NFE2L2; nuclear factor, erythroid 2-like 2 (2q31)

Gene Summary

Gene:NFE2L2; nuclear factor, erythroid 2-like 2
Aliases: NRF2
Summary:This gene encodes a transcription factor which is a member of a small family of basic leucine zipper (bZIP) proteins. The encoded transcription factor regulates genes which contain antioxidant response elements (ARE) in their promoters; many of these genes encode proteins involved in response to injury and inflammation which includes the production of free radicals. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:nuclear factor erythroid 2-related factor 2
Updated:14 December, 2014


What does this gene/protein do?
Show (19)


What pathways are this gene/protein implicaed in?
- Oxidative Stress Induced Gene Expression Via Nrf2 BIOCARTA
- Prion Pathway BIOCARTA
- Prion disease KEGG
Data from KEGG and BioCarta [BIOCARTA terms] via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Notable (5)

Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Lung CancerNFE2L2 and Lung Cancer View Publications43
Breast CancerNFE2L2 and Breast Cancer View Publications21
Lung Cancer, Non-Small CellNFE2L2 and Non-Small Cell Lung Cancer View Publications14
Liver CancerNFE2L2 and Liver Cancer View Publications13
Esophageal CancerNFE2L2 mutations in Esophageal Cancer View Publications5

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Related Links

Latest Publications: NFE2L2 (cancer-related)

Sid B, Glorieux C, Valenzuela M, et al.
AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells.
Biochem Pharmacol. 2014; 91(2):168-80 [PubMed] Related Publications
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.

Related: Liver Cancer

Valenzuela M, Glorieux C, Stockis J, et al.
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells.
Br J Cancer. 2014; 111(5):874-82 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
BACKGROUND: Standard therapy for acute promyelocytic leukaemia (APL) includes retinoic acid (all-trans retinoic acid (ATRA)), which promotes differentiation of promyelocytic blasts. Although co-administration of arsenic trioxide (ATO) with ATRA has emerged as an effective option to treat APL, the molecular basis of this effect remains unclear.
METHODS: Four leukaemia cancer human models (HL60, THP-1, NBR4 and NBR4-R2 cells) were treated either with ATO alone or ATO plus ATRA. Cancer cell survival was monitored by trypan blue exclusion and DEVDase activity assays. Gene and protein expression changes were assessed by RT-PCR and western blot.
RESULTS: ATO induced an antioxidant response characterised by Nrf2 nuclear translocation and enhanced transcription of downstream target genes (that is, HO-1, NQO1, GCLM, ferritin). In cells exposed to ATO plus ATRA, the Nrf2 nuclear translocation was prevented and cytotoxicity was enhanced. HO-1 overexpression reversed partially the cytotoxicity by ATRA-ATO in HL60 cells. The inhibitory effects of ATRA on ATO-mediated responses were not observed in either the ATRA-resistant NB4-R2 cells or in NB4 cells pre-incubated with the RARα antagonist Ro-41-52-53.
CONCLUSIONS: The augmented cytotoxicity observed in leukaemia cells following combined ATO-ATRA treatment is likely due to inhibition of Nrf2 activity, thus explaining the efficacy of combined ATO-ATRA treatment in the APL therapy.

Related: RARA gene

Ye P, Mimura J, Okada T, et al.
Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition.
Mol Cell Biol. 2014; 34(18):3421-34 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The ubiquitin-proteasome pathway degrades ubiquitinated proteins to remove damaged or misfolded protein and thus plays an important role in the maintenance of many important cellular processes. Because the pathway is also crucial for tumor cell growth and survival, proteasome inhibition by specific inhibitors exhibits potent antitumor effects in many cancer cells. xCT, a subunit of the cystine antiporter system xc (-), plays an important role in cellular cysteine and glutathione homeostasis. Several recent reports have revealed that xCT is involved in cancer cell survival; however, it was unknown whether xCT affects the cytotoxic effects of proteasome inhibitors. In this study, we found that two stress-inducible transcription factors, Nrf2 and ATF4, were upregulated by proteasome inhibition and cooperatively enhance human xCT gene expression upon proteasome inhibition. In addition, we demonstrated that the knockdown of xCT by small interfering RNA (siRNA) or pharmacological inhibition of xCT by sulfasalazine (SASP) or (S)-4-carboxyphenylglycine (CPG) significantly increased the sensitivity of T24 cells to proteasome inhibition. These results suggest that the simultaneous inhibition of both the proteasome and xCT could have therapeutic benefits in the treatment of bladder tumors.

