Gene Summary

Gene:MAF; MAF bZIP transcription factor
Aliases: CCA4, AYGRP, c-MAF, CTRCT21
Summary:The protein encoded by this gene is a DNA-binding, leucine zipper-containing transcription factor that acts as a homodimer or as a heterodimer. Depending on the binding site and binding partner, the encoded protein can be a transcriptional activator or repressor. This protein plays a role in the regulation of several cellular processes, including embryonic lens fiber cell development, increased T-cell susceptibility to apoptosis, and chondrocyte terminal differentiation. Defects in this gene are a cause of juvenile-onset pulverulent cataract as well as congenital cerulean cataract 4 (CCA4). Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor Maf
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Staging
  • DNA Mutational Analysis
  • Sex Factors
  • Multiple Myeloma
  • MAF
  • Genetic Association Studies
  • Immunoglobulin Heavy Chains
  • Genetic Variation
  • Gene Expression Profiling
  • DNA-Binding Proteins
  • FISH
  • Case-Control Studies
  • Colorectal Cancer
  • Mutation
  • Reproducibility of Results
  • Biomarkers, Tumor
  • Genotype
  • Genome-Wide Association Study
  • Base Sequence
  • High-Throughput Nucleotide Sequencing
  • Smoking
  • Chromosome Aberrations
  • Oligonucleotide Array Sequence Analysis
  • MicroRNAs
  • MAFB
  • Messenger RNA
  • Translocation
  • Disease Progression
  • Cancer Gene Expression Regulation
  • Chromosome 14
  • Promoter Regions
  • Cyclin D1
  • Haplotypes
  • Proto-Oncogene Proteins c-maf
  • Chromosome 16
  • Genetic Predisposition
  • Alleles
  • Prostate Cancer
  • Asian Continental Ancestry Group
  • Linkage Disequilibrium
  • Breast Cancer
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAF (cancer-related)

Hadj-Ahmed M, Ghali RM, Bouaziz H, et al.
Transforming growth factor beta 1 polymorphisms and haplotypes associated with breast cancer susceptibility: A case-control study in Tunisian women.
Tumour Biol. 2019; 41(8):1010428319869096 [PubMed] Related Publications
Variable association of transforming growth factor beta 1 (TGFβ1) in breast cancer (BC) pathogenesis was documented, and the contribution of specific

Murase T, Ri M, Narita T, et al.
Immunohistochemistry for identification of CCND1, NSD2, and MAF gene rearrangements in plasma cell myeloma.
Cancer Sci. 2019; 110(8):2600-2606 [PubMed] Free Access to Full Article Related Publications
The t(11;14)/CCND1-IGH, t(4;14)/NSD2(MMSET)-IGH, and t(14;16)/IGH-MAF gene rearrangements detected by fluorescence in situ hybridization (FISH) are used for risk stratification in patients with multiple myeloma (MM). Compared with conventional FISH techniques using fresh cells, immunohistochemistry (IHC) is much more cost- and time-efficient, and can be readily applied to routinely prepared formalin-fixed, paraffin-embedded (FFPE) materials. In this study, we performed tissue FISH and IHC employing FFPE specimens, and examined the usefulness of IHC as a tool for detecting CCND1, NSD2, and MAF gene rearrangements. CD138 signals were used to identify plasma cells in tissue FISH and IHC analyses. With cohort 1 (n = 70), we performed tissue FISH and subsequently IHC, and determined IHC cut-off points. In this cohort, the sensitivity and specificity for the 3 molecules were ≥.90 and ≥.96, respectively. With cohort 2, using MM cases with an unknown gene status (n = 120), we performed IHC, and the gene status was estimated using the cut-off points determined with cohort 1. The subsequent FISH analysis showed that the sensitivity and specificity for the 3 molecules were ≥.92 and ≥.98, respectively. CCND1, NSD2, and MAF gene rearrangements were estimated accurately by IHC, suggesting that conventional FISH assays can be replaced by IHC.

Stasik S, Salomo K, Heberling U, et al.
Evaluation of TERT promoter mutations in urinary cell-free DNA and sediment DNA for detection of bladder cancer.
Clin Biochem. 2019; 64:60-63 [PubMed] Related Publications
BACKGROUND: Cell-free DNA (cfDNA) is proposed to be a valuable source of biomarkers in liquid biopsies for various diseases as it is supposed to partially originate from tumor cells. However, data about the diagnostic implications of cfDNA in urine for the detection of bladder cancer (BCa) is sparse.
METHODS: We evaluated the usability of urinary cfDNA for diagnostic purposes compared to urine sediment DNA (sDNA) in 53 BCa patients and 36 control subjects by analyzing two abundant point-mutations (C228T/C250T) in the TERT promoter using Next-Generation Sequencing.
RESULTS: Mutations were detected in 77% of the urinary sDNA compared to 63% of the cfDNA samples. Moreover, the TERT mutation allele frequencies (MAF) were highly correlated in cfDNA and sDNA. In comparison, the accuracy of the TERT assay was higher in sDNA (84%) compared to cfDNA or voided urine cytology (both 77%). Interestingly, MAFs from leukocyte-rich urines were higher in cfDNA than in sDNA, indicating a diagnostic advantage of cfDNA in such urines.
CONCLUSIONS: Urine-based mutation detection has the ability to augment and surpass voided urine cytology as the current gold-standard for the non-invasive detection and surveillance of BCa. The analysis of cell-free DNA provides no general diagnostic advantage compared to urine sediment DNA.

