MSH6

Gene Summary

Gene:MSH6; mutS homolog 6
Aliases: GTBP, HSAP, p160, GTMBP, HNPCC5
Location:2p16.3
Summary:This gene encodes a member of the DNA mismatch repair MutS family. In E. coli, the MutS protein helps in the recognition of mismatched nucleotides prior to their repair. A highly conserved region of approximately 150 aa, called the Walker-A adenine nucleotide binding motif, exists in MutS homologs. The encoded protein heterodimerizes with MSH2 to form a mismatch recognition complex that functions as a bidirectional molecular switch that exchanges ADP and ATP as DNA mismatches are bound and dissociated. Mutations in this gene may be associated with hereditary nonpolyposis colon cancer, colorectal cancer, and endometrial cancer. Transcripts variants encoding different isoforms have been described. [provided by RefSeq, Jul 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA mismatch repair protein Msh6
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (35)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSH6 (cancer-related)

Albero-González R, Hernández-Llodrà S, Juanpere N, et al.
Immunohistochemical expression of mismatch repair proteins (MSH2, MSH6, MLH1, and PMS2) in prostate cancer: correlation with grade groups (WHO 2016) and ERG and PTEN status.
Virchows Arch. 2019; 475(2):223-231 [PubMed] Related Publications
The role of DNA MMR genes in prostate cancer (PrCa) is controversial, as genetic alterations leading to microsatellite instability are incompletely defined in these tumors. ERG rearrangements and PTEN loss are concomitant events in PrCa. The aim of this study has been to analyze the immunohistochemical (IHC) expression of MSH2, MSH6, MLH1, PMS2, ERG, and PTEN and their potential association with the grade group (GG) grading system (WHO 2016) and PSA recurrence in a series of 200 PrCa (PSMAR-Biobank, Barcelona, Spain). MSH2, MLH1, PMS2, and PTEN losses were documented in 8%, 5%, 2%, and 36.5%, respectively. ERG expression was found in 48%. MSH6 showed an increase of expression with respect to basal levels in 42.1% of the cases. A statistical association between MSH6 overexpression and GG5 was found (p = 0.0281). ERG-wild-type cases were associated with single MSH2 loss (p = 0.024), and MSH2 and/or MLH1 loss (p = 0.019). The percentage of cases with PTEN loss was 20.5% (8/39) in GG1, 37.6% (53/141) of clustered GG2 to 4, and 60% (12/20) of GG5 (chi-square test, p = 0.01). Thus, PTEN expression loss was statistically more frequent in the upper-grade tumors. PMS2 loss was an infrequent event, but it was statistically associated with shorter time to PSA recurrence (p = 0.011). These results suggest the existence of an alternative non-ERG pathway associated with MSH2 or MLH1 expression loss. MSH6 overexpression could be a marker of aggressiveness in PrCa. The IHC assessment of DNA MMR proteins, ERG and PTEN, could identify different altered PrCa pathways, which could aid patient stratification.

Verma R, Agarwal AK, Sakhuja P, Sharma PC
Microsatellite instability in mismatch repair and tumor suppressor genes and their expression profiling provide important targets for the development of biomarkers in gastric cancer.
Gene. 2019; 710:48-58 [PubMed] Related Publications
We evaluated microsatellite instability (MSI) in selected mismatch repair (MMR) and tumor suppressor (TS) genes with a view to exploring genetic changes associated with the occurrence of gastric cancer (GC). Moreover, expression of MSI positive genes was measured to get insights into molecular events operating in the tumor microenvironment. We anticipated discovering new molecular targets with potential as molecular biomarkers of gastric cancer. Of the 13 genes screened, we observed 15% to 52.5% MSI at eight microsatellite loci located in 3' UTR and coding regions of six genes (TGFBR2, PDCD4, MLH3, DLC1, MSH6, and MSH3). The union probability of different combinations of unstable microsatellite loci unveiled a set of four MSI markers from TGFBR2, PDCD4, MLH3, and MSH3 genes that allows detection of up to 85% incidences of GC. Significant downregulation of MLH3, PDCD4, TGFBR2, and DLC1 genes was observed in tumor tissues. Protein structure analyses of two unexplored targets, MSH3 (TG

