AKT1

Gene Summary

Gene:AKT1; AKT serine/threonine kinase 1
Aliases: AKT, PKB, RAC, CWS6, PRKBA, PKB-ALPHA, RAC-ALPHA
Location:14q32.33
Summary:The serine-threonine protein kinase encoded by the AKT1 gene is catalytically inactive in serum-starved primary and immortalized fibroblasts. AKT1 and the related AKT2 are activated by platelet-derived growth factor. The activation is rapid and specific, and it is abrogated by mutations in the pleckstrin homology domain of AKT1. It was shown that the activation occurs through phosphatidylinositol 3-kinase. In the developing nervous system AKT is a critical mediator of growth factor-induced neuronal survival. Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1, which then phosphorylates and inactivates components of the apoptotic machinery. Mutations in this gene have been associated with the Proteus syndrome. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:RAC-alpha serine/threonine-protein kinase
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (109)
Pathways:What pathways are this gene/protein implicaed in?
Show (45)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Breast CancerAKT1 and Breast Cancer View Publications403
Lung CancerAKT1 and Lung Cancer View Publications260
Skin CancerAKT1 and Skin Cancer View Publications59
Soft Tissue SarcomaAKT1 and Sarcoma View Publications53
Bladder CancerAKT1 and Bladder Cancer View Publications31
Cervical CancerAKT1 and Cervical Cancer View Publications22
Cowden SyndromeOccasional AKT1 mutations in Cowden Syndrome
Orloff et al (2013) reported 2 patients with AKT1 mutations out of a series of 91 Cowden Syndrome patients without PTEN mutations. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis.
View Publications23

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AKT1 (cancer-related)

Zhou L, Liu S, Han M, et al.
MicroRNA-185 induces potent autophagy via AKT signaling in hepatocellular carcinoma.
Tumour Biol. 2017; 39(2):1010428317694313 [PubMed] Related Publications
Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3'-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.

Pectasides D, Kotoula V, Papaxoinis G, et al.
Expression Patterns of Growth and Survival Genes with Prognostic Implications in Advanced Pancreatic Cancer.
Anticancer Res. 2016; 36(12):6347-6356 [PubMed] Related Publications
AIM: The aim of this study was to evaluate the mRNA expression pattern of growth- and survival-related genes and assess their prognostic significance in patients with advanced pancreatic cancer.
PATIENTS AND METHODS: In total, 98 patients were included in this retrospective translational research study and were evaluated for Kirsten rat sarcoma viral oncogene homolog (KRAS) mutational status, and v-akt murine thymoma viral oncogene homolog 1 (AKT1), AKT serine/threonine kinase 2 (AKT2), AKT serine/threonine kinase 3 (AKT3), cyclin D1 (CCND1), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), hepatocellular growth factor receptor (MET), avian myelomatosis viral oncogene homolog (MYC), nuclear factor kappa B subunit 1 (NFKb1), phosphatase and tensin homolog (PTEN) and mechanistic target of rapamycin (FRAP1) genes mRNA expression. Among these patients, 73 received first-line gemcitabine combined with erlotinib (N=57) or gefitinib (N=16).
RESULTS: KRAS mutation did not correlate with mRNA gene expression. Unsupervised hierarchical clustering according to mRNA gene expression successfully distinguished four prognostically distinct groups of tumors. Overexpression of all genes was associated with best prognosis, while suppression or heterogeneous expression patterns of the examined genes were associated with expression patterns of growth- and survival-related genes, classifying pancreatic tumors into distinct groups with possibly different outcomes.

Jalota A, Kumar M, Das BC, et al.
Synergistic increase in efficacy of a combination of 2-deoxy-D-glucose and cisplatin in normoxia and hypoxia: switch from autophagy to apoptosis.
Tumour Biol. 2016; 37(9):12347-12358 [PubMed] Related Publications
Resistance to drugs, which is aggravated by hypoxia, is a well-known feature of tumors. The combination of drug exposure and hypoxia can give rise to several survival strategies in the exposed cells. Glioblastoma multiforme (GBM) is among the most hypoxic of solid tumors, and we have used glial cells to identify a drug combination that would be synergistically effective in these cells under both normoxia and hypoxia. Cisplatin (CP) and 2-deoxy-D-glucose (2-DG), which have been used for second-line therapy and for preclinical research, are relatively ineffective as single agents. During in vitro experiments with A172 and LN229 cells, there was increased resistance to both drugs under hypoxia. However, the combination of CP and 2-DG showed a synergistic effect in reducing cell viability under both normoxia and hypoxia, with a combination index of less than 1. Increased autophagy is a distinct feature of the response to 2-DG. However, autophagic markers were reduced, and apoptotic markers were upregulated by the combination, indicating a switch over from autophagic to apoptotic pathways with reduction in endoplasmic reticulum (ER) stress. The combination also resulted in a decrease of pAKT levels. The effect of CP in the combination was replicated by the prototype AKT inhibitor LY294002, further supporting the role of AKT inhibition in the synergism. Combination of 2-DG with CP, or possibly an AKT inhibitor, can prove to be an effective rational combination for reducing chemoresistance under both normoxic and hypoxic conditions in gliomas.