Related: Bladder Cancer Bladder Cancer - Molecular Biology Bortezomib

Reszka E, Jablonowski Z, Wieczorek E, et al.
Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients.
J Cancer Res Clin Oncol. 2014; 140(10):1723-31 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
PURPOSE: NRF2 transcription factor is involved in modulation of various antioxidant and metabolic genes and, therefore, may modulate anti-carcinogenic potential. Association between polymorphisms of NRF2 and five NRF2-regulated genes and urinary bladder cancer (BC) risk was analyzed.
METHODS: The study group included 244 BC patients, while the control group comprised 365 individuals with no evidence of malignancy. Genotyping of GSTM1 (deletion), GSTT1 (deletion), GSTA1 -69C/T (rs3957357), GSTP1 Ile105Val (rs1695), SOD2 Ala16Val (rs4880) and NRF2 -617C/A (rs6721961) in blood genomic DNA was performed by means of real-time PCR assays. The associations between gene polymorphism and BC risk were computed by logistic regression.
RESULTS: The frequency of GSTA1, GSTP1, SOD2 and NRF2 genotypes did not differ in both groups. A significantly higher BC risk was associated with GSTM1 null genotype after adjusting to age, sex and smoking habit (OR 1.85, 95 % CI 1.30-2.62; P = 0.001). GSTT1 null (OR 0.50, 95 % CI 0.31-0.81; P = 0.005) and GSTP1 Val105Val (OR 0.52, 95 % CI 0.27-0.98; P = 0.04) genotypes were associated with reduced BC risk separately or in combination (OR 0.24, 95 % CI 0.11-0.51; P < 0.0001) (P heterogeneity = 0.01). Combined GSTT1 null and SOD2 with at least one 16Val allele among never smokers encompass reduced BC risk (OR 0.14, 95 % CI 0.03-0.63; P = 0.01) (P heterogeneity = 0.04).
CONCLUSIONS: This study supports hypothesis that GSTM1 null genotype may be a moderate BC risk factor. The gene-gene and gene-environment interactions associated with combined GSTP1/GSTT1 and combined GSTT1/SOD2 genetic polymorphisms along with cigarette smoking habit may play a significant role in BC risk modulation.

Related: GSTP1 Bladder Cancer Bladder Cancer - Molecular Biology GSTT1 GSTM1

Chun KS, Kundu J, Kundu JK, Surh YJ
Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals.
Toxicol Lett. 2014; 229(1):73-84 [PubMed] Related Publications
The incidence of skin cancer is increasing worldwide. Over the last several decades, attention has been focused on understanding the molecular basis of skin carcinogenesis and identifying substances for use in chemoprevention of skin cancer. Reactive oxygen species generated by chemical carcinogens or UV irradiation play a key role in skin tumorigenesis. Multiple lines of evidence suggest that cellular antioxidant and/or phase-2 detoxification enzymes, collectively known as cytoprotective proteins, can protect against skin carcinogenesis. A redox sensitive transcription factor, nuclear factor-erythroid related factor-2 (Nrf2), is a master regulator of transcriptional activation of genes encoding cytoprotective proteins. Many chemopreventive phytochemicals are known to activate Nrf2 either by oxidative or covalent modification of its cytosolic repressor Kelch-like ECH-associated protein (Keap1) or by phosphorylation of Nrf2. Upon activation, Nrf2 translocates to the nucleus and binds to the antioxidant response element (ARE) located in the promoter regions of genes encoding cytoprotective proteins. Mice genetically deficient in Nrf2 are highly susceptible to chemically induced skin tumorigenesis and are less responsive to the cytoprotective effects of some chemopreventive phytochemicals. This article highlights the Nrf2-ARE signaling as a prime target for chemoprevention of skin cancer with some phytochemicals.