Mayakonda A, Lin DC, Assenov Y, et al.
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 2018; 28(11):1747-1756 [PubMed] Free Access to Full Article Related Publications
Numerous large-scale genomic studies of matched tumor-normal samples have established the somatic landscapes of most cancer types. However, the downstream analysis of data from somatic mutations entails a number of computational and statistical approaches, requiring usage of independent software and numerous tools. Here, we describe an R Bioconductor package, Maftools, which offers a multitude of analysis and visualization modules that are commonly used in cancer genomic studies, including driver gene identification, pathway, signature, enrichment, and association analyses. Maftools only requires somatic variants in Mutation Annotation Format (MAF) and is independent of larger alignment files. With the implementation of well-established statistical and computational methods, Maftools facilitates data-driven research and comparative analysis to discover novel results from publicly available data sets. In the present study, using three of the well-annotated cohorts from The Cancer Genome Atlas (TCGA), we describe the application of Maftools to reproduce known results. More importantly, we show that Maftools can also be used to uncover novel findings through integrative analysis.

Suarez-Kurtz G
Pharmacogenetic testing in oncology: a Brazilian perspective.
Clinics (Sao Paulo). 2018; 73(suppl 1):e565s [PubMed] Free Access to Full Article Related Publications
Pharmacogenetics, a major component of individualized or precision medicine, relies on human genetic diversity. The remarkable developments in sequencing technologies have revealed that the number of genetic variants modulating drug action is much higher than previously thought and that a true personalized prediction of drug response requires attention to rare mutations (minor allele frequency, MAF<1%) in addition to polymorphisms (MAF>1%) in pharmacogenes. This has major implications for the conceptual development and clinical implementation of pharmacogenetics. Drugs used in cancer treatment have been major targets of pharmacogenetics studies, encompassing both germline polymorphisms and somatic variants in the tumor genome. The present overview, however, has a narrower scope and is focused on germline cancer pharmacogenetics, more specifically, on drug/gene pairs for which pharmacogenetics-informed prescription guidelines have been published by the Clinical Pharmacogenetics Implementation Consortium and/or the Dutch Pharmacogenetic Working Group, namely, thiopurines/TPMT, fluoropyrimidines/UGT1A1, irinotecan/UGT1A1 and tamoxifen/CYP2D6. I begin by reviewing the general principles of pharmacogenetics-informed prescription, pharmacogenetics testing and the perceived barriers to the adoption of routine pharmacogenetics testing in clinical practice. Then, I highlight aspects of the pharmacogenetics testing of the selected drug-gene pairs and finally present pharmacogenetics data from Brazilian studies pertinent to these drug-gene pairs. I conclude with the notion that pharmacogenetics testing has the potential to greatly benefit patients by enabling precision medicine applied to drug therapy, ensuring better efficacy and reducing the risk of adverse effects.

Soltaninejad H, Asadollahi MA, Hosseinkhani S, et al.
Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop.
Methods Appl Fluoresc. 2018; 6(4):045009 [PubMed] Related Publications
Among epigenetic modifications of DNA, methylation of cytosine at its carbon 5 is the most common mark that is usually associated with gene silencing in human. Determining whether a particular DNA molecule is methylated or not, is an indispensable task in many epigenetic investigations. Presenting detection methods with less labor-intensive and time-consuming procedures has substantial value. Here a facile method based on gold nanocluster (AuNCs) fluorescence enhancement is presented. Target sequences were selected from Sept9 promoter region as its hypermethylation is demonstrated as a reliable biomarker of colorectal cancer. DNA probe was complementary to a 25 nucleotide of the target region and possessed 9 additional cytosines in the middle to allow the formation of AuNCs. Probe-AuNCs strands were first hybridized with methylated and non-methylated targets separately, and then their fluorescence intensities were recorded. Fluorescence intensity was higher with methylated targets than non-methylated one. Applying silver ions reversed the situation and fluorescence intensities of non-methylated DNA got higher than methylated one.