Xu Y, Zhu C, Qian W, Zheng M
Comprehensive study of mutational and clinicopathologic characteristics of adenocarcinoma with lepidic pattern in surgical resected lung adenocarcinoma.
J Cancer Res Clin Oncol. 2017; 143(1):181-186 [PubMed] Related Publications
PURPOSE: Although many studies have explored clinicopathologic characteristics and prognosis of lung adenocarcinoma, a few literatures reported the mutational status of lung adenocarcinomas with lepidic pattern and whether there is difference between adenocarcinomas with pure lepidic component and lepidic predominant adenocarcinomas remain unknown.
METHODS: One hundred and thirty-three patients including 92 adenocarcinomas with pure lepidic component and 41 lepidic predominant adenocarcinomas were subjected to the study. All the clinicopathologic data, the follow-up information and the status of gene mutations including EGFR, KRAS, HER2, BRAF, AKT1, ALK, RET and ROS1 were investigated.
RESULTS: Of the 133 lung adenocarcinomas with lepidic pattern, 87.22 % (116/133) were detected harboring mutations in our tested genes, among which 90.52 % (105/116) harbored EGFR mutation. There are three KRAS mutations and two BRAF mutations in our cohort, and we revealed two ALK fusion and one RET fusion. No ROS1 fusion was discovered. There was no significant difference in gene mutations between adenocarcinomas with pure lepidic component and lepidic predominant adenocarcinomas except EGFR mutation (p = 0.039). Lepidic predominant adenocarcinomas seemed to have more EGFR mutation. The post-recurrence survival was significantly prolonged in patients who received TKIs.
CONCLUSIONS: Adenocarcinoma with lepidic pattern is a low-grade lung tumor with favorable prognosis and displays frequent EGFR mutation. Compared with lepidic predominant adenocarcinomas, lung adenocarcinomas with pure lepidic component have a better prognosis. On the basis of these results, we also suggested the application of EGFR-TKIs therapy for EGFR mutation-positive patients after recurrence could achieve prolonged survival.

Yuzawa S, Nishihara H, Tanaka S
Genetic landscape of meningioma.
Brain Tumor Pathol. 2016; 33(4):237-247 [PubMed] Related Publications
Meningioma is the most common intracranial tumor, arising from arachnoid cells of the meninges. Monosomy 22 and inactivating mutations of NF2 are well-known genetic alterations of meningiomas. More recently, mutations in TRAF7, AKT1, KLF4, SMO, and PIK3CA were identified by next-generation sequencing. We here reviewed 553 meningiomas for the mutational patterns of the six genes. NF2 aberration was observed in 55 % of meningiomas. Mutations of TRAF7, AKT1, KLF4, PIK3CA, and SMO were identified in 20, 9, 9, 4.5, and 3 % of cases, respectively. Altogether, 80 % of cases harbored at least one of the genetic alterations in these genes. NF2 alterations and mutations of the other genes were mutually exclusive with a few exceptions. Clinicopathologically, tumors with mutations in TRAF7/AKT1 and SMO shared specific features: they were located in the anterior fossa, median middle fossa, or anterior calvarium, and most of them were meningothelial or transitional meningiomas. TRAF7/KLF4 type meningiomas showed different characteristics in that they occurred in the lateral middle fossa and median posterior fossa as well as anterior fossa and median middle fossa, and contained a secretory meningioma component. We also discuss the mutational hotspots of these genes and other genetic/cytogenetic alterations contributing to tumorigenesis or progression of meningiomas.