Related: Skin Cancer

Yun HS, Baek JH, Yim JH, et al.
Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation.
Biochem Biophys Res Commun. 2014; 449(4):471-6 [PubMed] Related Publications
We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

Related: Apoptosis Lung Cancer TP53

Namani A, Li Y, Wang XJ, Tang X
Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.
Biochim Biophys Acta. 2014; 1843(9):1875-85 [PubMed] Related Publications
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.

Related: Cancer Prevention and Risk Reduction Signal Transduction

Su S, Yang X, Omiecinski CJ
Intronic DNA elements regulate Nrf2 chemical responsiveness of the human microsomal epoxide hydrolase gene (EPHX1) through a far upstream alternative promoter.
Biochim Biophys Acta. 2014; 1839(6):493-505 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
In humans, microsomal epoxide hydrolase (mEH) contributes important biological functions that underlie both detoxification and bioactivation fates arising from exposures to foreign chemicals. Previously, we discovered that human mEH gene transcription is initiated from alternative promoters. The respective transcripts are programmed with tissue specificity and the upstream E1b promoter contributes predominantly to mEH expression. The results presented demonstrate that exposures to the Nrf2 activators, sulforaphane (SFN) and tert-butylhydroquinone (tBHQ), markedly activate E1b transcription in human lung and liver cells. Genomic analyses identified two major DNase I hypersensitive regions (HS-1 and HS-2) within the ~15 kb intervening sequence separating E1b from the downstream E1 promoter. In BEAS-2B cells, the Nrf2 effectors, SFN and tBHQ, selectively activated the more distal HS-2 through an antioxidant response element (ARE). An activator protein 1/12-O-tetradecanoylphorbol-13-acetate interaction was further identified within the HS-2 enhancer that functioned to additionally contribute to ARE-mediated induction responsiveness of the E1b promoter. The results demonstrate that ARE modulation, integrated with additional transcriptional complexes, regulates the tissue-specific expression of mEH and that these processes likely coordinate both the protective and bioactivation functions contributed by mEH activities in human tissues.

Related: Lung Cancer

Song Y, Li L, Ou Y, et al.
Identification of genomic alterations in oesophageal squamous cell cancer.
Nature. 2014; 509(7498):91-5 [PubMed] Related Publications
Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (>90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC.

Related: Chromosome 11 CGH Cancer of the Esophagus Esophageal Cancer

Xiang M, Namani A, Wu S, Wang X
Nrf2: bane or blessing in cancer?
J Cancer Res Clin Oncol. 2014; 140(8):1251-9 [PubMed] Related Publications
BACKGROUND: The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells.
RESULTS AND DISCUSSION: Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study.
CONCLUSION: This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.

Related: Cancer Prevention and Risk Reduction

Bellezza I, Grottelli S, Gatticchi L, et al.
α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells.
Gene. 2014; 539(1):1-7 [PubMed] Related Publications
UNLABELLED: α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H₂O₂₋/docetaxel-induced cytotoxicity. While glutathione and heme oxygenase-1 are not involved in α-tocopheryl succinate-induced adaptive response to paraquat,
NAD(P)H: quinone oxidoreductase seems to be responsible, at least in part, for the lack of the additional response. Silencing the gene and/or the inhibition of
NAD(P)H: quinone oxidoreductase activity counteracts the α-tocopheryl succinate-induced adaptive response. In conclusion, the adaptive response to α-tocopheryl succinate shows that the activation of Nrf2 can promote the survival of cancer cells in an unfavourable environment.

