SDC1

Gene Summary

Gene:SDC1; syndecan 1
Aliases: SDC, CD138, SYND1, syndecan
Location:2p24.1
Summary:The protein encoded by this gene is a transmembrane (type I) heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein. The syndecan-1 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Altered syndecan-1 expression has been detected in several different tumor types. While several transcript variants may exist for this gene, the full-length natures of only two have been described to date. These two represent the major variants of this gene and encode the same protein. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:syndecan-1
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (35)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Chromosome 2
  • Cell Differentiation
  • Glucuronidase
  • Breast Cancer
  • SDC1
  • Tongue Neoplasms
  • Immunohistochemistry
  • Cell Proliferation
  • Messenger RNA
  • Immunoglobulin Heavy Chains
  • Bone Marrow Cells
  • Proto-Oncogene Proteins
  • Western Blotting
  • Cancer RNA
  • Cell Movement
  • Polymerase Chain Reaction
  • Oligonucleotide Array Sequence Analysis
  • Membrane Glycoproteins
  • Proteoglycans
  • Gene Expression Profiling
  • Syndecans
  • Heparan Sulfate Proteoglycans
  • Staging
  • Transfection
  • Plasma Cells
  • Toxicity Tests, Chronic
  • Multiple Myeloma
  • Cancer Gene Expression Regulation
  • Syndecan-1
  • Signal Transduction
  • FISH
  • RT-PCR
  • Syndecan-4
  • Angiogenesis
  • Neoplasm Invasiveness
  • Adenocarcinoma
  • Trans-Activators
  • Up-Regulation
  • Adolescents
  • RTPCR
  • DNA-Binding Proteins
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SDC1 (cancer-related)

Jeon YK, Park SG, Choi IW, et al.
Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation.
Biochem Biophys Res Commun. 2015; 459(2):277-83 [PubMed] Related Publications
Aberrant B7-H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7-H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7-H4 transcription in primary CD138(+) multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7-H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7-H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7-H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7-H4 expression. Furthermore, knockdown of cytoplasmic B7-H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7-H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7-H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment.

Cheong CM, Chow AW, Fitter S, et al.
Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo.
Exp Cell Res. 2015; 332(1):24-38 [PubMed] Related Publications
BACKGROUND: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression.
METHODS: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro.
RESULTS: TSPAN7 was found to be highly expressed at the RNA and protein level in CD138(+) MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface.
CONCLUSION: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients.

Vassallo J, Rodrigues AF, Campos AH, et al.
Pathologic and imunohistochemical characterization of tumoral inflammatory cell infiltrate in invasive penile squamous cell carcinomas: Fox-P3 expression is an independent predictor of recurrence.
Tumour Biol. 2015; 36(4):2509-16 [PubMed] Related Publications
Penile carcinomas (PeCa) are relatively rare, but devastating neoplasms, more frequent among people of underprivileged socioeconomic status. There is mounting evidence that immune cells may trigger various mechanisms that enhance tumor growth and metastasis, but no data on the peritumoral inflammation is available for PeCa. The objectives of the present study are to evaluate the immunohistomorphology of tumoral inflammation in PeCa, and to correlate it with clinicopathological parameters, which could contribute to the prognostic evaluation. One hundred and twenty-two patients with the diagnosis of usual-type squamous cell penile carcinoma were included. Paraffin-embedded tissue was submitted to immunohistochemical evaluation of p16 protein, CD3, CD4, CD8, CD20, CD68, CD138, granzyme B, and Fox-P3. The Fisher's exact test was employed for comparison between histological variables and parameters, and the Kaplan-Meier method for the analysis of survival. Improved 5-year overall survival was significantly associated to age ≤60 years, stage I + II, tumor size T1 + T2, lymph node status N0, and absent perineural invasion. In a multivariate analysis age ≥60 years, presence of lymph node metastasis, urethral invasion, and high histologic grade retained a significantly more unfavorable outcome. Improved 5-year failure free survival was associated to stage of the disease I + II, lymph node status N0, absence of perineural, vascular, and urethral invasion, and Fox-P3 expression. In a multivariate analysis, presence of lymph node metastasis, perineural and vascular invasion, and of Fox-P3-positive lymphocytes together with low inflammatory infiltrate retained a significantly more unfavorable outcome. These results support the prognostic value of determining the levels of Fox-P3-positive lymphocytes by immunohistochemistry in PeCa, as this parameter adds value to the traditional clinicopathological features.

Fujii T, Shimada K, Tatsumi Y, et al.
Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer.
Biochem Biophys Res Commun. 2015; 456(1):183-9 [PubMed] Related Publications
MicroRNAs (miRNAs) are short (19-24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3'-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126 (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by miR-126 and miR-149 is essential for syndecan-1-mediated development of androgen-refractory prostate cancer.