Zhao J, Zeng X, Song P, et al.
AKT1 as the PageRank hub gene is associated with melanoma and its functional annotation is highly related to the estrogen signaling pathway that may regulate the growth of melanoma.
Oncol Rep. 2016; 36(4):2087-93 [PubMed] Related Publications
In order to detect the disease-associated genes and their gene interaction function and association with melanoma mechanisms, we identified a total of 1,310 differentially expressed genes (DEGs) from the Gene Expression Omnibus database GSE3189 with FDR <0.01 and |logFC| >2 using the R package. After constructing the gene interaction network by STRING with the selected DEGs, we applied a statistical approach to identify the topological hub genes with PageRank score. Forty-four genes were identified in this network and AKT1 was selected as the most important hub gene. The AKT1 gene encodes a serine‑threonine protein kinase (AKT). High expression of AKT is involved in the resistance of cell apoptosis as well as adaptive resistance to treatment in melanoma. Our results indicated that AKT1 with a higher expression in melanoma showed enriched binding sites in the negative regulation of response to external stimulus, which enables cells to adapt to changes in external stimulation for survival. Another finding was that AKT regulated the lipid metabolic process and may be involved in melanoma progression and promotion of tumor growth through gene enrichment function analysis. Two highlighted pathways were detected in our study: i) the estrogen signaling pathway modulates the immune tolerance and resistance to cell apoptosis, which contributes to the growth of melanoma and ii) the RAP1 signaling pathway which regulates focal adhesion (FA) negative feedback to cell migration and invasion in melanoma. Our studies highlighted the top differentially expressed gene AKT1 and its correlation with the estrogen signaling and RAP1 signaling pathways to alter the proliferation and apoptosis of melanoma cells. Analysis of the enrichment functions of genes associated with melanoma will help us find the exact mechanism of melanoma and advance the full potential of newly targeted cancer therapy.

Chen Y, Teng F, Wang G, Nie Z
Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway.
Oncol Rep. 2016; 36(4):2275-81 [PubMed] Related Publications
Angiogenesis is essential for tumor growth, especially in hepatocellular carcinoma (HCC). The hypervascularity is associated with poor prognosis and highly invasive HCC. The C‑X‑C chemokine receptor type 7 (CXCR7) has been implied overexpressed in many tumor types. Our study aimed to investigate the CXCR7 function in HCC. The tube formation, Transwell migration assay of human umbilical vein endothelial cells (HUVECs) and chicken chorioallantoic membrane (CAM) assay were used. We confirmed that CXCR7 induces angiogenic capacity. Moreover, overexpressing CXCR7 increased the phosphorylated (but not total) AKT expression in HCC cells. Furthermore, overexpressing CXCR7 increased the expression of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑8 in HCC cells. Additionally, inhibition of AKT by LY294002 abrogated CXCR7‑induced angiogenic capacity in HCC cells. Our study suggested that CXCR7 plays an important pro‑angiogenic role in HCC via activation of the AKT pathway. So CXCR7 may be a potential target for anti‑angiogenic therapy in HCC.

Zhang X, Shimodaira H, Soeda H, et al.
CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.
Int J Clin Oncol. 2016; 21(6):1091-1101 [PubMed] Related Publications
BACKGROUND: The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated.
METHODS: In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing.
RESULTS: CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values <0.05). The progression-free survival of patients with CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy.
CONCLUSION: Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

Millis SZ, Ikeda S, Reddy S, et al.
Landscape of Phosphatidylinositol-3-Kinase Pathway Alterations Across 19 784 Diverse Solid Tumors.
JAMA Oncol. 2016; 2(12):1565-1573 [PubMed] Related Publications
Importance: Molecular aberrations in the phosphatidylinositol-3-kinase (PI3K) pathway drive tumorigenesis. Frequently co-occurring alterations in hormone receptors and/or human epidermal growth factor receptor 2 (HER2) may be relevant to mechanisms of response and resistance.
Objective: To identify patterns of aberration in the PI3K and interactive pathways that might lead to targeted therapy opportunities in clinical practice.
Design, Setting, and Participants: From January 2013 through December 2014, 19 784 consecutive tumor samples (>40 cancer types) were sent from thousands of clinicians in 60 countries to a single commercial laboratory for molecular profiling, including next generation sequencing, protein expression (immunohistochemical analysis [IHC]), and gene amplification (fluorescent in situ hybridization or chromogenic in situ hybridization).
Main Outcomes and Measures: Patterns in targetable genomic and proteomic alterations in the PI3K pathway and coincidence with hormone receptor and HER2 alterations.
Exposures: Molecular profiling across solid tumors.
Results: Overall, 38% of patients had an alteration in 1 or more PI3K pathway components, most commonly phosphatase and tensin homologue (PTEN) loss (by IHC) (30% of all patients), followed by mutations in PIK3CA (13%), PTEN (6%), or AKT1 (1%). Seventy percent of patients with endometrial cancer and more than 50% of patients with breast, prostate, anal, hepatocellular, colorectal, and cervical cancer exhibited alterations in at least 1 PI3K pathway gene and/or gene product. Examples of frequent aberrations included PTEN loss in hepatocellular (57% of patients), colorectal (48%), gastric (36%), prostate (52%), and endometrial cancer (49%); PIK3CA mutations in endometrial (37%), breast (31%), cervical (29%), and anal cancer (27%). PIK3CA, PTEN, and AKT1 mutations occurred more frequently in the presence of hormone receptor overexpression (androgen, progesterone, or estrogen receptor). PIK3CA mutations were also more common in the HER2-positive than in the HER2-negative group; the opposite pattern was seen for PTEN mutation or PTEN loss.
Conclusions and Relevance: PI3K pathway aberrations are among the most common in cancer. They do not segregate by classic cancer histologic characteristics. Patterns of biomarker coalterations involving HER2 and hormone receptors may be important for optimizing combination treatments across cancer types.