Yu GI, Mun KH, Yang SH, et al.
Polymorphisms in the 3'-UTR of SCD5 gene are associated with hepatocellular carcinoma in Korean population.
Mol Biol Rep. 2018; 45(6):1705-1714 [PubMed] Related Publications
The purpose of the study was to assess the relationship between polymorphisms of the SCD5 and MMP1 gene and hepatocellular carcinoma (HCC). The gene polymorphisms with a minor allele frequency (MAF) > 0.05 were selected eight SNPs (rs6840, rs1065403, rs3821974, and rs3733230 in 3'-UTR; rs4693472, rs3733227, rs1848067, and rs6535374 in intron region) of SCD5 gene and two SNPs (rs1799750 and rs1144393 in promoter region) of MMP1 gene. The genotype of SCD5 and MMP1 gene SNPs were determined by direct sequencing and pyrosequencing, respectively. One hundred sixty-two patients with HCC and two hundred twenty-five control subjects were recruited in Korean male population. In terms of genotype frequencies, SCD5 genotype TC, GA, AG, and CG of rs6840, rs1065403, rs3821974, and rs3733230, respectively were higher in control group than HCC. In addition, these genotype decreased the risk (rs6840; OR 0.55, 95% CI 0.31-0.99; rs1065403; OR 0.46, 95% CI 0.26-0.83; rs3821974; OR 0.56, 95% CI 0.31-0.99; rs3733230; OR 0.62, 95% CI 0.34-1.12) of HCC, which may work as a prevention of HCC. At least one minor allele carrier of SCD5 gene polymorphisms were related to decreased risk of HCC for AFP cut-point levels > 200 or > 400 ng/ml, respectively. Our results indicate that polymorphisms in the 3'-UTR of the SCD5 gene may associated with HCC in the Korean male population.

Sribudiani Y, Marwan DW, Aulanni’am A, et al.
Germline Mutations and Polymorphisms of Androgen Receptor in Prostate Cancer Patients: Frequency and Results of in Silico Analysis
Asian Pac J Cancer Prev. 2018; 19(8):2241-2245 [PubMed] Free Access to Full Article Related Publications
Background: Germline and somatic polymorphisms and mutations of the Androgen Receptor (AR) gene are known to be associated with the incidence of prostate cancer (PCa) in different populations. In this study we assessed germline AR polymorphisms and mutations in PCa patients with prediction of pathogenicity of the identified mutations by in silico analysis. Methods: Diagnosis of PCa was based on histopathology of prostate tissue (Gleason Score criteria) and serum prostate-specific antigen (PSA) levels. Genomic DNA was extracted from peripheral blood of 38 patients. All exons and exon-intron boundaries of AR were amplified using polymerase chain reactions (PCR) followed by Sanger sequencing. In silico analysis was performed using Polyphen-2 and Mutation Taster®. Results: Two polymorphisms, CAG repeat sequence (13-34 repeats in length) and p.Pro214Glu (MAF: 0.0789) located in exon 1 were identified. A missense mutation (c.47C>A/p.Pro146Glu) and in-frame deletion of a CAG sequence leading to loss of Arginine at codon 85 (c.252_254delCAG/p.Arg85-) were identified in a 70 year old patient with a Gleason Score and PSA level of 2 and 2.4ng/dL, respectively. His PSA level decreased to < 0.5 ng/dL after 9 months of androgen deprivation therapy. Identified mutations were predicted to be non-disease causing by Polyphen-2 and Mutation Taster®. Conclusion: Our data demonstrated that the frequency of germline mutations of AR was low in PCa patients in Indonesia (5.26%: 2/38 alleles), so that they are not likely to be major etiological factors. The in silico analysis of identified AR mutations in this study corroborated the clinopathology features of the patient.

Aravind Kumar M, Naushad SM, Narasimgu N, et al.
Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage.
Mol Biol Rep. 2018; 45(5):1413-1419 [PubMed] Related Publications
Whole exome sequencing in triple negative breast cancer cases (n = 8) and targeted sequencing in healthy controls (n = 48) revealed BRIP1 rs552752779 (MAF: 75% vs. 6.25%, OR 45.00, 95% CI 9.43-243.32), ERBB2 rs527779103 (MAF: 62.5% vs. 7.29%, OR 21.19, 95% CI 5.11-94.32), ERCC2 rs121913016 (MAF: 56.25% vs. 7.29%, OR 16.34, 95% CI 4.02-70.41), MSH6 rs2020912 (MAF: 56.25% vs. 1.04%, OR 122.13, 95% CI 12.29-2985.48) as risk factors for triple negative breast cancer. Construction of classification and regression tree followed by smart pruning identified MSH6 and BRIP1 variants as the major determinants of TNBC (Triple Negative Breast Cancer) risk. Except for ERBB2, all other genes regulate DNA repair and chromosomal integrity. In TNBC cases, two likely pathogenic variations i.e. NCOR1 rs562300336 and PIM1 rs746748226 were observed at frequencies of 18.75% and 12.5%, respectively. Among the 24 variants of unknown significance, MMP9 rs199676062, SYNE1 rs368709678, AURKA rs373550419, ABCC4 rs11568694 have variant allele frequency ≥ 62.5%. These genes regulate metastasis, nuclear modeling, cell cycle and cellular detoxification, respectively. To conclude, aberrations in DNA mismatch repair, nucleotide excision repair or BRCA1 associated genome surveillance mechanism contribute towards triple negative breast cancer.