Stewart MD, Ramani VC, Sanderson RD
Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk.
J Biol Chem. 2015; 290(2):941-9 [PubMed] Article available free on PMC after 09/01/2016 Related Publications
The heparan sulfate proteoglycan syndecan-1 is proteolytically shed from the surface of multiple myeloma cells and is abundant in the bone marrow microenvironment where it promotes tumor growth, angiogenesis, and metastasis. In this study, we demonstrate for the first time that shed syndecan-1 present in the medium conditioned by tumor cells is taken up by bone marrow-derived stromal cells and transported to the nucleus. Translocation of shed syndecan-1 (sSDC1) to the nucleus was blocked by addition of exogenous heparin or heparan sulfate, pretreatment of conditioned medium with heparinase III, or growth of cells in sodium chlorate, indicating that sulfated heparan sulfate chains are required for nuclear translocation. Interestingly, cargo bound to sSDC1 heparan sulfate chains (i.e. hepatocyte growth factor) was transported to the nucleus along with sSDC1, and removal of heparan sulfate-bound cargo from sSDC1 abolished its translocation to the nucleus. Once in the nucleus, sSDC1 binds to the histone acetyltransferase enzyme p300, and histone acetyltransferase activity and histone acetylation are diminished. These findings reveal a novel function for shed syndecan-1 in mediating tumor-host cross-talk by shuttling growth factors to the nucleus and by altering histone acetylation in host cells. In addition, this work has broad implications beyond myeloma because shed syndecan-1 is present in high levels in many tumor types as well as in other disease states.

Okolicsanyi RK, Buffiere A, Jacinto JM, et al.
Association of heparan sulfate proteoglycans SDC1 and SDC4 polymorphisms with breast cancer in an Australian Caucasian population.
Tumour Biol. 2015; 36(3):1731-8 [PubMed] Related Publications
Breast cancer is a common disease in both developing and developed countries with early identification and treatment improving prognosis and survival. Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix (ECM) that mediate cell adhesion, motility, proliferation, invasion and cell signalling. Members of the syndecan family of HSPGs have been identified to be involved in breast cancer progression through their varied interactions with a number of growth factors, ligands and receptors. Specifically, high expression levels of syndecan-1 (SDC1) have been demonstrated in more invasive breast tumours while elevated syndecan-4 (SDC4) levels have been identified to correspond with improved prognosis. With genetic changes in the syndecans and their association with breast cancers plausible, we examined two single nucleotide polymorphisms in SDC1 (rs1131351) and SDC4 (rs67068737) within an Australian Caucasian breast cancer case/control population. No association was found with SDC4 and breast cancer in our population. However, a significant association between SDC1 and breast cancer was identified in both our case/control population and in a replication cohort. When both populations were combined for analysis, this association became more significant (genotype, p = 0.0003; allele, p = 0.0001). This data suggests an increased risk of developing breast cancer associated with the presence of the C allele of the SDC1 rs1131351 single nucleotide polymorphism (SNP) and may provide a marker toward early breast cancer detection.

Sborov DW, Nuovo GJ, Stiff A, et al.
A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma.
Clin Cancer Res. 2014; 20(23):5946-55 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
PURPOSE: Reolysin, a proprietary isolate of reovirus type III dearing, enters and preferentially induces apoptosis of malignant cells. RAS pathway activation has been associated with more efficient reoviral infectivity and enhanced oncolysis. Reovirus is currently in advanced solid tumor phase I-II trials; no clinical trials have been conducted in patients with hematologic malignancies.
EXPERIMENTAL DESIGN: A phase I trial treated 12 relapsed myeloma patients at two dose levels. Reolysin was infused daily for 5 days every 28 days. Bone marrow specimens were examined by in situ-based hybridization (ISH) for CD138, p38, caspase-3, reoviral RNA, and capsid protein at screening and cycle 1 day 8. Junctional adhesion molecule 1 (JAM-1) and cancer upregulated gene 2 (CUG2) were evaluated in patient samples and multiple myeloma cell lines. Neutralizing anti-reovirus antibody assay was performed weekly during cycle 1.
RESULTS: There were no dose-limiting toxicities, patients reached the 3 × 10(10) TCID50 daily on days 1 to 5 dose level, and grade 3 laboratory toxicities included neutropenia, thrombocytopenia, and hypophosphatemia. ISH demonstrated reoviral genome confined in multiple myeloma cells. Reoviral capsid protein and caspase-3 were rarely identified within reoviral RNA-positive cells. The longest durations of stable disease were 4, 5, and 8 months.
CONCLUSIONS: Treatment with single-agent Reolysin was well tolerated and associated with avid reoviral RNA myeloma cell entry but only minimal intracellular reoviral protein production within multiple myeloma cells. Our data support that in multiple myeloma cells, Reolysin-induced oncolysis requires combination therapy, similar to other cancers.