Related: Apoptosis Prostate Cancer Docetaxel

Khunluck T, Kukongviriyapan V, Puapairoj A, et al.
Association of NRF2 polymorphism with cholangiocarcinoma prognosis in Thai patients.
Asian Pac J Cancer Prev. 2014; 15(1):299-304 [PubMed] Related Publications
Cholangiocarcinoma (CCA), a malignancy of biliary duct with a very poor prognosis, is the leading cause of cancer death in countries of the Mekong subregion. Liver fluke infection is the main etiological factor, but genetic variation has been recognized as also important in conferring susceptibility to CCA risk. Nuclear factor (erythroid derived 2)-like 2 (NRF2) is a key transcription factor in detoxification and antioxidant defense. Emerging evidence has demonstrated that genetic polymorphisms in the NRF2 gene may be associated with cancer development. The objectives of this study were to investigate the association of NRF2 genetic polymorphism with CCA risk and to evaluate the influence of the NRF2 genotype on survival time of affected patients. Single nucleotide polymorphisms (SNPs) of the NRF2 gene, including rs6726395: A/G, rs2886161: C/T, rs1806649: C/T, and rs10183914: C/T, were analyzed using TaqMan® SNP genotyping assays. Among 158 healthy northeastern Thai subjects, the allele frequencies were 41, 62, 94, and 92%, respectively. The correlation of NRF2 SNPs and CCA risk was analyzed in the 158 healthy subjects and 198 CCA patients, using unconditional logistic regression. The results showed that whereas the NRF2 SNPs were not associated with CCA risk (p>0.05), Kaplan-Meier analysis of 88 intrahepatic CCA patients showed median survival time with rs6726395 genotypes of GG and AA/AG to be 344±138 (95%CI: 73-615) days and 172±37 (95%CI: 100-244) days, respectively, (p<0.006). On multivariate Cox proportional hazard analysis, the GG genotype of rs6726395 was found to be associated with longer survival with a hazard ratio of 0.54 (95%CI: 0.31-0.94). In addition, non-papillary adenocarcinoma was associated with poor survival with a hazard ratio of 2.09 (95%CI: 1.16-3.75). The results suggest that the NRF2 rs6726395 polymorphism can be a potential prognostic biomarker for CCA patients.

Related: Extra-Hepatic Bile duct cancer (cholangiocarcinoma) Thailand

Funes JM, Henderson S, Kaufman R, et al.
Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival.
Mol Cancer. 2014; 13:20 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
BACKGROUND: The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious.
METHODS: We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided.
RESULTS: We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers.
CONCLUSIONS: Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth.

Related: Apoptosis Cancer Prevention and Risk Reduction Signal Transduction

Shibata T, Aburatani H
Exploration of liver cancer genomes.
Nat Rev Gastroenterol Hepatol. 2014; 11(6):340-9 [PubMed] Related Publications
Liver cancer is the third leading cause of cancer-related death worldwide. Advances in sequencing technologies have enabled the examination of liver cancer genomes at high resolution; somatic mutations, structural alterations, HBV integration, RNA editing and retrotransposon changes have been comprehensively identified. Furthermore, integrated analyses of trans-omics data (genome, transcriptome and methylome data) have identified multiple critical genes and pathways implicated in hepatocarcinogenesis. These analyses have uncovered potential therapeutic targets, including growth factor signalling, WNT signalling, the NFE2L2-mediated oxidative pathway and chromatin modifying factors, and paved the way for new molecular classifications for clinical application. The aetiological factors associated with liver cancer are well understood; however, their effects on the accumulation of somatic changes and the influence of ethnic variation in risk factors still remain unknown. The international collaborations of cancer genome sequencing projects are expected to contribute to an improved understanding of risk evaluation, diagnosis and therapy for this cancer.

Related: Liver Cancer

Schultz MA, Hagan SS, Datta A, et al.
Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.
PLoS One. 2014; 9(1):e87204 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Despite androgen deprivation therapy (ADT), persistent androgen receptor (AR) signaling enables outgrowth of castration resistant prostate cancer (CRPC). In prostate cancer (PCa) cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP) and castration resistant (C4-2B) PCa cells. Dihydrotestosterone (DHT) stimulated transactivation of the androgen response element (ARE) was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

Lee WL, Huang JY, Shyur LF
Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms.
Oxid Med Cell Longev. 2013; 2013:925804 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The "double-edged sword" role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.