Fujino M
The histopathology of myeloma in the bone marrow.
J Clin Exp Hematop. 2018; 58(2):61-67 [PubMed] Free Access to Full Article Related Publications
Myeloma is characterized by the neoplastic proliferation of monoclonal plasma cells. A diagnosis of myeloma is based on the criteria proposed by the International Myeloma Working Group and the pathological findings.Myeloma cells are classified into four types: mature, immature, pleomorphic, and plasmablastic. There are three patterns in which myeloma infiltrates bone marrow - nodular, interstitial, and diffuse. Dutcher bodies are highly specific to neoplastic myeloma cells. On immunohistochemical staining, the specificity of CD138 is high for plasma cells. As a clear image is often not obtained from the immunohistochemical staining of the immunoglobulin light chain, in situ hybridization is recommended. Abnormal expression of CD56 is seen in 70-80% of cases by flow cytometry analysis. CD56 expression definitively indicates myeloma, suggesting its high diagnostic value. Evaluation of the infiltration pattern, monoclonality, and abnormal antigen expression of plasma cells is more important than the plasmocytic ratio to determine whether a case is reactive or neoplastic.Multiple gene abnormalities function in the onset and progression of myeloma. In our department, we analyze CCND1, FGFR3, MAF, and del (17p13) by FISH for all myeloma cases. None of the cases with genetic abnormalities were recognized by G-banding. Therefore, FISH is more effective than G-banding for the evaluation of genetic abnormalities in myeloma.

Qiang YW, Ye S, Huang Y, et al.
MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma.
BMC Cancer. 2018; 18(1):724 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown.
METHODS: IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors.
RESULTS: We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3β activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, - 8, - 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors.
CONCLUSION: These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients.

Walker BA, Mavrommatis K, Wardell CP, et al.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma.
Blood. 2018; 132(6):587-597 [PubMed] Free Access to Full Article Related Publications
Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including

Evans DR, Venkitachalam S, Revoredo L, et al.
Evidence for GALNT12 as a moderate penetrance gene for colorectal cancer.
Hum Mutat. 2018; 39(8):1092-1101 [PubMed] Free Access to Full Article Related Publications
Characterizing moderate penetrance susceptibility genes is an emerging frontier in colorectal cancer (CRC) research. GALNT12 is a strong candidate CRC-susceptibility gene given previous linkage and association studies, and inactivating somatic and germline alleles in CRC patients. Previously, we found rare segregating germline GALNT12 variants in a clinic-based cohort (N = 118) with predisposition for CRC. Here, we screened a new population-based cohort of incident CRC cases (N = 479) for rare (MAF ≤1%) deleterious germline GALNT12 variants. GALNT12 screening revealed eight rare variants. Two variants were previously described (p.Asp303Asn, p.Arg297Trp), and additionally, we found six other rare variants: five missense (p.His101Gln, p.Ile142Thr, p.Glu239Gln, p.Thr286Met, p.Val290Phe) and one putative splice-altering variant (c.732-8 G>T). Sequencing of population-matched controls (N = 400) revealed higher burden of these variants in CRC cases compared with healthy controls (P = 0.0381). We then functionally characterized the impact of substitutions on GALNT12 enzyme activity using in vitro-derived peptide substrates. Three of the newly identified GALNT12 missense variants (p.His101Gln, p.Ile142Thr, p.Val290Phe) demonstrated a marked loss (>2-fold reduction) of enzymatic activity compared with wild-type (P ≤ 0.05), whereas p.Glu239Gln exhibited a ∼2-fold reduction in activity (P = 0.077). These findings provide strong, independent evidence for the association of GALNT12 defects with CRC-susceptibility; underscoring implications for glycosylation pathway defects in CRC.

Liu T, Yang H, Fan W, et al.
Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer.
Gastroenterology. 2018; 155(2):557-571.e14 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice.
METHODS: We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 μM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors.
RESULTS: LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients.
CONCLUSIONS: Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice.

Yamamoto M, Kensler TW, Motohashi H
The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis.
Physiol Rev. 2018; 98(3):1169-1203 [PubMed] Related Publications
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.

Wang Y, Liu H, Hou Y, et al.
Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients.
Virchows Arch. 2018; 472(6):959-968 [PubMed] Related Publications
Next-generation sequencing (NGS) has become a promising approach for tumor somatic mutation detection. However, stringent validation is required for its application on clinical specimens, especially for low-quality formalin-fixed paraffin-embedded (FFPE) tissues. Here, we validated the performance of an amplicon-based targeted NGS assay, OncoAim™ DNA panel, on both commercial reference FFPE samples and clinical FFPE samples of Chinese colorectal cancer (CRC) patients. Then we profiled the mutation spectrum of 648 Chinese CRC patients in a multicenter study to explore its clinical utility. This NGS assay achieved 100% test specificity and 95-100% test sensitivity for variants with mutant allele frequency (MAF) ≥ 5% when median read depth ≥ 500×. The orthogonal methods including amplification refractory mutation system (ARMS)-PCR and Sanger sequencing validated that NGS generated three false negatives (FNs) but no false positives (FPs) among 516 clinical samples for KRAS aberration detection. Genomic profiling of Chinese CRC patients with this assay revealed that 63.3% of the tumors harbored clinically actionable alterations. Besides the commonly mutated genes including TP53 (52.82%), KRAS (46.68%), APC (24.09%), PIK3CA (18.94%), SMAD4 (9.47%), BRAF (6.15%), FBXW7 (5.32%), and NRAS (4.15%), other less frequently mutated genes were also identified. Statistically significant association of specific mutated genes with certain clinicopathological features was detected, e.g., both BRAF and PIK3CA were more prevalent in right-side CRC (p < 0.001 and p = 0.002, respectively). We concluded this targeted NGS assay is qualified for clinical practice, and our findings could help the diagnosis and prognosis of Chinese CRC patients.