Wang C, Tseng T, Jhang Y, et al.
Loss of cell invasiveness through PKC-mediated syndecan-1 downregulation in melanoma cells under anchorage independency.
Exp Dermatol. 2014; 23(11):843-9 [PubMed] Related Publications
Anchorage-independent survival is one of the key features for malignant tumor cells. Whether specific gene alterations contributed by anchorage independency would further affect metastatic phenotypes of melanoma cells was unclear. We adapted suspension culture of melanoma cells to establish anchorage independency. The suspended melanoma cells lost their invasive abilities in vitro. Specific loss of laminin-binding ability in suspended melanoma cells was observed, which was correlated with downregulation of syndecan-1 as revealed by microarray and validated by qPCR and Western blot. Modulation of syndecan-1 expression level affected laminin binding, transwell migration and matrix metalloproteinase-2 secretion in melanoma cells. SDC1 expression and transwell migration were correlated with activity or level of protein kinase Cδ as evidence by specific inhibitors and shRNA transfection. In this study, we compared metastatic phenotypes and gene expressions of adherent and suspended melanoma cells. The anchorage independency led to protein kinase Cδ-mediated syndecan-1 downregulation, which contributed to loss of laminin-binding ability, reduced metalloproteinase-2 secretion and loss of invasiveness.

Kondo Y, Kikuchi T, Esteban JC, et al.
Intratumoral heterogeneity of HER2 protein and amplification of HER2 gene in salivary duct carcinoma.
Pathol Int. 2014; 64(9):453-9 [PubMed] Related Publications
Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands, and accounts for 1-3% of all malignant salivary gland tumors, resembling morphologically invasive ductal carcinoma (IDC) of the breast. In contrast to IDC of the breast and gastric carcinoma (GC), the study of human epidermal growth factor receptor 2 (HER2) in SDC has not progressed. Therefore, we investigated the relationship between HER2 protein expression and amplification of the HER2 gene, and compared them in terms of intratumoral heterogeneity (ITH) in 13 cases of SDC using immunohistochemistry and dual color in situ hybridization. We found seven cases with protein overexpression (53.8%) and five cases with gene amplification (38.5%) in accordance with ASCO/CAP guidelines. ITH of HER2 protein expression was seen in seven cases (53.8%). Interestingly, the ratio of the HER2 gene showed homogenous distribution with or without the presence of ITH of HER2 protein expression. SDC tends to have more ITH of HER2 protein similarly to GC, in contrast to IDC of the breast. ITH of HER2 protein in SDC has no heterogeneity of the HER2 gene amplification. The mechanism of HER2 protein expression in SDC might proceed through a more complex pathway relative to that of IDC of the breast.

Chen S, Zhang Y, Zhou L, et al.
A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis.
Blood. 2014; 124(17):2687-97 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bim(hi)) in most MM cell lines and primary CD138(+) MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bim(hi) cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bim(hi) cells. In Bim(low) cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737-induced apoptosis in bim(-/-) mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy.

Ibrahim SA, Hassan H, Götte M
MicroRNA regulation of proteoglycan function in cancer.
FEBS J. 2014; 281(22):5009-22 [PubMed] Related Publications
MicroRNAs are small noncoding RNAs acting as physiological regulators of gene expression at the post-transcriptional level. In cancer, the expression of microRNAs is dysregulated compared to healthy tissue, suggesting a mechanistic role in disease progression. Recent experimental evidence supports the important molecular role of proteoglycans as microRNA targets in this process. Misexpression of specific microRNAs results in aberrant expression patterns of proteoglycans, as well as their biosynthetic enzymes. Consequently, cell proliferation and apoptosis, adhesion, migration, invasiveness, epithelial-to-mesenchymal transition and cancer stem cell properties are affected as a result of the multifunctional properties of proteoglycans. A pharmacological targeting of the microRNA-proteoglycan axis emerges as a new therapeutic concept in cancer.