Related: Cancer Prevention and Risk Reduction

Ojesina AI, Lichtenstein L, Freeman SS, et al.
Landscape of genomic alterations in cervical carcinomas.
Nature. 2014; 506(7488):371-5 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Cervical cancer is responsible for 10-15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma-normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour-normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.

Related: EP300 gene HLA-B TP53 Cervical Cancer FBXW7 gene

Huang CF, Zhang L, Ma SR, et al.
Clinical significance of Keap1 and Nrf2 in oral squamous cell carcinoma.
PLoS One. 2013; 8(12):e83479 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Oxidative stress has been reported to play an important role in progression and prognostication in various kinds of cancers. However, the role and clinical significance of oxidative stress markers Keap1 and Nrf2 in oral squamous cell carcinoma (OSCC) has not been elucidated. This study aimed to investigate the correlation of oxidative stress markers Keap1 and Nrf2 expression and pathological features in OSCC by using tissue microarray. Tissue microarrays containing 17 normal oral mucosa, 7 oral epithelial dysplasia and 43 OSCC specimens were studied by immunohistochemistry. The association among these proteins and pathological features were analyzed. Expression of oxidative stress markers Keap1, Nrf2, and antioxidants PPIA, Prdx6, as well as CD147 was found to increase consecutively from normal oral mucosa to OSCC, and the Keap1, Nrf2, PPIA, Prdx6, CD147 expression in OSCC were significantly higher when compared to normal oral mucosa. Expression of Keap1, Nrf2 in tumors was not found to be significantly associated with T category, lymph node metastases, and pathological grade. Furthermore, we checked the relationship among these oxidative stress markers and found that Keap1 was significantly correlated with Nrf2, Prdx6 and CD147. Significant relationship between Nrf2 and Prdx6 was also detected. Finally, we found patients with overexpression of Keap1 and Nrf2 had not significantly worse overall survival by Kaplan-Meier analysis. These findings suggest that ROS markers are associated with carcinogenesis and progression of OSCC, which may have prognostic value and could be regarded as potential therapeutic targets in OSCC.

Related: Oral Cancer

Gu DL, Chen YH, Shih JH, et al.
Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.
World J Gastroenterol. 2013; 19(47):8873-9 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

Related: Liver Cancer

Zhang BP, Zhao J, Li SS, et al.
Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro.
Acta Pharmacol Sin. 2014; 35(2):257-66 [PubMed] Related Publications
AIM: Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro.
METHODS: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively.
RESULTS: Mangiferin (50 μmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity.
CONCLUSION: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant.

Related: Etoposide Signal Transduction

Ji X, Wang H, Zhu J, et al.
Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α.
Int J Cancer. 2014; 135(3):574-84 [PubMed] Related Publications
Concerns were increasingly raised that several types of cancers overexpressed the nuclear factor erythroid 2-related factor 2 (Nrf2), which contributed strikingly to cancer biological capabilities and chemoresistance. However, the role of Nrf2 in the tumor vascular biology had yet to be mechanistically determined. Here, we investigated the involvement of Nrf2 in glioblastoma (GB) angiogenesis in hypoxia. First, we detected the overexpression of Nrf2 and correlated its protein level with microvessel density (MVD) in human GB tissues. Then, we established the stable RNAi-mediated Nrf2-knockdown cells and mimicked hypoxic condition in vitro. The knockdown of Nrf2 inhibited cell proliferation in vitro and suppressed tumor growth in mouse xenografts with a concomitant reduction in VEGF expression and MVD. Similar antiangiogenic effects were documented in endothelial tube formation assays. The downregulation of Nrf2 in glioma cells led to much lower accumulation of HIF-1α protein and limited expression of VEGF and other HIF-1α target genes in mimicking hypoxia. Mechanistic investigations suggested that HIF-1α degradation during hypoxia could be attributed to reduced mitochondrial O2 consumption in Nrf2-inhibited cells. It can be concluded that Nrf2, with its capacity for affecting the protein level of HIF-1α expression, has good reasons to be considered as a critical transcription factor for controlling glioma angiogenesis.

