Gene Summary

Gene:MYD88; myeloid differentiation primary response 88
Aliases: MYD88D
Summary:This gene encodes a cytosolic adapter protein that plays a central role in the innate and adaptive immune response. This protein functions as an essential signal transducer in the interleukin-1 and Toll-like receptor signaling pathways. These pathways regulate that activation of numerous proinflammatory genes. The encoded protein consists of an N-terminal death domain and a C-terminal Toll-interleukin1 receptor domain. Patients with defects in this gene have an increased susceptibility to pyogenic bacterial infections. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:myeloid differentiation primary response protein MyD88
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (45)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MYD88 (cancer-related)

Koch AT, Love-Homan L, Espinosa-Cotton M, et al.
MyD88-Dependent Signaling Decreases the Antitumor Efficacy of Epidermal Growth Factor Receptor Inhibition in Head and Neck Cancer Cells.
Cancer Res. 2015; 75(8):1657-67 [PubMed] Article available free on PMC after 15/04/2016 Related Publications
EGFR is upregulated in the majority of head and neck squamous cell carcinomas (HNSCC). However, many patients with HNSCC respond poorly to the EGFR inhibitors (EGFRI) cetuximab and erlotinib, despite tumor expression of EGFR. Gene expression analysis of erlotinib-treated HNSCC cells revealed an upregulation of genes involved in MyD88-dependent signaling compared with their respective vehicle-treated cell lines. We therefore investigated whether MyD88-dependent signaling may reduce the antitumor efficacy of EGFRIs in HNSCC. Erlotinib significantly upregulated IL6 secretion in HNSCC cell lines, which our laboratory previously reported to result in reduced drug efficacy. Suppression of MyD88 expression blocked erlotinib-induced IL6 secretion in vitro and increased the antitumor activity of erlotinib in vivo. There was little evidence of Toll-like receptor or IL18 receptor involvement in erlotinib-induced IL6 secretion. However, suppression of IL1R signaling significantly reduced erlotinib-induced IL6 production. A time-dependent increase of IL1α but not IL1β was observed in response to erlotinib treatment, and IL1α blockade significantly increased the antitumor activity of erlotinib and cetuximab in vivo. A pan-caspase inhibitor reduced erlotinib-induced IL1α secretion, suggesting that IL1α was released because of cell death. Human HNSCC tumors showed higher IL1α mRNA levels compared with matched normal tissue, and IL1α was found to be negatively correlated with survival in patients with HNSCC. Overall, the IL1α/IL1R/MYD88/IL6 pathway may be responsible for the reduced antitumor efficacy of erlotinib and other EGFRIs, and blockade of IL1 signaling may improve the efficacy of EGFRIs in the treatment of HNSCC.

Castillo JJ, Ghobrial IM, Treon SP
Biology, prognosis, and therapy of Waldenström Macroglobulinemia.
Cancer Treat Res. 2015; 165:177-95 [PubMed] Related Publications
Waldenström Macroglobulinemia (WM) is a rare B-cell lymphoma characterized by the uncontrolled accumulation of malignant lymphoplasmacytic cells, mainly in the bone marrow, and monoclonal IgM production. Despite its rarity, our understanding of the biology of this disease has improved significantly in recent years with the identification of recurrent mutations in the MYD88 and CXCR4 genes. Based on the diversity of clinical features observed in WM patients, therapy should be highly personalized having into account several factors such as age, co-morbidities, IgM levels, and presence of hyperviscosity, coagulopathy, cryoglobulinemia, or cold agglutinin disease. In this chapter, we review the recent advances in the biology of WM and the current therapeutic options for untreated and relapsed WM patients. Finally, we discuss the role of prognostic factors and current evidence supporting an improvement in the survival of WM patients in the last decade.

Paiva B, Corchete LA, Vidriales MB, et al.
The cellular origin and malignant transformation of Waldenström macroglobulinemia.
Blood. 2015; 125(15):2370-80 [PubMed] Related Publications
Although information about the molecular pathogenesis of Waldenström macroglobulinemia (WM) has significantly advanced, the precise cell of origin and the mechanisms behind WM transformation from immunoglobulin-M (IgM) monoclonal gammopathy of undetermined significance (MGUS) remain undetermined. Here, we undertook an integrative phenotypic, molecular, and genomic approach to study clonal B cells from newly diagnosed patients with IgM MGUS (n = 22), smoldering (n = 16), and symptomatic WM (n = 11). Through principal component analysis of multidimensional flow cytometry data, we demonstrated highly overlapping phenotypic profiles for clonal B cells from IgM MGUS, smoldering, and symptomatic WM patients. Similarly, virtually no genes were significantly deregulated between fluorescence-activated cell sorter-sorted clonal B cells from the 3 disease groups. Interestingly, the transcriptome of the Waldenström B-cell clone was highly different than that of normal CD25(-)CD22(+) B cells, whereas significantly less genes were differentially expressed and specific WM pathways normalized once the transcriptome of the Waldenström B-cell clone was compared with its normal phenotypic (CD25(+)CD22(+low)) B-cell counterpart. The frequency of specific copy number abnormalities [+4, del(6q23.3-6q25.3), +12, and +18q11-18q23] progressively increased from IgM MGUS and smoldering WM vs symptomatic WM (18% vs 20% and 73%, respectively; P = .008), suggesting a multistep transformation of clonal B cells that, albeit benign (ie, IgM MGUS and smoldering WM), already harbor the phenotypic and molecular signatures of the malignant Waldenström clone.