Ma Y, Feng J, Xing X, et al.
miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and p53 Expression in Hypoxic NSCLC Cells.
Oncol Res. 2016; 24(1):9-15 [PubMed] Related Publications
The ribosomal protein (RP)-p53 pathway has been shown to play a key role in apoptosis and senescence of cancer cells. miR-1908 is a newly found miRNA that was reported to have prognostic potential in melanoma. However, its role and mechanism in the progression of non-small cell lung cancer (NSCLC) are largely unknown. In this study, we found that expression of miR-1908 was significantly downregulated in human NSCLC cell lines, including SK-MES-1, A549, and NCI-H460. Then the role of miR-1908 in NSCLC cell proliferation was explored. The miR-1908 mimic was transfected into NSCLC cell lines, and their proliferation was detected. MTT and Cell Titer-Blue H analyses showed that the cell proliferation was notably reduced by the miR-1908 mimic transfection. Moreover, we found the RP-p53 pathway was activated by miR-1908 mimic. Moreover, the miR-1908 inhibitor transfection had a completely opposite effect on the NSCLC cell proliferation than that of miR-1908 mimic. To explore the underlying mechanism of that, TargetScan bioinformatics server and 3'-UTR luciferase reporter assay were applied to identify the targets of miR-1908. Our results showed that AKT1 substrate 1 (AKT1S1), a newly proven suppressor of the RP-p53 pathway, was a target of miR-1908, suggesting a probable mechanism for miR-191 suppressing NSCLC cell proliferation. Our findings provide a novel molecular target for the regulation of NSCLC cell proliferation.

Narayan S, Bader GD, Reimand J
Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
Genome Med. 2016; 8(1):55 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Discovery of cancer drivers is a major goal of cancer research. Driver genes and pathways are often predicted using mutation frequency, assuming that statistically significant recurrence of specific somatic mutations across independent samples indicates their importance in cancer. However, many mutations, including known cancer drivers, are not observed at high frequency. Fortunately, abundant information is available about functional "active sites" in proteins that can be integrated with mutations to predict cancer driver genes, even based on low frequency mutations. Further, considering active site information predicts detailed biochemical mechanisms impacted by the mutations. Post-translational modifications (PTMs) are active sites that are regulatory switches in proteins and pathways. We analyzed acetylation and ubiquitination, two important PTM types often involved in chromatin organization and protein degradation, to find proteins that are significantly affected by tumor somatic mutations.
METHODS: We performed computational analyses of acetylation and ubiquitination sites in a pan-cancer dataset of 3200 tumor samples from The Cancer Genome Atlas (TCGA). These analyses were targeted at different levels of biological organization including individual genes, pathway annotated gene sets, and protein-protein interaction networks.
RESULTS: Acetylation and ubiquitination site mutations are enriched in cancer with significantly stronger evolutionary conservation and accumulation in protein domains. Gene-focused analysis with the ActiveDriver method reveals significant co-occurrences of acetylation and ubiquitination PTMs and mutation hotspots in known oncoproteins (TP53, AKT1, IDH1) and highlights candidate cancer driver genes with PTM-related mechanisms (e.g. several histone proteins and the splicing factor SF3B1). Pathway analysis shows that PTM mutations in acetylation and ubiquitination sites accumulate in cancer-related processes such as cell cycle, apoptosis, chromatin regulation, and metabolism. Integrated mutation analysis of clinical information and protein interaction networks suggests that many PTM-specific mutations associate with decreased patient survival.
CONCLUSIONS: Mutation analysis of acetylation and ubiquitination PTM sites reveals their importance in cancer. As PTM networks are increasingly mapped and related enzymes are often druggable, deeper investigation of specific associated mutations may lead to the discovery of treatment-relevant cellular mechanisms.