Tacchetti P, Terragna C, Galli M, et al.
Bortezomib- and thalidomide-induced peripheral neuropathy in multiple myeloma: clinical and molecular analyses of a phase 3 study.
Am J Hematol. 2014; 89(12):1085-91 [PubMed] Related Publications
A subanalysis of the GIMEMA-MMY-3006 trial was performed to characterize treatment-emergent peripheral neuropathy (PN) in patients randomized to thalidomide-dexamethasone (TD) or bortezomib-TD (VTD) before and after double autologous transplantation (ASCT) for multiple myeloma (MM). A total of 236 patients randomized to VTD and 238 to TD were stratified according to the emergence of grade ≥2 PN. Gene expression profiles (GEP) of CD138+ plasma cells were analyzed in 120 VTD-treated patients. The incidence of grade ≥2 PN was 35% in the VTD arm and 10% in the TD arm (P < 0.001). PN resolved in 88 and 95% of patients in VTD and TD groups, respectively. Rates of complete/near complete response, progression-free and overall survival were not adversely affected by emergence of grade ≥2 PN. Baseline characteristics were not risk factors for PN, while GEP analysis revealed the deregulated expression of genes implicated in cytoskeleton rearrangement, neurogenesis, and axonal guidance. In conclusion, in comparison with TD, incorporation of VTD into ASCT was associated with a higher incidence of PN which, however, was reversible in most of the patients and did not adversely affect their outcomes nor their ability to subsequently receive ASCT. GEP analysis suggests an interaction between myeloma genetic profiles and development of VTD-induced PN.

Chen YF, Hsieh MS, Wu SG, et al.
Clinical and the prognostic characteristics of lung adenocarcinoma patients with ROS1 fusion in comparison with other driver mutations in East Asian populations.
J Thorac Oncol. 2014; 9(8):1171-9 [PubMed] Related Publications
INTRODUCTION: The prevalence, demographic features, and clinical outcomes of lung adenocarcinoma patients with novel ROS1 oncogenic rearrangement in East Asian populations are not clear. This study aimed to investigate the clinical and prognostic characteristics of lung adenocarcinoma in patients with ROS1 fusion compared with other driver mutations.
METHODS: Multiplex reverse transcription-polymerase chain reaction was used to detect the ROS1 fusion gene in lung adenocarcinoma cases. Immunohistochemistry was used to confirm the expression of ROS1. The demographic data and clinical outcomes of patients with the ROS1 fusion gene were compared with those of patients without the ROS1 fusion gene, including those with the EGFR mutation, EML4-ALK fusion, KRAS mutation, and quadruple-negative patients.
RESULTS: Of 492 patients with lung adenocarcinoma, 12 (2.4%) had the ROS1 fusion gene. Their median age was 45.0 years, significantly younger than that of the ROS1 fusion-negative cohorts (p < 0.001). Acinar (including cribriform) and solid patterns were the two most common histologic subtypes in the ROS1 fusion tumors (7 of 12, 58.3%) and were predominantly seen in CD74-ROS1 fusion tumors (66.7%). There was no significant survival difference between the ROS1 fusion-positive and ROS1 fusion-negative cohorts in surgical group, but ROS1 fusion-positive patients might have worse outcomes than EGFR-mutant patients in the stage IV group.
CONCLUSIONS: The ROS1 fusion gene can be successfully detected in East Asian patients with lung adenocarcinoma using multiplex reverse transcription-polymerase chain reaction. These patients tend to be younger and have characteristic histologic subtypes. Due to the small number of ROS1 fusion patients, the prognostic value of ROS1 fusion need further studies to confirm.

Noll JE, Hewett DR, Williams SA, et al.
SAMSN1 is a tumor suppressor gene in multiple myeloma.
Neoplasia. 2014; 16(7):572-85 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Multiple myeloma (MM), a hematological malignancy characterized by the clonal growth of malignant plasma cells (PCs) in the bone marrow, is preceded by the benign asymptomatic condition, monoclonal gammopathy of undetermined significance (MGUS). Several genetic abnormalities have been identified as critical for the development of MM; however, a number of these abnormalities are also found in patients with MGUS, indicating that there are other, as yet unidentified, factors that contribute to the onset of MM disease. In this study, we identify a Samsn1 gene deletion in the 5TGM1/C57BL/KaLwRij murine model of myeloma. In addition, SAMSN1 expression is reduced in the malignant CD138+ PCs of patients with MM and this reduced expression correlates to total PC burden. We identify promoter methylation as a potential mechanism through which SAMSN1 expression is modulated in human myeloma cell lines. Notably, re-expression of Samsn1 in the 5TGM1 murine PC line resulted in complete inhibition of MM disease development in vivo and decreased proliferation in stromal cell-PC co-cultures in vitro. This is the first study to identify deletion of a key gene in the C57BL/KaLwRij mice that also displays reduced gene expression in patients with MM and is therefore likely to play an integral role in MM disease development.