Dong F, Yang Q, Wu Z, et al.
Identification of survival-related predictors in hepatocellular carcinoma through integrated genomic, transcriptomic, and proteomic analyses.
Biomed Pharmacother. 2019; 114:108856 [PubMed] Related Publications
Patient survival time generally reflects the tumor progression and represents a key clinical parameter. In this study, we aimed to comprehensively characterize the prognosis-associated molecular alterations in hepatocellular carcinoma (HCC). In this study, copy-number changes, gene mutations, mRNA expression, and reverse phase protein arrays data in HCC samples profiled by The Cancer Genome Atlas (TCGA) were obtained. Tumors were then stratified into two groups based on the clinical outcome and identified genomic, transcriptomic, and proteomic traits associated to HCC prognosis. We found that several copy number amplifications and deletions can discriminate HCC patients with poor prognosis from those with better prognosis. Mutated DNAH8 showed a worse prognosis-specific pattern and correlated with a reduced disease-free survival in HCC. By integrating RNA sequencing data, we found that HCC samples with poor prognosis are consistently associated with the up-regulation of cell cycle process, such as chromosome separation, DNA replication, cytokinesis, and etc. At the proteomic level, seven proteins were significantly enriched in samples with poor prognosis, including acetylated α-Tubulin, p62-LCK-ligand, ARID1 A, MSH6, B-Raf, Cyclin B1, and PEA15. Acetylated α-Tubulin was frequently expressed in HCC tissues and acted as a promising prognostic factor for HCC. These alterations lay a foundation for developing relevant therapeutic strategies and improve our knowledge of the pathogenesis of HCC.

Liu Y, Wang M, Chen Q, et al.
A novel heterozygous large deletion of MSH6 gene in a Chinese family with Lynch syndrome.
Gene. 2019; 704:103-112 [PubMed] Related Publications
Lynch syndrome (LS) is a common cancer syndrome that is inherited in an autosomal dominant manner. Its pathogenesis is thought to be closely related to germline mutations of mismatch repair (MMR) genes such as the MLH1, MSH2, PMS2 and MSH6 genes. This study identifies a Chinese family with LS clinically diagnosed according to the Amsterdam II criteria. In these patients, immuno-histochemical staining showed negative MSH6 expressions but positive MLH1, MSH2, and PMS2 expressions. In order to further explore the molecular biology of this LS family, we used targeted next-generation sequencing (NGS) and Multiplex ligation dependent probe amplification (MLPA) to identify the mutation and verify the authenticity of the mutation in 15 family members. For NGS, two panels have been used, one is of MLH1, MSH2, PMS2 and MSH6 genes, the other one is of 139 cancer genetic susceptibility genes. And for the large deletions/duplications can also be identified by NGS panel, an adjusted data analysis strategy of NGS has been used. As a result, we identified a novel heterozygous large deletion in MSH6 gene that was found to be co-segregated among affected family members. This deletion results in the loss of a 3246 bp-sized fragment in MSH6 gene exons 5-9 which represents the coding regions of the MSH6 ATPase domain. This novel mutation has yet to be documented in the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) database. This mutation resulted in MSH6 protein losing gene mismatch repair function, and further caused the microsatellite instable. We speculate that this mutation may significantly impact MMR function through impaired ATP domain function. Theoretically, this proband would likely benefit from PD-1 immune check-point blockade therapy, but conversely, we observed that tumors appeared to rapidly progress after 4 sessions of anti-PD-1 treatment. Further studies to validate the effectiveness of anti-PD-1 treatments in carriers of this mutation are necessary.

Cini G, Quaia M, Canzonieri V, et al.
Toward a better definition of EPCAM deletions in Lynch Syndrome: Report of new variants in Italy and the associated molecular phenotype.
Mol Genet Genomic Med. 2019; 7(5):e587 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Inherited epimutations of Mismatch Repair (MMR) genes are responsible for Lynch Syndrome (LS) in a small, but well defined, subset of patients. Methylation of the MSH2 promoter consequent to the deletion of the upstream EPCAM gene is found in about 1%-3% of the LS patients and represents a classical secondary, constitutional and tissue-specific epimutation. Several different EPCAM deletions have been reported worldwide, for the most part representing private variants caused by an Alu-mediated recombination.
METHODS: 712 patients with suspected LS were tested for MMR mutation in our Institute. EPCAM deletions were detected by multiplex ligation-dependent probe amplification (MLPA) and then defined by Long-Range polymerase chain reaction (PCR)/Sanger sequencing. A comprehensive molecular characterization of colorectal cancer (CRC) tissues was carried out by immunohistochemistry of MMR proteins, Microsatellite Instability (MSI) assay, methylation specific MLPA and transcript analyses. In addition, somatic deletions and/or variants were investigated by MLPA and next generation sequencing (NGS).
RESULTS: An EPCAM deletion was found in five unrelated probands in Italy: variants c.556-490_*8438del and c.858+1193_*5826del are novel; c.859-1430_*2033del and c.859-670_*530del were previously reported. All probands were affected by CRC at young age; tumors showed MSI and abnormal MSH2/MSH6 proteins expression. MSH2 promoter methylation, as well as aberrant in-frame or out-of-frame EPCAM/MSH2 fusion transcripts, were detected in CRCs and normal mucosae.
CONCLUSION: An EPCAM deletion was the causative variant in about 2% of our institutional series of 224 LS patients, consistent with previously estimated frequencies. Early age and multiple CRCs was the main clinical feature of this subset of patients.