Related: Apoptosis HIF1A Angiogenesis and Cancer

Duong HQ, Yi YW, Kang HJ, et al.
Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine.
Int J Oncol. 2014; 44(3):959-69 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
We describe the potential benefit of PIK-75 in combination of gemcitabine to treat pancreatic cancer in a preclinical mouse model. The effect of PIK-75 on the level and activity of NRF2 was characterized using various assays including reporter gene, quantitative PCR, DNA-binding and western blot analyses. Additionally, the combinatorial effect of PIK-75 and gemcitabine was evaluated in human pancreatic cancer cell lines and a xenograft model. PIK-75 reduced NRF2 protein levels and activity to regulate its target gene expression through proteasome-mediated degradation of NRF2 in human pancreatic cancer cell lines. PIK-75 also reduced the gemcitabine-induced NRF2 levels and the expression of its downstream target MRP5. Co-treatment of PIK-75 augmented the antitumor effect of gemcitabine both in vitro and in vivo. Our present study provides a strong mechanistic rationale to evaluate NRF2 targeting agents in combination with gemcitabine to treat pancreatic cancers.

Related: Cancer of the Pancreas Pancreatic Cancer Gemcitabine

Strohecker AM, White E
Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism.
Autophagy. 2014; 10(2):384-5 [PubMed] Related Publications
The role of autophagy in cancer is complex and context-dependent. Here we describe work with genetically engineered mouse models of non-small cell lung cancer (NSCLC) in which the tumor-suppressive and tumor-promoting function of autophagy can be visualized in the same system. We discovered that early tumorigenesis in Braf(V600E)-driven lung cancer is accelerated by autophagy ablation due to unmitigated oxidative stress, as observed with loss of Nfe2l2/Nrf2-mediated antioxidant defense. However, this growth advantage is eventually overshadowed by progressive mitochondrial dysfunction and metabolic insufficiency, and is associated with increased survival of mice bearing autophagy-deficient tumors. Atg7 deficiency alters progression of Braf(V600E)-driven tumors from adenomas (Braf(V600E); atg7(-/-)) and adenocarcinomas (trp53(-/-); Braf(V600E); atg7(-/-)) to benign oncocytomas that accumulated morphologically and functionally defective mitochondria, suggesting that defects in mitochondrial metabolism may compromise continued tumor growth. Analysis of tumor-derived cell lines (TDCLs) revealed that Atg7-deficient cells are significantly more sensitive to starvation than Atg7-wild-type counterparts, and are impaired in their ability to respire, phenotypes that are rescued by the addition of exogenous glutamine. Taken together, these data suggest that Braf(V600E)-driven tumors become addicted to autophagy as a means to preserve mitochondrial function and glutamine metabolism, and that inhibiting autophagy may be a powerful strategy for Braf(V600E)-driven malignancies.

Related: Non-Small Cell Lung Cancer Lung Cancer Mitochondrial Mutations in Cancer BRAF gene

Rotblat B, Grunewald TG, Leprivier G, et al.
Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers.
Oncotarget. 2013; 4(12):2577-90 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.

Related: Cancer Prevention and Risk Reduction

Riahi R, Long M, Yang Y, et al.
Single cell gene expression analysis in injury-induced collective cell migration.
Integr Biol (Camb). 2014; 6(2):192-202 [PubMed] Article available free on PMC after 01/02/2015 Related Publications
Collective cell behavior in response to mechanical injury is central to various regenerative and pathological processes. Using a double-stranded locked nucleic acid probe for monitoring real-time intracellular gene expression, we examined the spatiotemporal response of epithelial cells during injury-induced collective migration and compared to the blocker assay with minimal injury as control. We showed that cells ∼150 μm from the wound edge exhibit a gradient in response to mechanical injury, expressing different genes depending on the wounding process. While release of contact inhibition is sufficient to trigger the migratory behavior, cell injury additionally induces reactive oxygen species, Nrf2 protein, and stress response genes, including heat shock protein 70 and heme oxygenase-1, in a spatiotemporal manner. Furthermore, we show that Nrf2 has an inhibitory role in injury-induced epithelial-mesenchymal transition, suggesting a potential autoregulatory mechanism in injury-induced response. Taken together, our single-cell gene expression analyses reveal modular cell responses to mechanical injury, manipulation of which may afford novel strategies for tissue repair and prevention of tumor invasion in the future.