Wang Y, Tu Q, Yan W, et al.
CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway.
Biochem Biophys Res Commun. 2015; 456(1):373-9 [PubMed] Related Publications
CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

Chittezhath M, Dhillon MK, Lim JY, et al.
Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression.
Immunity. 2014; 41(5):815-29 [PubMed] Related Publications
Monocytes and macrophages are major components of the tumor microenvironment, but their contributions to human cancer are poorly understood. We used molecular profiling combined with functional assays to investigate the role of these cells in human renal cell carcinoma (RCC). Blood monocytes from RCC patients displayed a tumor-promoting transcriptional profile that supported functions like angiogenesis and invasion. Induction of this protumor phenotype required an interleukin-1 receptor (IL-1R)-dependent mechanism. Indeed, targeting of IL-1-IL-1R axis in a human RCC xenograft model abrogated the protumor phenotype of tumor-associated macrophages (TAMs) and reduced tumor growth in vivo. Supporting this, meta-analysis of gene expression from human RCC tumors showed IL1B expression to correlate with myelomonocytic markers, protumor genes, and tumor staging. Analyzing RCC patient tumors confirmed the protumor phenotype of TAMs. These data provide direct evidence for a tumor-promoting role of monocytes and macrophages in human cancer and indicate IL-1-IL-1R as a possible therapeutic target.

Langhe R, Norris L, Saadeh FA, et al.
A novel serum microRNA panel to discriminate benign from malignant ovarian disease.
Cancer Lett. 2015; 356(2 Pt B):628-36 [PubMed] Related Publications
Ovarian cancer is the seventh most common cancer in women and the most frequent cause of gynaecological malignancy-related mortality in women. Currently, no standardized reliable screening test exists. MicroRNA profiling has allowed the identification of signatures associated with diagnosis, prognosis and response to treatment of human tumours. The aim of this study was to determine if a microRNA signature could distinguish between malignant and benign ovarian disease. A training set of 5 serous ovarian carcinomas and 5 benign serous cystadenomas were selected for the initial experiments. The validation set included 20 serous ovarian carcinomas and 20 benign serous cystadenomas. The serum/plasma focus microRNA Exiqon panel was used for the training set. For the validation set a pick and mix Exiqon panel, which focuses on microRNAs of interest was used. A panel of 4 microRNAs (let-7i-5p, miR-122, miR-152-5p and miR-25-3p) was significantly down regulated in cancer patients. These microRNAs target WNT signalling, AKT/mTOR and TLR-4/MyD88, which have previously been found to play a role in ovarian carcinogenesis and chemoresistance. let-7i-5p, miR-122, miR-152-5p and miR-25-3p could act as diagnostic biomarkers in ovarian cancer.

Clipson A, Wang M, de Leval L, et al.
KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype.
Leukemia. 2015; 29(5):1177-85 [PubMed] Related Publications
To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in Kruppel-like factor 2 (KLF2), a gene whose deficiency was previously shown to cause splenic marginal zone hyperplasia in mice. KLF2 mutation was found in 40 (42%) of 96 SMZLs, but rarely in other B-cell lymphomas. The majority of KLF2 mutations were frameshift indels or nonsense changes, with missense mutations clustered in the C-terminal zinc finger domains. Functional assays showed that these mutations inactivated the ability of KLF2 to suppress NF-κB activation by TLR, BCR, BAFFR and TNFR signalling. Further extensive investigations revealed common and distinct genetic changes between SMZL with and without KLF2 mutation. IGHV1-2 rearrangement and 7q deletion were primarily seen in SMZL with KLF2 mutation, while MYD88 and TP53 mutations were nearly exclusively found in those without KLF2 mutation. NOTCH2, TRAF3, TNFAIP3 and CARD11 mutations were observed in SMZL both with and without KLF2 mutation. Taken together, KLF2 mutation is the most common genetic change in SMZL and identifies a subset with a distinct genotype characterised by multi-genetic changes. These different genetic changes may deregulate various signalling pathways and generate cooperative oncogenic properties, thereby contributing to lymphomagenesis.

Knief J, Gebauer N, Bernard V, et al.
Oncogenic mutations and chromosomal aberrations in primary extranodal diffuse large B-cell lymphomas of the thyroid--a study of 21 cases.
J Clin Endocrinol Metab. 2015; 100(2):754-62 [PubMed] Related Publications
CONTEXT: Primary extranodal diffuse large B-cell lymphomas of the thyroid (ptDLBCL) constitute a rare entity, which until now was not fully explored.
OBJECTIVE: Due to recently published data genetically linking ptDLBCL to a subset of thyroid carcinoma, we assessed the occurrence of oncogenic mutations and copy number alterations.
DESIGN: A high-resolution array-based comparative genomic hybridization approach was applied to quantify genomic aberrations in a study population of 21 ptDLBCL patients. In addition, we investigated the frequency of mutations involving the BRAF, NRAS, and MYD88 genes in correlation with immunohistochemical data.
RESULTS: Chromosomal gains were recurrently detected at 6p21.33-p21.31, 6p22.2, 12p13.31, 14q31.1, 14q32.33, 19p13.3, and 22q11.22; numeric losses were most frequently observed at 6p21.3-p21.31, 10q26.3, 19p13.3, 20q13.33, and 21q11.2. Aberrations affecting 6p22.2 and 14q32.33 as well as 22q11.22 differed slightly between germinal center B-cell (GCB) and non-GCB groups. Statistically significant deviations were detected at 20q13.33 and 21q11.2. These specific alterations do not seem to occur in thyroid carcinomas or other DLBCL, according to previously published literature. Analysis of BRAF and NRAS showed mutation frequencies of 4.8 and 9.5%, respectively. No MYD88 mutations could be detected in any of the analyzed cases. Fluorescence in situ hybridization demonstrated breakage events involving the BCL2, BCL6, and cMYC locus in 14.3, 9.5, and 9.5%, respectively.
CONCLUSIONS: Our study revealed ptDLBCL to be predominantly composed of the GCB type, harboring no MYD88 mutations and showing infrequent mutations in the BRAF and NRAS genes. Additionally, array comparative genomic hybridization showed no overlapping alterations between ptDLBCL and thyroid carcinomas or other nodal or extranodal DLBCL.

