5p, hsa-miR-141-3p, hsa-miR-26a-5p, hsa-miR-23b-3p, and hsa-miR-125b-5p miRNAs of the constructed networks. These findings provide new insights into the bladder cancer regulatory networks and give us a hypothesis that hsa-let-7c, hsa-miR-195-5p, and hsa-miR-125b-5p, along with CDK4 and CDK6 genes might exist in the same bladder cancer pathway. Particularly, hub miRNAs and genes might be potential biomarkers for bladder cancer clinics.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. E2F3, Cancer Genetics Web: http://www.cancer-genetics.org/E2F3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999