Braga WM, da Silva BR, de Carvalho AC, et al.
FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells.
Cancer Immunol Immunother. 2014; 63(11):1189-97 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
INTRODUCTION: Multiple myeloma (MM) development involves a series of genetic abnormalities and changes in the bone marrow (BM) microenvironment, favoring the growth of the tumor and failure of local immune control. T regulatory (Treg) cells play an important role in dampening anti-tumor immune responses while T-helper-17 (Th17) cells seem to be critical for the eradication of malignant cells. The aim of our study was to characterize the expression of Treg- and Th17-related genes in total myeloma BM samples to assess their role as biomarkers, prognostic factors, and possible therapeutic targets in this incurable disease.
METHODS: Expression of markers for Treg (FOXP3, CTLA4) and Th17 cells (RORγt) was determined by quantitative real-time PCR in BM aspirates of 46 MM patients, four patients with monoclonal gammopathy of undetermined significance, five solitary plasmacytomas, and five healthy BM donors. Gene expression was evaluated regarding an influence on the patients' overall survival (OS).
RESULTS: FOXP3 and CTLA4 presented a sixfold (p = 0.02) and 30-fold higher expression (p = 0.03), respectively, in MM patients than in controls. RORγt expression was similar in MM patients and controls. Median OS of MM patients was 16.8 (range 4.5-29.1) months, and international staging system was the only independent prognostic factor for patients survival.
CONCLUSIONS: Overexpression of FOXP3 and CTLA4 in total BM samples suggests a local accumulation of immunosuppressive Tregs, the MM tumor environment, possibly dampening anti-tumor host immune responses. Therapeutic approaches targeting Treg cells and restoring local anti-tumor immunity may provide new treatment strategies for this incurable malignancy.

Liu Z, Xu J, He J, et al.
A critical role of autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance.
Blood. 2014; 124(13):2061-71 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Hedgehog (Hh) signaling plays an important role in the oncogenesis of B-cell malignancies such as multiple myeloma (MM). However, the source of Hh ligand sonic hedgehog (SHH) and its target cells remains controversial. Previous studies showed that stromally induced Hh signaling is essential for the tumor cells and that CD19(+)CD138(-) MM stem cells are the target cells of Hh signaling. Here we demonstrate that SHH was mainly secreted by human myeloma cells but not by stromal cells in MM bone marrow. Autocrine SHH enhanced CD138(+) myeloma cell proliferation and protected myeloma cells from spontaneous and stress-induced apoptosis. More importantly, autocrine SHH protected myeloma cells against chemotherapy-induced apoptosis in vitro and in vivo. Combinational treatment with chemotherapy and SHH-neutralizing antibody displayed synergistic antimyeloma effects. Mechanistic studies showed that SHH signaling activated the SHH/GLI1/BCL-2 axis, leading to the inhibition of myeloma cell apoptosis. Thus, this study identifies the myeloma autocrine Hh signaling pathway as a potential target for the treatment of MM. Targeting this pathway may improve the efficacy of chemotherapy in MM patients.

Choe JY, Bisig B, de Leval L, Jeon YK
Primary γδ T cell lymphoma of the lung: report of a case with features suggesting derivation from intraepithelial γδ T lymphocytes.
Virchows Arch. 2014; 465(6):731-6 [PubMed] Related Publications
T cell lymphoma of γδ T cell origin is a rare disease that mainly involves extranodal sites and shows aggressive clinical behavior. Here, we report a case of primary γδ T cell lymphoma of the lungs with epitheliotropism in the respiratory epithelium, a feature somewhat reminiscent of what is observed in enteropathy-associated T cell lymphoma. A 63-year-old man presented with chest pain and dyspnea on exertion, weight loss, and general weakness. On a positron emission tomography (PET) scan, multiple hypermetabolic lesions were found in both lungs. Microscopic examination of the wedge lung biopsy revealed nodular infiltration of monomorphic, medium- to large-sized atypical lymphocytes with round nuclei, coarse chromatin, and a variable amount of clear to eosinophilic cytoplasm. Of note, intraepithelial lymphocytosis by atypical lymphoid cells was observed in the respiratory epithelium within and around the nodule. Immunohistochemically, the tumor cells were CD3+, TCRβF1-, TCRγ+, CD5-, CD7+, CD20-, CD79a-, CD30-, CD4-, CD8-, CD10-, BCL6-, CD21-, CD56+, CD57-, and CD138-, and expressed cytotoxic molecules. Epstein-Barr virus (EBV) was not detected by an in situ hybridization assay for EBV-encoded RNA. Interestingly, CD103 was expressed by a subset of tumor cells, especially those infiltrating the epithelium. T cell clonality was detected by multiplex PCR analysis of TRG and TRD gene rearrangements. After 2 months of systemic chemotherapy, PET scan showed regression of the size and metabolic activity of the lesions. This case represents a unique γδ T cell lymphoma of the lungs showing epitheliotropism by CD103+ γδ T cells that is suggestive of tissue-resident γδ T cells as the cell of origin.