Ignatz-Hoover JJ, Wang H, Moreton SA, et al.
The role of TLR8 signaling in acute myeloid leukemia differentiation.
Leukemia. 2015; 29(4):918-26 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Acute myeloid leukemia (AML) is an aggressive disease with a poor 5-year survival of 21% that is characterized by the differentiation arrest of immature myeloid cells. For a rare subtype of AML (acute promyeloctyic leukemia, 5-10% of cases), all-trans retinoic acid therapy removes the differentiation block, yielding over a 90% cure rate. However, this treatment is not effective for the other 90-95% of AML patients, suggesting that new differentiation strategies are needed. Interestingly, differentiation is induced in normal hematopoietic cells through Toll-like receptor (TLR) stimulation and TLRs are expressed on AML cells. We present evidence that the TLR8 activation promotes AML differentiation and growth inhibition in a TLR8/MyD88/p38-dependent manner. We also show that that TLR7/TLR8 agonist, R848, considerably impairs the growth of human AML cells in immunodeficient mice. Our data suggests TLR8 activation has direct anti-leukemic effects independent of its immunomodulating properties that are currently under investigation for cancer therapy. Taken together, our results suggest that treatment with TLR8 agonists may be a promising new therapeutic strategy for AML.

Gebauer N, Hardel TT, Gebauer J, et al.
Activating mutations affecting the NF-kappa B pathway and EZH2-mediated epigenetic regulation are rare events in primary mediastinal large B-cell lymphoma.
Anticancer Res. 2014; 34(10):5503-7 [PubMed] Related Publications
BACKGROUND: Primary mediastinal large B-cell lymphoma (PMBL) is a distinct subtype of diffuse large B-cell lymphoma (DLBCL) frequently observed in young patients. High-dose immunochemotherapy constitutes the current therapeutic gold-standard, despite significant toxicity and serious late effects. Several hotspots harboring oncogenic gain-of-function mutations were recently shown to pose vital hallmarks in activated B-cell like (ABC-) (CD79B, CARD11 and MYD88) and germinal center like (GCB-) DLBCL (EZH2), respectively. Several promising targeted-therapy approaches, derived from these findings, are currently under development.
MATERIALS AND METHODS: We thoroughly characterized a cohort of 25 untreated patients with de novo PMBL by immunohistochemical and cytogenetic means and assessed the prevalence of activating mutations affecting EZH2, CD79B and CARD11 utilizing a polymerase chain reaction (PCR)-based capillary sequencing approach. Moreover, the MYD88 p. L265P status was assessed by employing a pyrosequencing approach.
RESULTS: PMBLs included in this study did not harbor any of the reported hotspot mutations activating the nuclear factor (NF)-kappa B signaling cascade or the EZH2-mediated epigenetic deregulation of gene expression. Immunohistochemical characterization revealed an ABC phenotype in 44% (n=11) of cases.
CONCLUSION: We report that genetic alterations of these genes are rare events in PMBL unlike other subtypes of DLBCL. Our findings suggest that a substantial subset of PMBL patients may benefit from treatment approaches targeting BCR-mediated activation of NF-kappa B.

Petrikkos L, Kyrtsonis MC, Roumelioti M, et al.
Clonotypic analysis of immunoglobulin heavy chain sequences in patients with Waldenström's macroglobulinemia: correlation with MYD88 L265P somatic mutation status, clinical features, and outcome.
Biomed Res Int. 2014; 2014:809103 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
We performed IGH clonotypic sequence analysis in WM in order to determine whether a preferential IGH gene rearrangement was observed and to assess IGHV mutational status in blood and/or bone marrow samples from 36 WM patients. In addition we investigated the presence of MYD88 L265P somatic mutation. After IGH VDJ locus amplification, monoclonal VDJ rearranged fragments were sequenced and analyzed. MYD88 L265P mutation was detected by AS-PCR. The most frequent family usage was IGHV3 (74%); IGHV3-23 and IGHV3-74 segments were used in 26% and 17%, respectively. Somatic hypermutation was seen in 91% of cases. MYD88 L265P mutation was found in 65,5% of patients and absent in the 3 unmutated. These findings did not correlate with clinical findings and outcome. Conclusion. IGH genes' repertoire differed in WM from those observed in other B-cell disorders with a recurrent IGHV3-23 and IGHV3-74 usage; monoclonal IGHV was mutated in most cases, and a high but not omnipresent prevalence of MYD88 L265P mutation was observed. In addition, the identification of 3 patients with unmutated IGHV gene segments, negative for the MYD88 L265P mutation, could support the hypothesis that an extra-germinal B-cell may represent the originating malignant cell in this minority of WM patients.