Korbolina EE, Brusentsov II, Bryzgalov LO, et al.
Novel approach to functional SNPs discovery from genome-wide data reveals promising variants for colon cancer risk.
Hum Mutat. 2018; 39(6):851-859 [PubMed] Related Publications
In the majority of colorectal cancer (CRC) cases, the genetic basis of predisposition remains unexplained. The goal of the study was to assess the regulatory SNPs (rSNPs) in the human genome and to reveal СRC drivers based on the available chromatin immunoprecipitation sequencing (ChIP-Seq, ChIA-PET) and transcriptional profiling (RNA-Seq) data. We combined positional (locations within genome regulatory elements) and functional (associated with allele-specific binding and expression) criteria followed by an analysis using genome-wide association studies (GWAS) and minor allele frequency (MAF) datasets. DeSeq2 analysis through 70 CRC patients reinforced the regulatory potential. rSNPs (1,476) that were associated with significant (P < 0.01) allele-specific events resulting in thirty that exhibited a link with CRC according to the MAF and 27, with a risk of malignancy in general according to GWAS. Selected rSNPs may modify the expression of genes for tumor suppressors and the regulators of signaling pathways, including noncoding RNAs. However, the rSNPs from the most represented group affect the expression of genes related to splicing. Our findings strongly suggest that the identified variants might contribute to CRC susceptibility, which indicates that aberrant splicing is one of the key mechanisms for unraveling disease etiopathogenesis and provides useful inputs for interpreting how genotypic variation corresponds to phenotypic outcome.

Guala D, Bernhem K, Blal HA, et al.
Experimental validation of predicted cancer genes using FRET.
Methods Appl Fluoresc. 2018; 6(3):035007 [PubMed] Related Publications
Huge amounts of data are generated in genome wide experiments, designed to investigate diseases with complex genetic causes. Follow up of all potential leads produced by such experiments is currently cost prohibitive and time consuming. Gene prioritization tools alleviate these constraints by directing further experimental efforts towards the most promising candidate targets. Recently a gene prioritization tool called MaxLink was shown to outperform other widely used state-of-the-art prioritization tools in a large scale in silico benchmark. An experimental validation of predictions made by MaxLink has however been lacking. In this study we used Fluorescence Resonance Energy Transfer, an established experimental technique for detection of protein-protein interactions, to validate potential cancer genes predicted by MaxLink. Our results provide confidence in the use of MaxLink for selection of new targets in the battle with polygenic diseases.

Chen S, Liu M, Zhou Y
Bioinformatics Analysis for Cell-Free Tumor DNA Sequencing Data.
Methods Mol Biol. 2018; 1754:67-95 [PubMed] Related Publications
As a major biomarker of liquid biopsy, cell-free tumor DNA (ctDNA), which can be extracted from blood, urine, or other circulating liquids, is able to provide comprehensive genetic information of tumor and better overcome the tumor heterogeneity problem comparing to tissue biopsy. Developed in recent years, next-generation sequencing (NGS) is a widely used technology for analyzing ctDNA. Although the technologies of processing ctDNA samples are mature, the task to detect low mutated allele frequency (MAF) variations from noisy sequencing data remains challenging. In this chapter, the authors will first explain the difficulties of analyzing ctDNA sequencing data, review related technologies, and then present some novel bioinformatics methods for analyzing ctDNA NGS data in better ways.

Garancher A, Lin CY, Morabito M, et al.
NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma.
Cancer Cell. 2018; 33(3):435-449.e6 [PubMed] Free Access to Full Article Related Publications
Cancer cells often express differentiation programs unrelated to their tissue of origin, although the contribution of these aberrant phenotypes to malignancy is poorly understood. An aggressive subgroup of medulloblastoma, a malignant pediatric brain tumor of the cerebellum, expresses a photoreceptor differentiation program normally expressed in the retina. We establish that two photoreceptor-specific transcription factors, NRL and CRX, are master regulators of this program and are required for tumor maintenance in this subgroup. Beyond photoreceptor lineage genes, we identify BCL-XL as a key transcriptional target of NRL and provide evidence substantiating anti-BCL therapy as a rational treatment opportunity for select MB patients. Our results highlight the utility of studying aberrant differentiation programs in cancer and their potential as selective therapeutic vulnerabilities.