Riquelme I, Tapia O, Espinoza JA, et al.
The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.
Pathol Oncol Res. 2016; 22(4):797-805 [PubMed] Related Publications
The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

Meazza C, Belfiore A, Busico A, et al.
AKT1 and BRAF mutations in pediatric aggressive fibromatosis.
Cancer Med. 2016; 5(6):1204-13 [PubMed] Free Access to Full Article Related Publications
Aside from the CTNNB1 and adenomatous polyposis coli (APC) mutations, the genetic profile of pediatric aggressive fibromatosis (AF) has remained poorly characterized. The aim of this study was to shed more light on the mutational spectrum of pediatric AF, comparing it with its adult counterpart, with a view to identifying biomarkers for use as prognostic factors or new potential therapeutic targets. CTNNB1, APC, AKT1, BRAF TP53, and RET Sanger sequencing and next-generation sequencing (NGS) with the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2 were performed on formalin-fixed samples from 28 pediatric and 33 adult AFs. The prognostic value of CTNNB1, AKT1, and BRAF mutations in pediatric AF patients was investigated. Recurrence-free survival (RFS) curves were estimated with the Kaplan-Meier method and statistical comparisons were drawn using the log-rank test. In addition to the CTNNB1 mutation (64%), pediatric AF showed AKT1 (31%), BRAF (19%), and TP53 (9%) mutations, whereas only the CTNNB1 mutation was found in adult AF. The polymorphism Q472H VEGFR was identified in both pediatric (56%) and adult (40%) AF. Our results indicate that the mutational spectrum of pediatric AF is more complex than that of adult AF, with multiple gene mutations involving not only CTNNB1 but also AKT1 and BRAF. This intriguing finding may have clinical implications and warrants further investigations.

Tserga A, Chatziandreou I, Michalopoulos NV, et al.
Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness.
Virchows Arch. 2016; 469(1):35-43 [PubMed] Related Publications
Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.

Lee JK, Phillips JW, Smith BA, et al.
N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.
Cancer Cell. 2016; 29(4):536-47 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.

Park JW, Lee JK, Phillips JW, et al.
Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.
Proc Natl Acad Sci U S A. 2016; 113(16):4482-7 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic theMYCamplification andPTENloss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1-transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1-transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics.

Cui F, Zan X, Li Y, et al.
Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells.
Nutr Cancer. 2016; 68(2):267-79 [PubMed] Related Publications
GFG-3a is a novel glycoprotein previously purified from the fermented mycelia of Grifola frondosa with novel sugar compositions and protein sequencing. The present study aims to investigate its effects on the cell cycle, differential proteins expression, and apoptosis of human gastric cancer SGC-7901 cells. Our findings revealed that GFG-3a induced the cell apoptosis and arrested cell cycle at S phase. GFG-3a treatment resulted in the differential expression of 21 proteins in SGC-7901 cells by upregulating 10 proteins including RBBP4 associated with cell cycle arrest and downregulating 11 proteins including RUVBL1, NPM, HSP90AB1, and GRP78 involved in apoptosis and stress response. qRT-PCR and Western blot analysis also suggested that GFG-3a could increase the expressions of Caspase-8/-3, p53, Bax, and Bad while decrease the expressions of Bcl2, Bcl-xl, PI3K, and Akt1. These results indicated that the stress response, p53-dependent mitochondrial-mediated, Caspase-8/-3-dependent, and PI3k/Akt pathways were involved in the GFG-3a-induced apoptosis process in SGC-7901 cells. These findings might provide a basis to prevent or treat human gastric cancer with GFG-3a and understand the tumor-inhibitory molecular mechanisms of mushroom glycoproteins.

Penson RT, Sales E, Sullivan L, et al.
A SNaPshot of potentially personalized care: Molecular diagnostics in gynecologic cancer.
Gynecol Oncol. 2016; 141(1):108-12 [PubMed] Related Publications
BACKGROUND: Genetic abnormalities underlie the development and progression of cancer, and represent potential opportunities for personalized cancer therapy in Gyn malignancies.
METHODS: We identified Gyn oncology patients at the MGH Cancer Center with tumors genotyped for a panel of mutations by SNaPshot, a CLIA approved assay, validated in lung cancer, that uses SNP genotyping in degraded DNA from FFPE tissue to identify 160 described mutations across 15 cancer genes (AKT1, APC, BRAF, CTNNB1, EGFR, ERBB2, IDH1, KIT, KRAS, MAP2KI, NOTCH1, NRAS, PIK3CA, PTEN, TP53).
RESULTS: Between 5/17/10 and 8/8/13, 249 pts consented to SNaPshot analysis. Median age 60 (29-84) yrs. Tumors were ovarian 123 (49%), uterine 74(30%), cervical 14(6%), fallopian 9(4%), primary peritoneal 13(5%), or rare 16(6%) with the incidence of testing high grade serous ovarian cancer (HGSOC) halving over time. SNaPshot was positive in 75 (30%), with 18 of these (24%) having 2 or 3 (n=5) mutations identified. TP53 mutations are most common in high-grade serous cancers yet a low detection rate (17%) was likely related to the assay. However, 4 of the 7 purely endometrioid ovarian tumors (57%) harbored a p53 mutation. Of the 38 endometrioid uterine tumors, 18 mutations (47%) in the PI3Kinase pathway were identified. Only 9 of 122 purely serous (7%) tumors across all tumor types harbored a 'drugable' mutation, compared with 20 of 45 (44%) of endometrioid tumors (p<0.0001). 17 pts subsequently enrolled on a clinical trial; all but 4 of whom had PIK3CA pathway mutations. Eight of 14 (47%) cervical tumors harbored a 'drugable' mutation.
CONCLUSION: Although SNaPshot can identify potentially important therapeutic targets, the incidence of 'drugable' targets in ovarian cancer is low. In this cohort, only 7% of subjects eventually were treated on a relevant clinical trial. Geneotyping should be used judiciously and reflect histologic subtype and available platform.