Takazawa Y, Kiniwa Y, Ogawa E, et al.
Toll-like receptor 4 signaling promotes the migration of human melanoma cells.
Tohoku J Exp Med. 2014; 234(1):57-65 [PubMed] Related Publications
Immune cell Toll-like receptors (TLRs) recognize conserved microbial components, leading to immune and inflammatory responses. However, TLRs are also expressed in cancer cells, including melanoma cells, which express TLR2-4. TLR4 ligands have received attention as immunotherapies; therefore, we assessed the expression of TLR4 in human melanoma specimens (29 primary lesions and 28 metastatic lesions) representing different types of melanoma. A high percentage (≥ 90%) of melanoma lesions expressed TLR4, as judged by immunohistochemistry. Next, the role of TLR4 in cell proliferation and migration was assessed using the TLR4-positive (TLR4(+)) melanoma cell lines 501mel and 888mel, and TLR4-negative (TLR4(‒)) 928mel melanoma cells. Lipopolysaccharide (LPS), a TLR4 agonist, increased the proliferation of TLR4(+) melanoma cells but not of TLR4(‒) 928mel cells. The proliferation-inducing effect of LPS in 888mel cells was abolished by blockade of TLR4 signaling via treatment with short interfering RNA (siRNA) targeting TLR4 or myeloid differentiation primary response gene 88 (MyD88), a molecule downstream of TLR4. However, knockdown of TLR4 or MyD88 expression did not affect the LPS-induced proliferation of 501mel cells, suggesting that residual TLR4 signaling is sufficient to maintain cell proliferation. By contrast, LPS increased the migration of TLR4(+) melanoma cells, and this effect was substantially inhibited by TLR4 or MyD88 knockdown. Furthermore, TLR4 knockdown decreased cell migration even in the absence of LPS, suggesting the presence of an endogenous TLR4 ligand(s) in melanoma cells. TLR4 signaling may contribute to melanoma progression, and caution should be exercised when using TLR4 ligands as adjuvant therapy for cancer.

Jiménez C, Chillón Mdel C, Balanzategui A, et al.
Detection of MYD88 L265P mutation by real-time allele-specific oligonucleotide polymerase chain reaction.
Appl Immunohistochem Mol Morphol. 2014 Nov-Dec; 22(10):768-73 [PubMed] Related Publications
MYD88 L265P mutation has been reported in ∼90% of Waldenström's Macroglobulinemia (WM) patients and immunoglobulin M (IgM) monoclonal gammopathies of uncertain significance (MGUS), as well as in some cases of lymphoma and chronic lymphocytic leukemia. The present study aimed to develop a real-time allele-specific oligonucleotide PCR (ASO-RQ-PCR) to detect the MYD88 L265P mutation. We first evaluated the reproducibility and sensitivity of the technique with a diluting experiment of a previously known positive sample. Then, we evaluated the applicability of the methodology by analyzing 30 selected patients (10 asymptomatic WM, 10 symptomatic WM, and 10 IgM MGUS) as well as 10 healthy donors. The quantitative ASO-PCR assay could detect the MYD88 L265P mutation at a dilution of 0.25%, showing an inverse correlation between the tumor cell percentage and the cycle threshold (CT) value, thus allowing for tumor burden quantitation. In addition, mutated cases were distinguished from the unmutated by >10 cycles of difference between CTs. To sum up, ASO-RQ-PCR is an inexpensive, robust, and optimized method for the detection of MYD88 L265P mutation, which could be considered as a useful molecular tool during the diagnostic work-up of B-cell lymphoproliferative disorders.

d'Adhemar CJ, Spillane CD, Gallagher MF, et al.
The MyD88+ phenotype is an adverse prognostic factor in epithelial ovarian cancer.
PLoS One. 2014; 9(6):e100816 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer.

Bruno A, Boisselier B, Labreche K, et al.
Mutational analysis of primary central nervous system lymphoma.
Oncotarget. 2014; 5(13):5065-75 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.

Rizzo D, Chauzeix J, Trimoreau F, et al.
IgM peak independently predicts treatment-free survival in chronic lymphocytic leukemia and correlates with accumulation of adverse oncogenetic events.
Leukemia. 2015; 29(2):337-45 [PubMed] Related Publications
We examined the significance of IgM peaks in chronic lymphocytic leukemia (CLL), including its association with newly reported MYD88, BIRC3, NOTCH1 and SF3B1 mutations. A total of 27, 25, 41 and 57 patients with monoclonal IgM or IgG peaks (IgM and IgG groups), hypogammaglobulinemia (Hypo-γ group) and normal immunoglobulin serum levels (normal-γ group) were, respectively, included. IgM peaks were mainly associated with Binet stage C and the del(17p). Biased usage of IGHV3-48 was shared by both IgM and IgG groups. IGHV3-74 and IGHV4-39 gene rearrangements were specific for IgM and IgG peaks, respectively. SF3B1, NOTCH1, MYD88 and BIRC3 mutation frequencies were 12%, 4%, 2% and 2%, respectively, being over-represented in IgM, IgG and Hypo-γ groups for SF3B1, and being equal between normal-γ and IgM groups for MYD88. Overall, 76%, 87%, 49% and 42% of cases from IgM, IgG, Hypo-γ and normal-γ groups had at least one intermediate or poor prognosis genetic marker, respectively. By multivariate analysis, IgM peaks were associated with shorter treatment-free survival independently from any other univariate poor prognosis biological parameters, including IgG peaks, Hypo-γ, IGHV status, SF3B1 mutations, cytogenetics and lymphocytosis. Therefore, as with IgG peaks, IgM peaks aggravated the natural course of CLL, with increased accumulation of adverse genetic events.