Ferrari N, Mohammed ZM, Nixon C, et al.
Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer.
PLoS One. 2014; 9(6):e100759 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
The RUNX1 transcription factor is widely recognised for its tumour suppressor effects in leukaemia. Recently a putative link to breast cancer has started to emerge, however the function of RUNX1 in breast cancer is still unknown. To investigate if RUNX1 expression was important to clinical outcome in primary breast tumours a tissue microarray (TMA) containing biopsies from 483 patients with primary operable invasive ductal breast cancer was stained by immunohistochemistry. RUNX1 was associated with progesterone receptor (PR)-positive tumours (P<0.05), more tumour CD4+(P<0.05) and CD8+(P<0.01) T-lymphocytic infiltrate, increased tumour CD138+plasma cell (P<0.01) and more CD68+macrophage infiltrate (P<0.001). RUNX1 expression did not influence outcome of oestrogen receptor (ER)-positive or HER2-positive disease, however on univariate analysis a high RUNX1 protein was significantly associated with poorer cancer-specific survival in patients with ER-negative (P<0.05) and with triple negative (TN) invasive breast cancer (P<0.05). Furthermore, multivariate Cox regression analysis of cancer-specific survival showed a trend towards significance in ER-negative patients (P<0.1) and was significant in triple negative patients (P<0.05). Of relevance, triple negative breast cancer currently lacks good biomarkers and patients with this subtype do not benefit from the option of targeted therapy unlike patients with ER-positive or HER2-positive disease. Using multivariate analysis RUNX1 was identified as an independent prognostic marker in the triple negative subgroup. Overall, our study identifies RUNX1 as a new prognostic indicator correlating with poor prognosis specifically in the triple negative subtype of human breast cancer.

Surget S, Descamps G, Brosseau C, et al.
RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.
BMC Cancer. 2014; 14:437 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
BACKGROUND: The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells.
METHODS: A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines.
RESULTS: Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%).
CONCLUSION: These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.

van Laar R, Flinchum R, Brown N, et al.
Translating a gene expression signature for multiple myeloma prognosis into a robust high-throughput assay for clinical use.
BMC Med Genomics. 2014; 7:25 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
BACKGROUND: Widespread adoption of genomic technologies in the management of heterogeneous indications, including Multiple Myeloma, has been hindered by concern over variation between published gene expression signatures, difficulty in physician interpretation and the challenge of obtaining sufficient genetic material from limited patient specimens.
METHODS: Since 2006, the 70-gene prognostic signature, developed by the University of Arkansas for Medical Sciences (UAMS) has been applied to over 4,700 patients in studies performed in 4 countries and described in 17 peer-reviewed publications. Analysis of control sample and quality control data compiled over a 12-month period was performed.
RESULTS: Over a 12 month period, the 70-gene prognosis score (range 0-100) of our multiple myeloma cell-line control sample had a standard deviation of 2.72 and a coefficient of variance of 0.03. The whole-genome microarray profile used to calculate a patient's GEP70 score can be generated with as little as 15 ng of total RNA; approximately 30,000 CD-138+ plasma cells. Results from each GEP70 analysis are presented as either low (70-gene score <45.2) or high (≥45.2) risk for relapse (newly diagnosed setting) or shorter overall survival (relapse setting). A personalized and outcome-annotated gene expression heat map is provided to assist in the clinical interpretation of the result.
CONCLUSIONS: The 70-gene assay, commercialized under the name 'MyPRS®' (Myeloma Prognostic Risk Score) and performed in Signal Genetics' CLIA-certified high throughput flow-cytometry and molecular profiling laboratory is a reproducible and standardized method of multiple myeloma prognostication.

Ellina MI, Bouris P, Aletras AJ, et al.
EGFR and HER2 exert distinct roles on colon cancer cell functional properties and expression of matrix macromolecules.
Biochim Biophys Acta. 2014; 1840(8):2651-61 [PubMed] Related Publications
BACKGROUND: ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression.
METHODS: Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules.
RESULTS: EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF-EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF-EGFR network. The EGF-EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2.
CONCLUSIONS AND GENERAL SIGNIFICANCE: The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF-EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.