Myers AP, Filiaci VL, Zhang Y, et al.
Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
Gynecol Oncol. 2016; 141(1):43-8 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
OBJECTIVE: Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development.
METHODS: Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next-generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored.
RESULTS: Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01-0.78) and RR (response difference 0.83; 95% CI 0.03-0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20-0.97) but not RR (response difference 0.00, 95% CI -0.34-0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR.
CONCLUSIONS: Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus.

Tan X, Liu P, Huang Y, et al.
Phosphoproteome Analysis of Invasion and Metastasis-Related Factors in Pancreatic Cancer Cells.
PLoS One. 2016; 11(3):e0152280 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
Mechanisms of abnormal protein phosphorylation that regulate cell invasion and metastasis in pancreatic cancer remain obscure. In this study, we used high-throughput phosphorylation array to test two pancreatic cancer cell lines (PC-1 cells with a low, and PC-1.0 cells with a high potential for invasion and metastasis). We noted that a total of 57 proteins revealed a differential expression (fold change ≥ 2.0). Six candidate proteins were further validated by western blot with results found to be accordance with the array. Of 57 proteins, 32 up-regulated proteins (e.g. CaMK1-α and P90RSK) were mainly involved in ErbB and neurotrophin signaling pathways as determined using DAVID software, while 25 down-regulated proteins (e.g. BID and BRCA1) were closely involved in apoptosis and p53 signaling pathways. Moreover, four proteins (AKT1, Chk2, p53 and P70S6K) with different phosphorylation sites were found, not only among up-regulated, but also among down-regulated proteins. Importantly, specific phosphorylation sites can affect cell biological functions. CentiScaPe software calculated topological characteristics of each node in the protein-protein interaction (PPI) network: we found that AKT1 owns the maximum node degrees and betweenness in the up-regulation protein PPI network (26 nodes, average path length: 1.89, node degrees: 6.62±4.18, betweenness: 22.23±35.72), and p53 in the down-regulation protein PPI network (17 nodes, average path length: 2.04, node degrees: 3.65±2.47, betweenness: 16.59±29.58). In conclusion, the identification of abnormal protein phosphorylation related to invasion and metastasis may allow us to identify new biomarkers in an effort to develop novel therapeutic drug targets for pancreatic cancer treatment.

Mancini ML, Lien EC, Toker A
Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.
Oncotarget. 2016; 7(14):17301-13 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

Leng C, Zhang ZG, Chen WX, et al.
An integrin beta4-EGFR unit promotes hepatocellular carcinoma lung metastases by enhancing anchorage independence through activation of FAK-AKT pathway.
Cancer Lett. 2016; 376(1):188-96 [PubMed] Related Publications
Anoikis, a form of programmed cell death, occurs when the cells are detached from the appropriate extracellular matrix. Anoikis resistance or anchorage independence is necessary for distant metastases of cancer. The mechanisms by which hepatocellular carcinoma (HCC) cells become resistant to anoikis are not fully understood. Integrin beta4 (ITGB4, also known as CD104) is associated with progression of many human cancers. In this study, we demonstrate that ITGB4 is over-expressed in HCC tissues and aggressive HCC cell lines. To explore the role of ITGB4 in HCC, we inhibited its expression using small interfering RNA in two HCC cell lines: HCCLM3 and HLF. We show that knockdown of ITGB4 significantly enhanced susceptibility to anoikis through inhibition of AKT/PKB signaling. Moreover, ITGB4 interacts with epidermal growth factor receptor (EGFR) in a ligand independent manner. Inactivation of EGFR inhibits the anchorage independence and AKT pathway promoted by ITGB4. Further investigation proved that the ITGB4-EGFR unit triggers the focal adhesion kinase (FAK) to activate the AKT signaling pathway. Finally, we demonstrate that over-expression of ITGB4 is positively associated with tumor growth and lung metastases of HCC in vivo. Collectively, we demonstrate for the first time that ITGB4 is overexpressed in HCC tissues and promotes metastases of HCC by conferring anchorage independence through EGFR-dependent FAK-AKT activation.