Baliakas P, Hadzidimitriou A, Sutton LA, et al.
Recurrent mutations refine prognosis in chronic lymphocytic leukemia.
Leukemia. 2015; 29(2):329-36 [PubMed] Related Publications
Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.

Puiggros A, Venturas M, Salido M, et al.
Interstitial 13q14 deletions detected in the karyotype and translocations with concomitant deletion at 13q14 in chronic lymphocytic leukemia: different genetic mechanisms but equivalent poorer clinical outcome.
Genes Chromosomes Cancer. 2014; 53(9):788-97 [PubMed] Related Publications
Deletion of 13q14 as the sole abnormality is a good prognostic marker in chronic lymphocytic leukemia (CLL). Nonetheless, the prognostic value of reciprocal 13q14 translocations [t(13q)] with related 13q losses has not been fully elucidated. We described clinical and biological characteristics of 25 CLL patients with t(13q), and compared with 62 patients carrying interstitial del(13q) by conventional G-banding cytogenetics (CGC) [i-del(13q)] and 295 patients with del(13q) only detected by fluorescence in situ hybridization (FISH) [F-del(13q)]. Besides from the CLL FISH panel (D13S319, CEP12, ATM, TP53), we studied RB1 deletions in all t(13q) cases and a representative group of i-del(13q) and F-del(13q). We analyzed NOTCH1, SF3B1, and MYD88 mutations in t(13q) cases by Sanger sequencing. In all, 25 distinct t(13q) were described. All these cases showed D13S319 deletion while 32% also lost RB1. The median percentage of 13q-deleted nuclei did not differ from i-del(13q) patients (73% vs. 64%), but both were significantly higher than F-del(13q) (52%, P < 0.001). Moreover, t(13q) patients showed an increased incidence of biallelic del(13q) (52% vs. 11.3% and 14.9%, P < 0.001) and higher rates of concomitant 17p deletion (37.5% vs. 8.6% and 7.2%, P < 0.001). RB1 involvement was significantly higher in the i-del(13q) group (79%, P < 0.001). Two t(13q) patients (11.8%) carried NOTCH1 mutations. Time to first treatment in t(13q) and i-del(13q) was shorter than F-del(13q) (67, 44, and 137 months, P = 0.029), and preserved significance in the multivariate analysis. In conclusion, t(13q) and del(13q) patients detected by CGC constitute a subgroup within the 13q-deleted CLL patients associated with a worse clinical outcome.

Li WL, Xiao MS, Zhang DF, et al.
Mutation and expression analysis of the IDH1, IDH2, DNMT3A, and MYD88 genes in colorectal cancer.
Gene. 2014; 546(2):263-70 [PubMed] Related Publications
Colorectal cancer (CRC) is one of the leading causes of death around the world. Its genetic mechanism was intensively investigated in the past decades with findings of a number of canonical oncogenes and tumor-suppressor genes such as APC, KRAS, and TP53. Recent genome-wide association and sequencing studies have identified a series of promising oncogenes including IDH1, IDH2, DNMT3A, and MYD88 in hematologic malignancies. However, whether these genes are involved in CRC remains unknown. In this study, we screened the hotspot mutations of these four genes in 305 CRC samples from Han Chinese by direct sequencing. mRNA expression levels of these genes were quantified by quantitative real-time PCR (RT-qPCR) in paired cancerous and paracancerous tissues. Association analyses between mRNA expression levels and different cancerous stages were performed. Except for one patient harboring IDH1 mutation p.I99M, we identified no previously reported hotspot mutations in colorectal cancer tissues. mRNA expression levels of IDH1, DNMT3A, and MYD88, but not IDH2, were significantly decreased in the cancerous tissues comparing with the paired paracancerous normal tissues. Taken together, the hotspot mutations of IDH1, IDH2, DNMT3A, and MYD88 gene were absent in CRC. Aberrant mRNA expression of IDH1, DNMT3A, and MYD88 gene might be actively involved in the development of CRC.

Care MA, Cocco M, Laye JP, et al.
SPIB and BATF provide alternate determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity.
Nucleic Acids Res. 2014; 42(12):7591-610 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.1 and BATF genome-wide, but SPIB provides the dominant IRF4 partner in this context. Upon SPIB knockdown IRF4 occupancy is depleted and neither PU.1 nor BATF acutely compensates. Integration with ENCODE data from lymphoblastoid cell line GM12878, demonstrates that IRF4 adopts either SPIB- or BATF-centric genome-wide distributions in related states of post-germinal centre B-cell transformation. In primary DLBCL high-SPIB and low-BATF or the reciprocal low-SPIB and high-BATF mRNA expression links to differential gene expression profiles across nine data sets, identifying distinct associations with SPIB occupancy, signatures of B-cell differentiation stage and potential pathogenetic mechanisms. In a population-based patient cohort, SPIBhigh/BATFlow-ABC-DLBCL is enriched for mutation of MYD88, and SPIBhigh/BATFlow-ABC-DLBCL with MYD88-L265P mutation identifies a small subgroup of patients among this otherwise aggressive disease subgroup with distinct favourable outcome. We conclude that differential expression of IRF4 cofactors SPIB and BATF identifies biologically and clinically significant heterogeneity among ABC-DLBCL.