Iwatani K, Takata K, Sato Y, et al.
Low-grade B-cell lymphoma presenting primarily in the bone marrow.
Hum Pathol. 2014; 45(7):1379-87 [PubMed] Related Publications
Cases of low-grade B-cell lymphoma presenting primarily in the bone marrow are rare, and its clinicopathology remains unclear. We retrospectively examined patients with low-grade B-cell lymphoma presenting primarily in the bone marrow. Fourteen patients met the inclusion criteria, including 5 with lymphoplasmacytic lymphoma (LPL), 3 with chronic lymphocytic leukemia/small lymphocytic lymphoma, 2 with follicular lymphoma (FL), and 4 with low-grade B-cell lymphoma not otherwise specified (LGBCL-NOS). The median age was 69.5 years (range, 42-89 years), and a slight male predominance was noted (9 men and 5 women, 1.8: 1). Immunohistochemically, all cases were positive for CD20. One case was positive for CD138. Both cases of FL were positive for CD10 and B-cell lymphoma 2 (BCL-2), and immunoglobulin heavy locus (IgH)/B-cell lymphoma 2 rearrangement was observed by fluorescence in situ hybridization. The myeloid differentiation primary response gene (88) leucine to proline mutation was observed in 3 of 5 LPL, 1 of 2 FL, and 2 of 4 LGBCL-NOS patients. Paraproteinemia was observed in 10 patients; IgM and IgG paraproteinemia were observed in 6 and 3 patients, respectively. In this patient series, 3 patients had died at a median follow-up of 36.5 months; the cause of death of 1 LPL patient was malignant lymphoma itself. Thus, low-grade B-cell lymphoma presenting primarily in the bone marrow has various subtypes, and approximately one-third of the patients had LGBCL-NOS. The immunophenotypic features and myeloid differentiation primary response gene (88) leucine to proline mutation data of LGBCL-NOS suggested that some cases present with characteristics similar to those of LPL or marginal zone lymphoma.

Lakkam B, Majage B, Astekar M, et al.
Immunohistochemical expression of syndecan-1 in oral dysplastic epithelium.
J Cancer Res Ther. 2014 Jan-Mar; 10(1):103-6 [PubMed] Related Publications
BACKGROUND: In stratified squamous epithelia, syndecan-1 is proposed to function as a cellto cell adhesion molecule, and plays an important role in regulation of cell growth and differentiation during the developmental process. Oral cancer is a disease with complex etiology, so biological behavior in carcinomas preceded by dysplastic states is difficult to assess and predict its prognosis. Hence, syndecan-1, a recently recognized tumor marker has been proved to be an eminent diagnostic and prognostic tool in assessing biological behavior of various potentially premalignant andmalignant lesions.
MATERIALS AND METHODS: The study group consisted of 40 specimens of premalignant stateand 10 specimens of normal mucosa.Thesections were stained withhematoxylin and eosin, andimmunohistochemicallyusing syndecan-1 a primary antibody and was observed under light microscope.
RESULTS: Expression decreased with the decreasing grades of dysplasia.
CONCLUSION: Syndecan-1 can be efficiently used in early detection and diagnosis of oral carcinoma.

Boneva T, Brazma D, Gancheva K, et al.
Can genome array screening replace FISH as a front-line test in multiple myeloma?
Genes Chromosomes Cancer. 2014; 53(8):676-92 [PubMed] Related Publications
Multiple myeloma (MM) is a malignant disorder characterized by neoplastic transformation of mature B cells in the bone marrow (BM), accompanied by complex genetic changes. The disease is heterogeneous at both the clinical and genomic levels. Molecular genetics and genomic investigations have demonstrated that disease evolution is associated with an accumulation of specific aberrations, mostly genome imbalances, which not only shed light on the disease pathogenesis but also allow risk assessment and treatment monitoring. We used a catalogue version of the Agilent 8x60K oligo-array with immuno-magnetically isolated CD138(+) cells from BM samples of 50 patients with myeloma to evaluate the merit of array comparative genomic hybridization (aCGH) as a diagnostic tool. We demonstrate the ability of aCGH to detect clonal imbalances to a level well below established clinically significant thresholds. aCGH, combined with target enrichment and complemented with tests for IGH rearrangements offers a cost neutral alternative to multiprobe fluorescence in situ hybridization screening. While we recognize the limitations of the standard version of the 8x60k array we demonstrate the value of aCGH as a first tier test in the diagnostic workup of MM. The array technology enables high-risk disease stratification with the added benefit of providing whole genome data to assist in establishing clinically relevant predicative markers.

Yan H, Wu QL, Sun CY, et al.
piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma.
Leukemia. 2015; 29(1):196-206 [PubMed] Related Publications
Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138(+) MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16(INK4A). In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.

Li R, Zhang L, Jia L, et al.
MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma.
PLoS One. 2014; 9(4):e94855 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Melanoma is the most aggressive type of skin cancer with a rapid progression and a limited efficiency of therapeutics. Recently, studies have identified some microRNAs playing important roles in the development of melanoma. Syndecan-1 (Syn-1), dysregulated in many cancers, plays important roles in tumor progression by controlling cell proliferation. In this study, we investigated whether microRNA-143 (miR-143) is involved in the regulation of Syn-1 and thus plays a functional role in melanoma. We found that miR-143 expression was significantly lower in melanoma tissues than in normal tissues and its low expression was closely related to clinical stages of melanoma. Further experiments showed that consistent with the inhibitory effects induced by knockdown of Syn-1, overexpression of miR-143 suppressed cell proliferation, promoted G1 phase arrest and induced apoptosis in melanoma. Downregulation of miR-143 apparently produced opposite effects. Combined treatment of miR-143 overexpression and Syn-1 knockdown induced remarkable synergistic effects, while reconstitution of miR-143-resistant Syn-1 reversed the inhibitory activity of miR-143. Moreover, miR-143 level was inversely correlated with Syn-1 expression in melanoma cells. miR-143 directly targeted the 3'-untranslated regions of Syn-1 mRNA and they were in the same Argonaute2 complex. Taken together, this study revealed a link between miRNA-143 and Syn-1 in the pathogenesis of melanoma. MiR-143 plays an important role in the regulation of cell growth in melanoma. Restoration of miR-143 expression may represent a promising and efficient therapeutic approach for targeting malignant melanoma.