Li W, Qiu T, Ling Y, et al.
Subjecting appropriate lung adenocarcinoma samples to next-generation sequencing-based molecular testing: challenges and possible solutions.
Mol Oncol. 2018; 12(5):677-689 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing (NGS) has recently been rapidly adopted in the molecular diagnosis of cancer, but it still faces some obstacles. In this study, 665 lung adenocarcinoma samples (558 TKI-naive and 107 TKI-relapsed samples) were interrogated using NGS, and the challenges and possible solutions of subjecting appropriate tissue samples to NGS testing were explored. The results showed that lower frequencies of HER2/BRAF/PIK3CA and acquired EGFR T790M mutations were observed in biopsy samples with <20% tumor cellularity than in those with ≥20%, but there were no significant differences in the frequencies of EGFR or KRAS mutations. Moreover, tumor heterogeneity was assessed by heterogeneity score (HS), which was calculated through multiplying by 2 the mutant allele frequency (MAF) of tumor cells. In TKI-naive samples, intratumor heterogeneity could occur in EGFR, KRAS, HER2, BRAF, and PIK3CA mutant tumors, but the degree was variable. Higher EGFR, but lower BRAF and PIK3CA HS values were observed compared with KRAS HS. In TKI-relapsed samples, analysis of concomitant sensitizing EGFR and T790M MAFs showed that intratumor heterogeneity was common in acquired EGFR T790M mutant tumors. The mutational status between primary and metastatic tumors was usually concordant, but KRAS, HER2, and PIK3CA HS were significantly higher in metastatic tumors than in primary tumors. Additionally, the discordance rate of mutational status in multifocal lung adenocarcinomas diagnosed as equivocal or multiple primary tumors was high. Together, our findings demonstrate that a comprehensive quality assessment is necessary during tissue process to mitigate the challenges of poor tumor cellularity, tumor heterogeneity, and multifocal clonally independent tumors.

Gralewski JH, Post GR, van Rhee F, Yuan Y
Myeloid transformation of plasma cell myeloma: molecular evidence of clonal evolution revealed by next generation sequencing.
Diagn Pathol. 2018; 13(1):15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Plasma cell myeloma (PCM) is a neoplasm of terminally differentiated B lymphocytes with molecular heterogeneity. Although therapy-related myeloid neoplasms are common in plasma cell myeloma patients after chemotherapy, transdifferentiation of plasma cell myeloma into myeloid neoplasms has not been reported in literature. Here we report a very rare case of myeloid neoplasm transformed from plasma cell myeloma.
CASE PRESENTATION: A 60-year-old man with a history of plasma cell myeloma with IGH-MAF gene rearrangement and RAS/RAF mutations developed multiple soft tissue lesions one year following melphalan-based chemotherapy and autologous stem cell transplant. Morphological and immunohistochemical characterization of the extramedullary disease demonstrated that the tumor cells were derived from the monocyte-macrophage lineage. Next generation sequencing (NGS) studies detected similar clonal aberrations in the diagnostic plasma cell population and post-therapy neoplastic cells, including IGH-MAF rearrangement, multiple genetic mutations in RAS signaling pathway proteins, and loss of tumor suppressor genes. Molecular genetic analysis also revealed unique genomic alterations in the transformed tumor cells, including gain of NF1 and loss of TRAF3.
CONCLUSION: To our knowledge, this is the first case of myeloid sarcoma transdifferentiated from plasma cell neoplasm. Our findings in this unique case suggest clonal evolution of plasma cell myeloma to myeloma neoplasm and the potential roles of abnormal RAS/RAF signaling pathway in lineage switch or transdifferentiation.

Czeczuga-Semeniuk E, Galar M, Jarząbek K, et al.
The preliminary association study of ADIPOQ, RBP4, and BCMO1 variants with polycystic ovary syndrome and with biochemical characteristics in a cohort of Polish women.
Adv Med Sci. 2018; 63(2):242-248 [PubMed] Related Publications
PURPOSE: We aimed to elucidate the frequency of the SNPs in the ADIPOQ, RBP4 and BCMO1genes in a population of Caucasian Polish women with polycystic ovary syndrome (PCOS), and to evaluate the possible associations between these variants and the susceptibility to PCOS. Additionally, the relationship of these polymorphisms to a clinical phenotype of this syndrome, and the concentrations of adipokines, were determined.
MATERIALS/METHODS: Clinical and biochemical profiles, DNA isolation and genotyping, and adipokine assays were performed in 294 PCOS women and 78 controls.
RESULTS: In a cohort of Polish women, for the genotype distribution and allele frequencies (minor allele frequency - MAF) proved that only the SNP rs1501299 in the gene ADIPOQ (P = 0.0010, OR = 0.41, 95% C.I.:0.24-0.70) and rs7501331 in the gene BCMO1 (P = 0.0106, OR = 0.24, 95% C.I.:0.21-0.71), are significantly associated (the latter marginally significant) with the decrease of the risk of the disease. Also for this SNPs there were significant differences in the genotypic frequencies in the study population. There was a link between rs12934922 of BCMO1 gen and serum concentration of RBP4 (P = 0.034) and adiponectin (P = 0.038) in the study group but not in the control group. The elevated mean serum concentration of cholesterol (P = 0.020) and LDL cholesterol (P = 0.005) was observed for GG rs1501299 genotype and triglycerides (P = 0.028) for TT rs2241766 genotype.
CONCLUSIONS: The results of the present study revealed that the genes variants RBP4 is not associated with PCO. It seems that rs1501299 of ADIPOQ gene influences the occurrence of PCO and lipids profile in those patients.