Carbone A, Gloghini A, Kwong YL, Younes A
Diffuse large B cell lymphoma: using pathologic and molecular biomarkers to define subgroups for novel therapy.
Ann Hematol. 2014; 93(8):1263-77 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Diffuse large B cell lymphoma (DLBCL) comprises specific subtypes, disease entities, and other not otherwise specified (NOS) lymphomas. This review will focus on DLBCL NOS because of their prevalence and their heterogeneity with respect to morphology, clinical presentation, biology, and response to treatment. Gene expression profiling of DLBCL NOS has identified molecular subgroups that correlate with prognosis and may have relevance for treatment based on signaling pathways. New technologies have revealed that the "activated B cell" subgroup is linked to activation of the nuclear factor kB (NF-kB) pathway, with mutations found in CD79A/B, CARD11, and MYD88, and loss of function mutations in TNFAIP3. The "germinal center B cell-like" subgroup is linked to mutational changes in EZH2 and CREBBP. Biomarkers that are related to pathways promoting tumor cell growth and survival in DLBCL have been recognized, although their predictive role requires clinical validation. Immunohistochemistry for detecting the expression of these biomarkers is a practical technique that could provide a rational for clinical trial design.

Capaldi IB, May AM, Schmitt-Graeff A, et al.
Detection of MYD88 L265P mutations in formalin-fixed and decalcified BM biopsies from patients with lymphoplasmacytic lymphoma.
Exp Mol Pathol. 2014; 97(1):57-65 [PubMed] Related Publications
The diagnosis of bone marrow (BM) infiltration by Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) poses a diagnostic challenge in hematopathology. No definitive morphology or immunophenotype is able to distinguish between infiltration of paraffin-embedded BM sections by WM/LPL and other indolent lymphomas, in particular those of the splenic marginal zone (SMZL) which may also show plasmacytic maturation. An oncogenic gain-of-function mutation (L265P) in the human MYD88 gene has been found to be present in most cases of WM/LPL, yet is absent in most other cases of B-cell chronic lymphoproliferative disorders (LPD), including SMZL. Here, we compare two newly developed diagnostic protocols for detection of this mutation in paraffin-embedded archival tissues which are particularly applicable to decalcified BM biopsies. Sanger sequencing can easily detect levels of BM infiltration above 15% by WM lymphoplasmacytic cells, while the allele-specific PCR can detect the L265P mutation in BM infiltrations below 1% of lymphoma cells. We show that these methods are easily applicable to archival BM specimens and markedly improve diagnostic accuracy of BM infiltrations by indolent B-cell lymphomas.

Martínez-Trillos A, Pinyol M, Navarro A, et al.
Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.
Blood. 2014; 123(24):3790-6 [PubMed] Related Publications
Mutations in Toll-like receptor (TLR) and myeloid differentiation primary response 88 (MYD88) genes have been found in chronic lymphocytic leukemia (CLL) at low frequency. We analyzed the incidence, clinicobiological characteristics, and outcome of patients with TLR/MYD88 mutations in 587 CLL patients. Twenty-three patients (3.9%) had mutations, 19 in MYD88 (one with concurrent IRAK1 mutation), 2 TLR2 (one with concomitant TLR6 mutation), 1 IRAK1, and 1 TLR5. No mutations were found in IRAK2 and IRAK4. TLR/MYD88-mutated CLL overexpressed genes of the nuclear factor κB pathway. Patients with TLR/MYD88 mutations were significantly younger (83% age ≤50 years) than those with no mutations. TLR/MYD88 mutations were the most frequent in young patients. Patients with mutated TLR/MYD88 CLL had a higher frequency of mutated IGHV and low expression of CD38 and ZAP-70. Overall survival (OS) was better in TLR/MYD88-mutated than unmutated patients in the whole series (10-year OS, 100% vs 62%; P = .002), and in the subset of patients age ≤50 years (100% vs 70%; P = .02). In addition, relative OS of TLR/MYD88-mutated patients was similar to that in the age- and gender-matched population. In summary, TLR/MYD88 mutations identify a population of young CLL patients with favorable outcome.

Iwatani K, Takata K, Sato Y, et al.
Low-grade B-cell lymphoma presenting primarily in the bone marrow.
Hum Pathol. 2014; 45(7):1379-87 [PubMed] Related Publications
Cases of low-grade B-cell lymphoma presenting primarily in the bone marrow are rare, and its clinicopathology remains unclear. We retrospectively examined patients with low-grade B-cell lymphoma presenting primarily in the bone marrow. Fourteen patients met the inclusion criteria, including 5 with lymphoplasmacytic lymphoma (LPL), 3 with chronic lymphocytic leukemia/small lymphocytic lymphoma, 2 with follicular lymphoma (FL), and 4 with low-grade B-cell lymphoma not otherwise specified (LGBCL-NOS). The median age was 69.5 years (range, 42-89 years), and a slight male predominance was noted (9 men and 5 women, 1.8: 1). Immunohistochemically, all cases were positive for CD20. One case was positive for CD138. Both cases of FL were positive for CD10 and B-cell lymphoma 2 (BCL-2), and immunoglobulin heavy locus (IgH)/B-cell lymphoma 2 rearrangement was observed by fluorescence in situ hybridization. The myeloid differentiation primary response gene (88) leucine to proline mutation was observed in 3 of 5 LPL, 1 of 2 FL, and 2 of 4 LGBCL-NOS patients. Paraproteinemia was observed in 10 patients; IgM and IgG paraproteinemia were observed in 6 and 3 patients, respectively. In this patient series, 3 patients had died at a median follow-up of 36.5 months; the cause of death of 1 LPL patient was malignant lymphoma itself. Thus, low-grade B-cell lymphoma presenting primarily in the bone marrow has various subtypes, and approximately one-third of the patients had LGBCL-NOS. The immunophenotypic features and myeloid differentiation primary response gene (88) leucine to proline mutation data of LGBCL-NOS suggested that some cases present with characteristics similar to those of LPL or marginal zone lymphoma.