Related: Breast Cancer

Li L, Shen C, Nakamura E, et al.
SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer.
Cancer Cell. 2013; 24(6):738-50 [PubMed] Article available free on PMC after 01/02/2015 Related Publications
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer and is often linked to loss of chromosome 3p, which harbors the VHL tumor suppressor gene, loss of chromosome 14q, which includes HIF1A, and gain of chromosome 5q. The relevant target(s) on chromosome 5q is not known. Here, we show that 5q amplification leads to overexpression of the SQSTM1 oncogene in ccRCC lines and tumors. Overexpression of SQSTM1 in ccRCC lines promoted resistance to redox stress and increased soft agar growth, while downregulation of SQSTM1 decreased resistance to redox stress, impaired cellular fitness, and decreased tumor formation. Therefore, the selection pressure to amplify 5q in ccRCC is driven, at least partly, by SQSTM1.

Related: Chromosome 5 Kidney Cancer SQSTM1

Kim Y, Hammerman PS, Kim J, et al.
Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients.
J Clin Oncol. 2014; 32(2):121-8 [PubMed] Article available free on PMC after 10/01/2015 Related Publications
PURPOSE: Lung squamous cell carcinoma (SCC) is the second most prevalent type of lung cancer. Currently, no targeted therapeutics are approved for treatment of this cancer, largely because of a lack of systematic understanding of the molecular pathogenesis of the disease. To identify therapeutic targets and perform comparative analyses of lung SCC, we probed somatic genome alterations of lung SCC by using samples from Korean patients.
PATIENTS AND METHODS: We performed whole-exome sequencing of DNA from 104 lung SCC samples from Korean patients and matched normal DNA. In addition, copy-number analysis and transcriptome analysis were conducted for a subset of these samples. Clinical association with cancer-specific somatic alterations was investigated.
RESULTS: This cancer cohort is characterized by a high mutational burden with an average of 261 somatic exonic mutations per tumor and a mutational spectrum showing a signature of exposure to cigarette smoke. Seven genes demonstrated statistical enrichment for mutation: TP53, RB1, PTEN, NFE2L2, KEAP1, MLL2, and PIK3CA). Comparative analysis between Korean and North American lung SCC samples demonstrated a similar spectrum of alterations in these two populations in contrast to the differences seen in lung adenocarcinoma. We also uncovered recurrent occurrence of therapeutically actionable FGFR3-TACC3 fusion in lung SCC.
CONCLUSION: These findings provide new steps toward the identification of genomic target candidates for precision medicine in lung SCC, a disease with significant unmet medical needs.

Related: Lung Cancer PTEN RB1 TP53 USA MLL2 gene

Liu Y, Chen F, Wang S, et al.
Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors.
Cell Death Dis. 2013; 4:e948 [PubMed] Article available free on PMC after 10/01/2015 Related Publications
Leukemia stem cells (LSCs) are considered to be the main reason for relapse and are also regarded as a major hurdle for the success of acute myeloid leukemia chemotherapy. Thus, new drugs targeting LSCs are urgently needed. Triptolide (TPL) is cytotoxic to LSCs. Low dose of TPL enhances the cytotoxicity of idarubicin (IDA) in LSCs. In this study, the ability of TPL to induce apoptosis in leukemic stem cell (LSC)-like cells derived from acute myeloid leukemia cell line KG1a was investigated. LSC-like cells sorted from KG1a were subjected to cell cycle analysis and different treatments, and then followed by in vitro methyl thiazole tetrazolium bromide cytotoxicity assay. The effects of different drug combinations on cell viability, intracellular reactive-oxygen species (ROS) activity, colony-forming ability and apoptotic status were also examined. Combination index-isobologram analysis indicates a synergistic effect between TPL and IDA, which inhibits the colony-forming ability of LSC-like cells and induces their apoptosis. We further investigated the expression of Nrf2, HIF-1α and their downstream target genes. LSC-like cells treated with both TPL and IDA have increased levels of ROS, decreased expression of Nrf2 and HIF-1α pathways. Our findings indicate that the synergistic cytotoxicity of TPL and IDA in LSCs-like cells may attribute to both induction of ROS and inhibition of the Nrf2 and HIF-1α pathways.