Ito T, Yamaguchi T, Wakatsuki T, et al.
The single-base-pair deletion, MSH2 c.2635-3delC affecting intron 15 splicing can be a cause of Lynch syndrome.
Jpn J Clin Oncol. 2019; 49(5):477-480 [PubMed] Related Publications
The proband was a 62-year-old man with ureter cancer. He had a history of metachronous colorectal and gastric cancer. Immunohistochemical staining showed the absence of both MSH2 and MSH6 proteins in the ureter cancer and other available cancer tissue specimens. Genetic testing was conducted to identify the causative genes of hereditary gastrointestinal cancer syndromes including mismatch repair genes. We detected a germline variant, c.2635-3delC, within the splice acceptor site of exon 16, in the MSH2 gene. To investigate whether this variant affected splicing of the gene, RNA sequencing was performed using blood samples. We observed a substantial amount of the transcripts that lacked proper splicing of intron 15 in the indexed case, whereas, a very low amount of such aberrant transcripts was detected in the controls, strongly indicating an association between the variant and splicing defect. These results indicate that MSH2 c.2635-3delC affects normal splicing and might be a cause of Lynch syndrome.

Hajirawala L, Barton JS
Diagnosis and Management of Lynch Syndrome.
Dis Colon Rectum. 2019; 62(4):403-405 [PubMed] Related Publications
CASE SUMMARY: A 56-year-old man with a history of hypertension and hyperlipidemia was referred by gastroenterology for bleeding per rectum. Because of a family history of colon cancer, he had several prior colonoscopies, most recently 3 years ago, without evidence of pathology. His mother was diagnosed with colon cancer in her mid-40s. His current colonoscopy demonstrated a 2.4 × 1.5 cm cecal adenocarcinoma. Staging workup revealed no evidence of metastatic disease. Because of the patient's family history, the specimen was further evaluated and found to have high microsatellite instability (MSI-H). The patient was referred to a genetic counselor and found to have a germline pathogenic variant in MSH6 on gene panel testing. The patient did not have a family history of any extracolonic malignancies.The patient underwent an uncomplicated laparoscopic total abdominal colectomy with ileorectal anastomosis, which revealed a T2N0Mx adenocarcinoma with abundant peritumoral lymphocytes. He was discharged on postoperative day 2, and recuperated appropriately from surgery. Follow-up surveillance proctoscopy showed no evidence of disease. His sole offspring, a 25-year-old man, was negative for a pathogenic variant in MSH6 and had no polyps on colonoscopy. His siblings did demonstrate a pathogenic variant in MSH6 and are currently opting for annual surveillance colonoscopy.

Cappellesso R, Lo Mele M, Munari G, et al.
Molecular characterization of "sessile serrated" adenoma to carcinoma transition in six early colorectal cancers.
Pathol Res Pract. 2019; 215(5):957-962 [PubMed] Related Publications
Colorectal cancer (CRC) is a heterogeneous group of diseases both from the morphological and molecular point of view. The sessile serrated adenoma/polyp (SSA/P) has been proposed as the precursor lesion of CRCs characterized by CpG island methylator phenotype (CIMP), DNA mismatch repair (MMR) system deficiency, and BRAF gene mutations. However, no study so far investigated the molecular landscape of "sessile serrated" adenoma to carcinoma transition in early CRCs. Six formalin-fixed paraffin-embedded CRCs developed within SSA/P were profiled for the immunohistochemical expression of MMR proteins (MLH1, MSH2, MSH6, PMS2, and Ep-CAM), p16, and β-catenin. DNA was extracted from the two components of each sample, after microdissection, and characterized for CIMP status and by applying a custom hotspot multigene mutational profiling of 164 hotspot regions of eleven CRC-associated genes (AKT1, APC, BRAF, CTNNB1, KIT, KRAS, NRAS, PDGFRA, PIK3CA, PTEN, and TP53). Five out of the six CRCs shared the same molecular profile (i.e. CIMP positive, MSI status, and BRAF mutation) with their SSA/P components. One out of five CRCs was also APC mutated, whereas another one showed an additional TP53 mutation. The remaining case was CIMP negative and MMR proficient in both the components, harbored a BRAF mutation in the SSA/P counterpart, whereas the CRC one was APC and TP53 mutated and showed p16 and β-catenin dysregulation. This study provides the molecular evidence that SSA/P, even without cytological dysplasia, is a precursor lesion of CRC and that conventional CRC might arise from mixed polyp.