Ruan Y, Jiang J, Guo L, et al.
Genetic Association of Curative and Adverse Reactions to Tyrosine Kinase Inhibitors in Chinese advanced Non-Small Cell Lung Cancer patients.
Sci Rep. 2016; 6:23368 [PubMed] Article available free on PMC after 11/04/2017 Related Publications
Epidermal growth factor receptor (EGFR) Tyrosine kinase inhibitor (TKI) is an effective targeted therapy for advanced non-small cell lung cancer (NSCLC) but also causes adverse drug reactions (ADRs) e.g., skin rash and diarrhea. SNPs in the EGFR signal pathway, drug metabolism/ transport pathways and miRNA might contribute to the interpersonal difference in ADRs but biomarkers for therapeutic responses and ADRs to TKIs in Chinese population are yet to be fully investigated. We recruited 226 Chinese advanced NSCLC patients who received TKIs erlotinib, gefitinib and icotinib hydrochloride and systematically studied the genetic factors associated with therapeutic responses and ADRs. Rs884225 (T > C) in EGFR 3' UTR was significantly associated with lower risk of ADRs to erlotinib (p value = 0.0010, adjusted p value = 0.042). A multivariant interaction four-SNP model (rs884225 in EGFR 3'UTR, rs7787082 in ABCB1 intron, rs38845 in MET intron and rs3803300 in AKT1 5'UTR) was associated with ADRs in general and the more specific drug induced skin injury. The SNPs associated with both therapeutic responses and ADRs indicates they might share a common genetic basis. Our study provided potential biomarkers and clues for further research of biomarkers for therapeutic responses and ADRs in Chinese NSCLC patients.

Sun M, Hong S, Li W, et al.
MiR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4.
Oncol Rep. 2016; 35(5):2755-66 [PubMed] Related Publications
miR-99a is frequently downregulated in various types of human malignancies including lung adenocarcinoma. Recent studies have reported that miR-99a regulates cell growth and cell cycle progression by targeting mTOR, AKT1 and FGFR3. However, the underlying mechanisms involved in the modulation of invasion and migration by miR-99a remain elusive. In this study, we analyzed the relationship between the expression of miR-99a and clinical stage or metastasis in 90 matched lung adenocarcinoma and adjacent non-tumor lung tissues. Downregulation of miR-99a was significantly associated with advanced stage and tumor metastasis in lung adenocarcinoma patients, and it was found to be a poor prognostic factor in lung adenocarcinoma. Furthermore, functional experiments found that overexpression of miR-99a inhibited the proliferation, migration and invasion of lung adenocarcinoma A549 and Calu3 cells in vitro. We then identified NOX4 as a target gene of miR-99a and NOX4 mediated the inhibition of invasion and migration of lung adenocarcinoma cells by miR-99a. By targeting NOX4-mediated ROS production, miR-99a regulated the invasion and migration of lung adenocarcinoma cells. Moreover, overexpression of miR-99a significantly inhibited tumor growth in vivo. Immunohistochemical staining analysis of the mouse tumor tissues revealed that NOX4 levels were downregulated in the miR-99a treatment group, confirming the in vitro data of NOX4 as a direct target gene of miR-99a. Taken together, these data indicate for the first time that miR-99a directly regulates the invasion and migration in lung adenocarcinoma by targeting NOX4 and that overexpression of miR-99a may become a therapeutic strategy for lung adenocarcinoma.

Kim M, Kim YY, Jee HJ, et al.
Akt3 knockdown induces mitochondrial dysfunction in human cancer cells.
Acta Biochim Biophys Sin (Shanghai). 2016; 48(5):447-53 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Akt/PKB plays a pivotal role in cell proliferation and survival. However, the isotype-specific roles of Akt in mitochondrial function have not been fully addressed. In this study, we explored the role of Akt in mitochondrial function after stable knockdown of the Akt isoforms in EJ human bladder cancer cells. We found that the mitochondrial mass was significantly increased in the Akt1- and Akt3-knockdown cells, and this increase was accompanied by an increase in TFAM and NRF1. Akt2 knockdown did not cause a similar effect. Interestingly, Akt3 knockdown also led to severe structural defects in the mitochondria, an increase in doxorubicin-induced senescence, and impairment of cell proliferation in galactose medium. Consistent with these observations, the mitochondrial oxygen consumption rate was significantly reduced in the Akt3-knockdown cells. An Akt3 deficiency-induced decrease in mitochondrial respiration was also observed in A549 lung cancer cells. Collectively, these results suggest that the Akt isoforms play distinct roles in mitochondrial function and that Akt3 is critical for proper mitochondrial respiration in human cancer cells.