Ghali RM, Al-Mutawa MA, Al-Ansari AK, et al.
Differential association of ESR1 and ESR2 gene variants with the risk of breast cancer and associated features: A case-control study.
Gene. 2018; 651:194-199 [PubMed] Related Publications
BACKGROUND: Estrogen is key to breast cancer pathogenesis, and acts by binding its receptor (ER), which exists as ERα and ERβ, encoded by ESR1 and ESR2 genes, respectively. Studies that investigated the association of ESR1 and ESR2 variants with breast cancer yielded mixed outcome, and ethnic contribution was proposed. We evaluated the association between ESR1 and ESR2 variants and breast cancer and associated features in Tunisian women.
METHODS: Retrospective case-control study involving 207 female breast cancer patients, and 284 control women. Genotyping was done by real-time PCR.
RESULTS: Minor allele frequencies (MAF) of tagging SNPs rs2234693 and rs3798577 (ESR1) were significantly higher, while MAF of rs1256049 (ESR2) was significantly lower in breast cancer patients vs.
CONTROLS: Patients carrying rs3798577 genotypes had higher risk, while rs1256049 genotype carriers had reduced risk of breast cancer. The association of ESR1 and ESR2 gene variants with breast cancer depended on ER and Her-2 status. ESR1 rs3798577 and ESR2 rs1256049 were associated with breast cancer in ER-positive cases, and ESR1 rs2234693, and rs3798577 were associated with breast cancer in Her-2-negative cases, while the association of ESR2 rs1256049 with breast cancer was seen in Her-2 positive cases. Haploview analysis identified 4-locus ESR1 haplotypes that were positively (CGTT, TACC, and TACT), and negatively (CGTC) associated with breast cancer. No ESR2 haplotypes associated with breast cancer were identified.
CONCLUSION: ESR1 alleles and genotypes, and specific 3-locus ESR1 haplotypes are related with increased breast cancer susceptibility in Tunisian women. However, ESR2 variant and specific 1-locus ESR1 haplotype have a protective effect.

Iacovazzo D, Flanagan SE, Walker E, et al.
Proc Natl Acad Sci U S A. 2018; 115(5):1027-1032 [PubMed] Free Access to Full Article Related Publications
The β-cell-enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing

Gutierrez-Camino Á, Umerez M, Martin-Guerrero I, et al.
Mir-pharmacogenetics of Vincristine and peripheral neurotoxicity in childhood B-cell acute lymphoblastic leukemia.
Pharmacogenomics J. 2018; 18(6):704-712 [PubMed] Related Publications
Vincristine (VCR), an important component of childhood acute lymphoblastic leukemia (ALL) therapy, can cause sensory and motor neurotoxicity. This neurotoxicity could lead to dose reduction or treatment discontinuation, which could in turn reduce survival. In this line, several studies associated peripheral neurotoxicity and polymorphisms in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) of VCR. Nowadays, it is well known that these genes are regulated by microRNAs (miRNAs) and SNPs in miRNAs could modify their levels or function. Therefore, the aim of this study was to determine whether SNPs in miRNAs could be associated with VCR-induced neurotoxicity. To achieve this aim, we analyzed all the SNPs in miRNAs (minor allele frequency (MAF) ≥ 0.01) which could regulate VCR-related genes in a large cohort of Spanish children with B-cell precursor ALL (B-ALL) homogeneously treated with LAL/SHOP protocols. We identified the A allele of rs12402181 in the seed region of miR-3117-3p, that could affect the binding with ABCC1 and RALBP1 gene, and C allele of rs7896283 in pre-mature sequence of miR-4481, which could be involved in peripheral nerve regeneration, significantly associated with VCR-induced neurotoxicity. These findings point out the possible involvement of two SNPs in miRNA associated with VCR-related neurotoxicity.