You YN, Borras E, Chang K, et al.
Detection of Pathogenic Germline Variants Among Patients With Advanced Colorectal Cancer Undergoing Tumor Genomic Profiling for Precision Medicine.
Dis Colon Rectum. 2019; 62(4):429-437 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: Genomic profiling of colorectal cancer aims to identify actionable somatic mutations but can also discover incidental germline findings.
OBJECTIVE: The purpose of this study was to report the detection of pathogenic germline variants that confer heritable cancer predisposition.
DESIGN: This was a retrospective study.
SETTINGS: The study was conducted at a tertiary-referral institution.
PATIENTS: Between 2012 and 2015, 1000 patients with advanced cancer underwent targeted exome sequencing of a 202-gene panel. The subgroup of 151 patients with advanced colorectal cancer who underwent matched tumor-normal (blood) sequencing formed our study cohort.
INTERVENTIONS: Germline variants in 46 genes associated with hereditary cancer predisposition were classified according to a defined algorithm based on in silico predictions of pathogenicity. Patients with presumed pathogenic variants were examined for type of mutation, as well as clinical, pedigree, and clinical genetic testing data.
MAIN OUTCOME MEASURES: We measured detection of pathogenic germline variants.
RESULTS: A total of 1910 distinct germline variants were observed in 151 patients. After filtering, 15 pathogenic germline variants (9.9%) were found in 15 patients, arising from 9 genes of varying penetrance for colorectal cancer (APC (n = 2; 13%), ATM (n = 1; 6%), BRCA1 (n = 2; 13%), CDH1 (n = 2; 13%), CHEK2 (n = 4; 27%), MSH2 (n = 1; 7%), MSH6 (n = 1; 7%), NF2 (n = 1; 7%), and TP53 (n = 1; 7%)). Patients with pathogenic variants were diagnosed at a younger age than those without (median, 45 vs 52 y; p = 0.03). Of the 15 patients, 7 patients (46.7%) with variants in low/moderate- penetrant genes for colorectal cancer would likely have not been tested based on clinical and pedigree criteria, where 2 harbored clinically actionable variants (CDH1 and NF2, 28.5% of 7).
LIMITATIONS: This study was limited by its small sample size and advanced-stage patients.
CONCLUSIONS: Tumor-normal sequencing can incidentally discover clinically unsuspected germline variants that confer cancer predisposition in 9.9% of patients with advanced colorectal cancer. Precision medicine should integrate clinical cancer genetics to inform and interpret the actionability of germline variants and to provide follow-up care to mutation carriers. See Video Abstract at http://links.lww.com/DCR/A906.