Cox MC, Di Napoli A, Scarpino S, et al.
Clinicopathologic characterization of diffuse-large-B-cell lymphoma with an associated serum monoclonal IgM component.
PLoS One. 2014; 9(4):e93903 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Recently, diffuse-large-B-cell lymphoma (DLBCL) associated with serum IgM monoclonal component (MC) has been shown to be a very poor prognostic subset although, detailed pathological and molecular data are still lacking. In the present study, the clinicopathological features and survival of IgM-secreting DLBCL were analyzed and compared to non-secreting cases in a series of 151 conventional DLBCL treated with R-CHOP. IgM MC was detected in 19 (12.5%) out of 151 patients at disease onset. In 17 of these cases secretion was likely due to the neoplastic clone, as suggested by the expression of heavy chain IgM protein in the cytoplasm of tumor cells. In IgM-secreting cases immunoblastic features (p<.0001), non-GCB-type (p = .002) stage III-IV(p = .003), ≥ 2 extra nodal sites (p<.0001), bone-marrow (p = .002), central-nervous-system (CNS) involvement at disease onset or relapse (p<.0001), IPI-score 3-5 (p = .009) and failure to achieve complete remission (p = .005), were significantly more frequent. FISH analyses for BCL2, BCL6 and MYC gene rearrangements detected only two cases harboring BCL2 gene translocation and in one case a concomitant BCL6 gene translocation was also observed. None of the IgM-secreting DLBCL was found to have L265P mutation of MYD88 gene. Thirty-six month event-free (11.8% vs 66.4% p<.0001), progression-free (23.5% vs 75.7%, p<.0001) and overall (47.1% vs 74.8%, p<.0001) survivals were significantly worse in the IgM-secreting group. In multivariate analysis IgM-secreting (p = .005, expB = 0.339, CI = 0.160-0.716) and IPI-score 3-5 (p = .010, expB = 0.274, CI = 0.102-0.737) were the only significant factors for progression-free-survival. Notably, four relapsed patients, who were treated with salvage immunochemotherapy combined with bortezomib or lenalidomide, achieved lasting remission. Our data suggests that IgM-secreting cases are a distinct subset of DLBCL, originating from activated-B-cells with terminally differentiated features, prevalent extra nodal dissemination and at high risk of CNS involvement.

Sakata-Yanagimoto M, Enami T, Yokoyama Y, Chiba S
Disease-specific mutations in mature lymphoid neoplasms: recent advances.
Cancer Sci. 2014; 105(6):623-9 [PubMed] Related Publications
Mature lymphoid neoplasms (MLN) are clinically and pathologically more complex than precursor lymphoid neoplasms. Until recently, molecular characterization of MLN was mainly based on cytogenetics/fluorescence in situ hybridization, allele copy number, and mRNA expression, approaches that yielded scanty gene mutation information. Use of massive parallel sequencing technologies has changed this outcome, and now many gene mutations have been discovered. Some of these are considerably frequent in, and substantially specific to, distinct MLN subtypes, and occur at single or several hotspots. They include the V600E BRAF mutation in hairy cell leukemia, the L265P MYD88 mutation in Waldenström macroglobulinemia, the G17V RHOA mutation in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified, and the Y640F//D661Y/V/H/I//N647I STAT3 mutations in T-cell large granular lymphocytic leukemia. Detecting these mutations is highly valuable in diagnosing MLN subtypes. Defining these mutations also sheds light on the molecular pathogenesis of MLN, furthering development of molecular targeting therapies. In this review, we focus on the disease-specific gene mutations in MLN discovered by recent massive sequencing technologies.

Fulciniti M, Amodio N, Bandi RL, et al.
MYD88-independent growth and survival effects of Sp1 transactivation in Waldenstrom macroglobulinemia.
Blood. 2014; 123(17):2673-81 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Sp1 transcription factor controls a pleiotropic group of genes and its aberrant activation has been reported in a number of malignancies, including multiple myeloma. In this study, we investigate and report its aberrant activation in Waldenström macroglobulinemia (WM). Both loss of and gain of Sp1 function studies have highlighted a potential oncogenic role of Sp1 in WM. We have further investigated the effect of a small molecule inhibitor, terameprocol (TMP), targeting Sp1 activity in WM. Treatment with TMP inhibited the growth and survival and impaired nuclear factor-κB and signal transducer and activator of transcription activity in WM cells. We next investigated and observed that TMP treatment induced further inhibition of WM cells in MYD88 knockdown WM cells. Moreover, we observed that Bruton's tyrosine kinase, a downstream target of MYD88 signaling pathway, is transcriptionally regulated by Sp1 in WM cells. The combined use of TMP with Bruton's tyrosine kinase or interleukin-1 receptor-associated kinase 1 and 4 inhibitors resulted in a significant and synergistic dose-dependent antiproliferative effect in MYD88-L265P-expressing WM cells. In summary, these results demonstrate Sp1 as an important transcription factor that regulates proliferation and survival of WM cells independent of MYD88 pathway activation, and provide preclinical rationale for clinical development of TMP in WM alone or in combination with inhibitors of MYD88 pathway.