Bykhovskaya Y, Fardaei M, Khaled ML, et al.
TSC1 Mutations in Keratoconus Patients With or Without Tuberous Sclerosis.
Invest Ophthalmol Vis Sci. 2017; 58(14):6462-6469 [PubMed] Free Access to Full Article Related Publications
Purpose: To test candidate genes TSC1 and TSC2 in a family affected by tuberous sclerosis complex (TSC) where proband was also diagnosed with bilateral keratoconus (KC) and to test the hypothesis that defects in the same gene may lead to a nonsyndromic KC.
Methods: Next-generation sequencing of TSC1 and TSC2 genes was performed in a proband affected by TSC and KC. Identified mutation was confirmed by Sanger DNA sequencing. Whole exome sequencing (WES) was performed in patients with nonsyndromic KC. Sanger DNA sequencing was used to confirm WES results and to screen additional patients. RT-PCR was used to investigate TSC1 expression in seven normal human corneas and eight corneas from patients with KC. Various in silico tools were employed to model functional consequences of identified mutations.
Results: A heterozygous nonsense TSC1 mutation g.132902703C>T (c.2293C>T, p.Gln765Ter) was identified in a patient with TSC and KC. Two heterozygous missense TSC1 variants g.132896322A>T (c.3408A>T, p.Asp1136Glu) and g.132896452G>A (c.3278G>A, p.Arg1093Gln) were identified in three patients with nonsyndromic KC. Two mutations were not present in The Genome Aggregation (GnomAD), The Exome Aggregation (ExAC), and 1000 Genomes (1000G) databases, while the third one was present in GnomAD and 1000G with minor allele frequencies (MAF) of 0.00001 and 0.0002, respectively. We found TSC1 expressed in normal corneas and KC corneas, albeit with various levels.
Conclusions: Here for the first time we found TSC1 gene to be involved in bilateral KC and TSC as well as with nonsyndromic KC, supporting the hypothesis that diverse germline mutations of the same gene can cause genetic disorders with overlapping clinical features.

Yamauchi M, Urabe Y, Ono A, et al.
Serial profiling of circulating tumor DNA for optimization of anti-VEGF chemotherapy in metastatic colorectal cancer patients.
Int J Cancer. 2018; 142(7):1418-1426 [PubMed] Related Publications
Understanding the molecular changes in tumors in response to anti-VEGF chemotherapy is crucial for optimization of the treatment strategy for metastatic colorectal cancer. We prospectively investigated changes in the amount and constitution of circulating tumor DNA (ctDNA) in serial peripheral blood samples during chemotherapy. Sixty-one plasma samples taken at different time points (baseline, remission, and post-progression) and pre-treatment tumor samples were collected from 21 patients who received bevacizumab-containing first-line chemotherapy. Extracted DNA was sequenced by next-generation sequencing using a panel of 90 oncogenes. Candidate ctDNAs in plasma were validated using mutational data from matching tumors. ctDNAs encoding one to six trunk mutations were found in all 21 cases, and the mutant allele frequency (MAF) was distributed over a wide range (1-89%). Significant decreases in the MAF at remission and increases in the MAF after progression were observed (p < 0.001). Reduction in the MAF to below 2% in the remission period was strongly associated with better survival (16.6 vs. 32.5 months, p < 0.001). In two cases, mutations (in CREBBP and FBXW7 genes) were newly detected in ctDNA at a low frequency of around 1% in the post-progression period. The use of ctDNA allows elucidation of the tumor clonal repertoire and tumor evolution during anti-VEGF chemotherapy. Changes in ctDNA levels could be useful as predictive biomarkers for survival. Mutations newly detected in ctDNA in the late treatment period might reveal the rise of a minor tumor clone that may show resistance to anti-VEGF therapy.

de Sousa SF, Diniz MG, França JA, et al.
Cancer genes mutation profiling in calcifying epithelial odontogenic tumour.
J Clin Pathol. 2018; 71(3):279-283 [PubMed] Related Publications
AIMS: To identify calcifying epithelial odontogenic tumour (CEOT) mutations in oncogenes and tumour suppressor genes.
METHODS: A panel of 50 genes commonly mutated in cancer was sequenced in CEOT by next-generation sequencing. Sanger sequencing was used to cover the region of the frameshift deletion identified in one sample.
RESULTS: Missense single nucleotide variants (SNVs) with minor allele frequency (MAF) <1% were detected in
CONCLUSION: CEOT harbours mutations in the tumour suppressor

Lorca V, Rueda D, Martín-Morales L, et al.
Role of GALNT12 in the genetic predisposition to attenuated adenomatous polyposis syndrome.
PLoS One. 2017; 12(11):e0187312 [PubMed] Free Access to Full Article Related Publications
The involvement of GALNT12 in colorectal carcinogenesis has been demonstrated but it is not clear to what extent it is implicated in familial CRC susceptibility. Partially inactivating variant, NM_024642.4:c.907G>A, p.(D303N), has been previously detected in familial CRC and proposed as the causative risk allele. Since phenotypes of the described carrier families showed not only CRC but also a polyp history, we hypothesized that GALNT12 could be involved in adenoma predisposition and consequently, in hereditary polyposis CRC syndromes. For that purpose, we have screened the GALNT12 gene in germline DNA from 183 unrelated attenuated polyposis patients. c.907G>A, p.(D303N) was detected in 4 cases (MAF = 1.1%) and no other candidate variants were found. After segregation studies, LOH analyses, glycosylation pattern tests and case-control studies, our results did not support the role of c.907G>A, p.(D303N) as a high-penetrance risk allele for polyposis CRC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAF, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999