Das S, Salami SS, Spratt DE, et al.
Bringing Prostate Cancer Germline Genetics into Clinical Practice.
J Urol. 2019; 202(2):223-230 [PubMed] Related Publications
PURPOSE: Until recently the role of germline genetics in prostate cancer care was not well defined. While important questions remain, we reviewed the current understanding of germline genetic alterations related to prostate cancer. We discuss the clinical implications for genetic counseling, genetic testing, early detection and treatment in men with these mutations.
MATERIALS AND METHODS: We searched PubMed® for English language articles published since 2001 with the key words "germline mutations," "BRCA," "family history" or "prostate cancer genetics." We also used relevant data from websites, including the Centers for Medicare and Medicaid Services, National Comprehensive Cancer Network®, Bureau of Labor Statistics and National Society of Genetic Counselors websites.
RESULTS: A number of germline mutations in DNA damage repair genes ( BRCA1, BRCA2, CHEK2, ATM and PALB2) and in DNA mismatch repair genes ( MLH1, MSH2, MSH6 and PMS2) can drive the development of prostate cancer. Careful genetic counseling coupled with multipanel gene testing can help identify men with these mutations and provide enhanced understanding of the disease risk. Cascade testing of family members can then have an impact extending well beyond the index patient. In men with a pathogenic germline mutation the optimal early detection paradigm is not well defined. Data from the IMPACT study ( ClinicalTrials.gov NCT00261456) that the cancer detection rate is substantially elevated in BRCA1 and BRCA2 carriers at prostate specific antigen greater than 3 ng/ml has helped establish the importance of close prostate specific antigen screening in these men. Additionally, BRCA2 and likely other DNA damage repair mutations are associated with aggressive disease, although it is not yet clear how this impacts localized disease management. However, there is strong evidence that patients with metastatic, castration resistant prostate cancer who have DNA damage repair defects respond positively to targeting PARP enzymes. In many cancers there is also evidence that patients with an increased tumor mutational burden, such as in Lynch syndrome, are particularly sensitive to immune checkpoint inhibitors.
CONCLUSIONS: Emerging evidence supports the implementation of germline genetic counseling and testing as a key component of prostate cancer management. Further research is needed to elucidate the clinical significance of lesser known germline mutations and develop optimal screening, early detection and treatment paradigms in this patient population.

Westwood A, Glover A, Hutchins G, et al.
Additional loss of MSH2 and MSH6 expression in sporadic deficient mismatch repair colorectal cancer due to MLH1 promoter hypermethylation.
J Clin Pathol. 2019; 72(6):443-447 [PubMed] Related Publications
Colorectal cancer (CRC) is common with 3% of cases associated with germline mutations in the mismatch repair pathway characteristic of Lynch syndrome (LS). The UK National Institute for Health and Care Excellence recommends screening for LS in all patients newly diagnosed with CRC, irrespective of age. The Yorkshire Cancer Research Bowel Cancer Improvement Programme includes a regional LS screening service for all new diagnoses of CRC. In the first 829 cases screened, 80 cases showed deficient mismatch repair (dMMR) including four cases showing areas with loss of expression of all four mismatch repair proteins by immunohistochemistry. The cases demonstrated diffuse MLH1 loss associated with BRAF mutations and MLH1 promoter hypermethylation in keeping with sporadic dMMR, with presumed additional double hit mutations in MSH2+/-MSH6 rather than underlying LS. Recognition and accurate interpretation of this unusual phenotype is important to prevent unnecessary referrals to clinical genetics and associated patient anxiety.

Quaas A, Heydt C, Waldschmidt D, et al.
Alterations in ERBB2 and BRCA and microsatellite instability as new personalized treatment options in small bowel carcinoma.
BMC Gastroenterol. 2019; 19(1):21 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: Carcinomas of the small bowel are rare tumors usually with dismal prognosis. Most recently, some potentially treatable molecular alterations were described. We emphasize the growing evidence of individualized treatment options in small bowel carcinoma.
METHODS: We performed a DNA- based multi-gene panel using ultra-deep sequencing analysis (including 14 genes with up to 452 amplicons in total; KRAS, NRAS, HRAS, BRAF, DDR2, ERBB2, KEAP1, NFE2L2, PIK3CA, PTEN, RHOA, BRCA1, BRCA2 and TP53) as well as an RNA-based gene fusion panel including ALK, BRAF, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET and ROS1 on eleven formalin fixed and paraffin embedded small bowel carcinomas. Additionally, mismatch-repair-deficiency was analyzed by checking the microsatellite status using the five different mononucleotide markers BAT25, BAT26, NR-21, NR-22 and NR-27 and loss of mismatch repair proteins using four different markers (MLH1, MSH6, MSH2, PMS2).
RESULTS: In five out of eleven small bowel carcinomas we found potentially treatable genetic alterations. Three patients demonstrated pathogenic (class 5) BRCA1 or BRCA2 mutations - one germline-related in a mixed neuroendocrine-non neuroendocrine neoplasm (MiNEN). Two additional patients revealed an activating ERBB2 mutation or PIK3CA mutation. Furthermore two tumors were highly microsatellite-instable (MSI-high), in one case associated to Lynch-syndrome. We did not find any gene fusions.
CONCLUSION: Our results underscore, in particular, the relevance of potentially treatable molecular alterations (like ERBB2, BRCA and MSI) in small bowel carcinomas. Further studies are needed to proof the efficacy of these targeted therapies in small bowel carcinomas.