Sellami H, Said-Sadier N, Znazen A, et al.
Chlamydia trachomatis infection increases the expression of inflammatory tumorigenic cytokines and chemokines as well as components of the Toll-like receptor and NF-κB pathways in human prostate epithelial cells.
Mol Cell Probes. 2014; 28(4):147-54 [PubMed] Related Publications
Inflammation has been reported to play a major role in prostate carcinogenesis. Several bacterial infections can lead to prostate inflammation; however, until now, the precise molecular and cellular mechanisms linking inflammation to carcinogenesis have remained unclear. We therefore investigated the initiation of inflammation induced by Chlamydia trachomatis (C. trachomatis) infection in human prostate epithelial cells using an in vitro culture system in which human androgen-independent PC-3 prostate cancer epithelial cells were infected with C. trachomatis serovar L2. The expression levels of VEGF, ICAM-1, IL-6, IL-8, IL-1β, TNFα, CCL5, CCL2 and iNOS inflammation-related genes, as well as genes involved in the Toll-like receptor (TLR) pathway (TLR2, TLR4, CD14 and MyD88), were evaluated at the mRNA level in infected PC-3 cells 24 h after infection with C. trachomatis serovar L2. The expression levels of components of the NF-κB pathway (p65 and IκBα) were evaluated at the mRNA level in infected PC-3 cells at different time points (1, 6, 12 and 24 h) after infection. The expression levels of inflammation-related genes, components of the Toll-like receptor pathway and genes involved in NF-κB activation were analyzed in infected and uninfected cells using semi-quantitative RT-PCR. We detected a significant increase (p < 0.001) in inflammation-related cytokines in infected PC-3 cells. During infection, PC-3 cells elicited a proinflammatory response, as shown by NF-κB activation, TLR2 and TLR4 upregulation and the increased expression of inflammation-related genes. Furthermore, we observed significant upregulation of the adhesion molecules ICAM-1 and VEGF, which are two biomarkers correlated with tumor progression and immune system evasion. The present study suggests that human prostate cancer epithelial cells are susceptible to C. trachomatis infection and upregulate proinflammatory markers during infection.

Kim JE, Jang MJ, Jin DH, et al.
Paclitaxel-exposed ovarian cancer cells induce cancer‑specific CD4+ T cells after doxorubicin exposure through regulation of MyD88 expression.
Int J Oncol. 2014; 44(5):1716-26 [PubMed] Related Publications
Ovarian cancer has the highest mortality rate among gynecological malignancies due to high chemoresistance to the combination of platinum with taxane. Immunotherapy against ovarian cancer is a promising strategy to develop from animal-based cancer research. We investigated changes in the immunogenicity of paclitaxel-exposed ovarian cancer cells following exposure to other chemotherapeutic drugs. Murine ovarian surface epithelial cells (MOSECs) showed some resistance to paclitaxel, a first-line therapy for ovarian cancer. However, MOSECs pre-exposed to paclitaxel died through apoptosis after incubation with doxorubicin or cisplatin for 2 h. Injected into mice, the paclitaxel-exposed MOSECs post-treated with doxorubicin induced more MOSEC-specific CD4(+) T cells and extended survival for a greater time than MOSECs treated with paclitaxel alone; and bone marrow-derived dendritic cells (BMDCs) expressed higher levels of co-stimulatory molecules and produced IL-12 after co-culture with paclitaxel-exposed MOSECs treated with doxorubicin. We also observed that in paclitaxel-exposed MOSECs treated with doxorubicin, but not cisplatin, the expression of MyD88 and related target proteins decreased compared to paclitaxel-exposed MOSECs only, while in BMDCs co-cultured with these MOSECs the expression of myeloid differentiation primary response gene 88 (MyD88) increased. These findings suggest that paclitaxel pre-exposed cancer cells treated with doxorubicin can induce significant apoptosis and a therapeutic antitumor immune response in advanced ovarian cancer.

Bagheri V, Askari A, Arababadi MK, Kennedy D
Can Toll-Like Receptor (TLR) 2 be considered as a new target for immunotherapy against hepatitis B infection?
Hum Immunol. 2014; 75(6):549-54 [PubMed] Related Publications
The current literature describes pivotal mechanisms in which hepatitis B virus (HBV) induces liver diseases including inflammation, cirrhosis and hepatocellular carcinoma (HCC). It appears that differences in genetic and immunological parameters between patients and controls may be responsible for inducing the prolonged forms of the infection. Previous studies demonstrated that Toll-Like Receptors (TLRs) play key roles in viral recognition and inducing appropriate immune responses. Therefore, TLRs can be considered as key sensors for HBV recognition and subsequent induction of immune responses against this virus. It has also been shown that the TLR2 detects several microbial PAMPs either in its homodimer form or in a heterodimer with TLR1 or TLR6 and subsequently activates NF-κB in a MYD88 dependent manner. Therefore, defective TLR2 expression may result in impaired immune responses against HBV which is reported in long-term forms of hepatitis B. This review presents the recent data regarding the status and important roles played by TLR2 in HBV recognition and induction or suppression of immune responses against HBV as well as its roles in the pathogenesis of cirrhosis and HCC in prolonged hepatitis B forms.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MYD88, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999