Related: Apoptosis Idarubicin Acute Myeloid Leukemia (AML)

Yamamoto S, Inoue J, Kawano T, et al.
The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors.
Mol Cancer Res. 2014; 12(1):58-68 [PubMed] Related Publications
UNLABELLED: NF-E2-related factor 2 (NRF2) is a master transcriptional regulator that integrates cellular stress responses and is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the posttranslational level. In human cancers, aberrantly stabilized NRF2, either by mutation of NRF2 or KEAP1, plays a vital role in chemoresistance and tumor cell growth through the transcriptional activation of target genes, suggesting that targeted inhibition of NRF2 is a potential therapy for NRF2-stabilized tumors. MicroRNAs (miRNA) are endogenous small noncoding RNAs that can negatively regulate gene expression by interfering with the translation or stability of target transcripts. Moreover, tumor-suppressor miRNAs have been suggested to be useful for cancer treatment. Here, a reporter-coupled miRNA library screen identified four miRNAs (miR-507, -634, -450a, and -129-5p) that negatively regulate the NRF2-mediated oncogenic pathway by directly targeting NRF2. Importantly, downregulation of these miRNAs, in addition to the somatic mutation of NRF2 or KEAP1, is associated with stabilized NRF2 and poor prognosis in esophageal squamous cell carcinoma (ESCC). Furthermore, administration of a miR-507 alone or in combination with cisplatin inhibited tumor growth in vivo. Thus, these findings reveal that miRNA-based therapy is effective against NRF2-stabilized ESCC tumors.
IMPLICATIONS: This study determines the potential of miRNA-based molecular diagnostics and therapeutics in NRF2-stablized tumors.

Related: Cisplatin Cancer of the Esophagus Esophageal Cancer

Onodera Y, Motohashi H, Takagi K, et al.
NRF2 immunolocalization in human breast cancer patients as a prognostic factor.
Endocr Relat Cancer. 2014; 21(2):241-52 [PubMed] Related Publications
UNLABELLED: Nuclear factor erythroid 2-related factor 2 (NRF2 (NFE2L2)) is an important transcriptional activator involved in the cellular defense mechanisms against electrophilic and oxidative stress. Recent studies have demonstrated that the expression of NRF2 protein is upregulated in several human malignancies and is associated with worse prognosis in these patients. However, the pathological and clinical significance of NRF2 has remained largely unknown in breast cancer patients. Therefore, in this study, we immunolocalized NRF2 in 106 breast carcinoma cases. NRF2 immunoreactivity was mainly detected in the nucleus of the breast carcinoma cells and it was positive in 44% of the cases. NRF2 status was significantly associated with histological grade, Ki-67 labeling index, p62 immunoreactivity, and
NAD(P)H: quinone oxidoreductase 1 (NQO1) immunoreactivity, and the results of multivariate analyses revealed that NRF2 status was an independent adverse prognostic factor for both recurrence and disease-free survival of the patients. Subsequent in vitro studies demonstrated that the expression of NRF2 significantly increased the proliferation activity of MCF7 and SK-BR-3 breast carcinoma cells. These results indicate that nuclear NRF2 protein plays important roles in the proliferation and/or progression of breast carcinoma, and nuclear NRF2 immunoreactivity is therefore considered a potent prognostic factor in breast cancer patients.

Related: Breast Cancer


Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NFE2L2 gene, Cancer Genetics Web: http://www.cancerindex.org/geneweb/NFE2L2.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999