Xiao R, Cerny J, Devitt K, et al.
MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).
Am J Surg Pathol. 2014; 38(6):776-83 [PubMed] Related Publications
It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

Huang SY, Lin CW, Lin HH, et al.
Expression of cereblon protein assessed by immunohistochemicalstaining in myeloma cells is associated with superior response of thalidomide- and lenalidomide-based treatment, but not bortezomib-based treatment, in patients with multiple myeloma.
Ann Hematol. 2014; 93(8):1371-80 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide. However, the clinical implications of CRBN in MM patients are unclear. Using immunohistochemical (IHC) staining on paraffin-embedded bone marrow sections, the expression of CRBN protein in myeloma cells (MCs) was assessed in 40 relapsed/refractory MM (RRMM) patients who received lenalidomide/dexamethasone (LD) and 45 and 22 newly diagnosed MM (NDMM) patients who received thalidomide/dexamethasone (TD) and melphalan/bortezomib/prednisolone (MVP), respectively. IHC staining were scored on a scale representing the diffuseness and intensity of positive-staining MCs (range, 0-8) and a score ≥4.5 was used for CRBN positivity (CRBN(+)) on a cut-point analysis of all possible scores and response of TD and LD. Compared to CRBN(+) NDMM patients, CRBN(-) NDMM patients had more international staging system (ISS) III (26 vs. 61 %, respectively; P = 0.006). In the LD and TD cohorts, the response rate (RR) was higher in CRBN(+) patients than CRBN(-) patients (LD 79 vs. 33 %, respectively; P = 0.005) (TD 75 vs. 29 %, respectively; P = 0.005); however, this trend was not observed in the MVP cohort. In the LD and TD cohorts, the positive and negative prediction value of CRBN(+) for treatment response was 79 and 67 % and 75 and 71 %, respectively. Multivariate analysis showed that CRBN(+) was a significant factor associated with superior RR for LD and TD. The data suggest that expression of CRBN protein in MCs assessed using the IHC is a feasible approach to predict the response of IMiDs in MM patients.

Paíno T, Sarasquete ME, Paiva B, et al.
Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.
PLoS One. 2014; 9(3):e92378 [PubMed] Article available free on PMC after 23/10/2015 Related Publications
Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.

Suzuki S, Kurabe N, Minato H, et al.
A rare Japanese case with a NUT midline carcinoma in the nasal cavity: a case report with immunohistochemical and genetic analyses.
Pathol Res Pract. 2014; 210(6):383-8 [PubMed] Related Publications
BACKGROUND: NUT (nuclear protein in testis) midline carcinoma (NMC) is a recently described aggressive malignancy that is genetically defined by rearrangements of the NUT locus at 15q14. In approximately two-thirds of cases, the characteristic t(15;19) results in the fusion oncogene BRD4-NUT. Only 10 sinonasal NMCs have been documented, none of which were Japanese cases.
CASE PRESENTATION: An 18-year-old woman was admitted because of a rapidly progressing tumor in the nasal cavity. A biopsy revealed an undifferentiated neoplasm without squamous differentiation. The tumor cells had round to oval nuclei with vesicular chromatin, prominent nucleoli, and scant cytoplasm. Immunohistochemical staining demonstrated a strong positivity for vimentin and NUT, with focal CD138 and only spotty EMA and cytokeratin AE1/AE3 staining. Cytogenetic and fluorescence in situ hybridization analyses revealed a t(15;19) and BRD4-NUT gene rearrangement. Direct sequencing identified the in-frame fusion of exon11 of BRD4 with exon2 of NUT. The patient was transferred to another hospital for chemoradiotherapy.
CONCLUSION: We herein describe the first Japanese case with an NMC of the sinonasal cavity, providing detailed and unambiguous cyto- and molecular genetic information on BRD4-NUT-rearrangement. The accumulation of cases with well-documented genetic data should provide clues to the treatment of this tumor entity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SDC1, Cancer Genetics Web: http://www.cancer-genetics.org/SDC1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999