Tamura K, Hashimoto J, Tanabe Y, et al.
Safety and tolerability of AZD5363 in Japanese patients with advanced solid tumors.
Cancer Chemother Pharmacol. 2016; 77(4):787-95 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
PURPOSE: Investigate the safety and tolerability of AZD5363 and define a recommended dose for evaluation in Japanese patients with advanced solid malignancies.
METHODS: AZD5363 was administered orally as a single dose, and then the dose was escalated to twice daily (bid) in separate continuous (every day) and intermittent (4 days on, 3 days off [4/3] or 2 days on, 5 days off [2/5]) dosing schedules to reach recommended doses defined by dose-limiting toxicity (DLT). Doses for continuous, 4/3, and 2/5 intermittent dosing schedules were 80-400, 360-480, and 640 mg, respectively, and were informed by results from an equivalent study in Caucasian patients.
RESULTS: Forty-one patients received AZD5363. DLTs were only experienced with continuous dosing. 97.6 % of patients reported at least one adverse event (AE); most common were diarrhea (78.0 %), hyperglycemia (68.3 %), nausea (56.1 %), and maculopapular rash (56.1 %). Grade ≥3 AEs were reported by 63.4 % of patients. Exposure of AZD5363 was generally dose proportional for both single and multiple doses. Single-dose pharmacokinetics of AZD5363 was generally predictive of multiple-dose pharmacokinetics. Confirmed partial responses were reported by two patients, both of whom were Akt1 (E17K) mutation positive. One patient in the 480 mg bid 4/3 dosing cohort maintained partial response for >2 years.
CONCLUSIONS: Intermittent dosing of AZD5363 was more tolerable than continuous dosing. 480 mg bid intermittent 4/3 dosing for AZD5363 monotherapy was selected for further investigation. Preliminary evidence of antitumor activity was observed. Akt1 (E17K) is a potent driver mutation that may predict clinical response to AZD5363.

Ebbesen SH, Scaltriti M, Bialucha CU, et al.
Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas.
Proc Natl Acad Sci U S A. 2016; 113(11):3030-5 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Loss of the tumor suppressor gene PTEN is implicated in breast cancer progression and resistance to targeted therapies, and is thought to promote tumorigenesis by activating PI3K signaling. In a transgenic model of breast cancer, Pten suppression using a tetracycline-regulatable short hairpin (sh)RNA cooperates with human epidermal growth factor receptor 2 (HER2/neu), leading to aggressive and metastatic disease with elevated signaling through PI3K and, surprisingly, the mitogen-activated protein kinase (MAPK) pathway. Restoring Pten function is sufficient to down-regulate both PI3K and MAPK signaling and triggers dramatic tumor regression. Pharmacologic inhibition of MAPK signaling produces similar effects to Pten restoration, suggesting that the MAPK pathway contributes to the maintenance of advanced breast cancers harboring Pten loss.

Hua X, Hyland PL, Huang J, et al.
MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations.
Am J Hum Genet. 2016; 98(3):442-55 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.

He CL, Bian YY, Xue Y, et al.
Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1.
Sci Rep. 2016; 6:21524 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells.

Chang RM, Xu JF, Fang F, et al.
MicroRNA-130b promotes proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling.
Tumour Biol. 2016; 37(8):10609-19 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths owing to its high rate of postoperative recurrence and metastasis. New research is continuously identifying novel metastasis-associated oncogenes and tumor suppressor genes. miRNAs are noncoding RNAs that regulate protein synthesis post-translationally. miR-130b is one of several miRNAs involved in tumor metastasis. However, the role of miR-130b in HCC remains controversial. Here, we demonstrate that miR-130b is highly expressed in HCC and that it correlates with tumor number, vascular invasion, and TNM stage-important predictors of postoperative recurrence and metastases. Moreover, high levels of miR-130b predicted poor overall and disease-free survival of HCC patients, and in vitro and in vivo research revealed that knockdown or overexpression of miR-130b inhibited and promoted proliferation and metastasis of HCC cells, respectively. We identified PTEN as a direct functional target of miR-130b using miRNA databases and a dual luciferase report assay. Next, using a gain and loss assay and epithelial-mesenchymal transition (EMT) relative assays, we show that miR-130b may promote proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling. Collectively, our data suggests that miR-130b may have prognostic value in HCC. Additionally, the miR-130b/PTEN/p-AKT/HIF-1α axis identified in this study provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. v-akt murine thymoma viral oncogene homolog 1 (14q32.3), Cancer Genetics Web: http://www.cancer-genetics.org/AKT1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999