Hirotsu Y, Mochizuki H, Amemiya K, et al.
Deficiency of mismatch repair genes is less frequently observed in signet ring cell compared with non-signet ring cell gastric cancer.
Med Oncol. 2019; 36(3):23 [PubMed] Related Publications
Signet ring cell (SRC) gastric cancer at advanced stage has poor prognosis. While a recent study reported nearly one-third of SRC cases contain tumors with deficient mismatch repair (MMR) genes, other studies in SRC have been inconclusive. To re-analyze the results, we performed immunohistochemical staining of MLH1, MSH2, MSH6 and PMS2 proteins in 38 SRC gastric tumors compared with 109 non-SRC (NSRC) tumors from 94 patients. In contrast to the previous study, all SRC gastric tumors normally expressed MMR proteins, whereas 22 of 109 of NSRC (20%) showed deficient MMR proteins. To reinforce our results, we referred to the Cancer Genome Atlas (TCGA) genomic database and found that only 6 (6%) of 99 samples with diffuse gastric tumors showed deficient MMR, whereas 64 (21%) of 304 in intestinal gastric tumors showed deficient MMR. Our results as well as the TCGA database indicated that MMR genes are infrequently inactivated in SRC gastric cancer. These findings indicate that SRC patients may not be the best candidates for immuno-oncology therapy.

Roncati L
Microsatellite Instability Predicts Response to Anti-PD1 Immunotherapy in Metastatic Melanoma.
Acta Dermatovenerol Croat. 2018; 26(4):341-343 [PubMed] Related Publications
Dear Editor, Immune-checkpoint blockade is a type of passive immunotherapy aimed at enhancing preexisting anti-tumor responses of the organism, blocking self-tolerance molecular interactions between T-lymphocytes and neoplastic cells (1,2). Despite a significant increase in progression-free survival, a large proportion of patients affected by metastatic melanoma do not show durable responses even after appropriate diagnostic categorization and shared therapeutic choices (3-9). Therefore, predictive biomarkers of clinical response are urgently needed, and predictive immunohistochemistry (IHC) meets these requirements. Strong evidence suggests that DNA mismatch repair (MMR) deficiency is a frequent condition in malignant melanoma, as well as in other tumors (10). As is known, DNA MMR is a safeguard system for the detection and repair of DNA errors, which can randomly occur in the phase of DNA replication inside the cell. In humans, seven DNA MMR proteins (Mlh1, Mlh3, Msh2, Msh3, Msh6, Pms1, and Pms2) work in a coordinated and sequential manner to repair DNA mismatches. When this system is defective, the cell accumulates a series of replication errors in terms of new microsatellites; therefore, a condition of genetic hypermutability and microsatellite instability (MSI) takes place inside the cell itself (11). For this reason, my working group has started to search for MMR protein deficiency in melanoma biopsies from patients of both sexes and of all ages with metastatic spread, correlating the data with the response to pembrolizumab, the well-known anti-programmed cell death protein 1 (PD1) human monoclonal immunoglobulin G4, capable of blocking the interaction between PD1, the surface receptor of activated T-lymphocytes, and its ligand, the programmed death-ligand 1 (PD-L1), favoring melanoma cell attack by T-lymphocytes (1) rather than its depression (12). PD-L1 is highly expressed in about half of all melanomas and thus the role of PD1 in melanoma immune evasion is now well established (13). Surprisingly, the best therapeutic results to pembrolizumab, in terms of progression-free survival and overall survival, occur precisely in those patients, approximately 7% in my database, affected by deficient MMR (dMMR) melanomas. In particular, the most important benefits to pembrolizumab-based treatment have occurred in a female patient, who developed a subungual melanoma in the second finger of the left hand at the age of 41 years, together with lymph node metastases to ipsilateral axilla at the onset. The patient was promptly submitted to amputation of the first phalanx and emptying of the axillary cable. The primary tumor was a vertical growth phase melanoma with a Breslow's depth of 1.4 mm; three mitotic figures for 1 mm2 were ascertained. There was no evidence of ulceration, regression, microsatellitosis, or lymphocytic infiltration; moreover, the surgical margins tested free of disease. Further molecular analyses did not show rearrangements in B-RAF and C-KIT genes. After four years, metastases appeared in the brain and ileum; however, at present the patient is still alive and in complete pembrolizumab response with progression-free survival and overall survival of 956 days and 2546 days, respectively. The tumor was afterwards identified as a dMMR melanoma for an exclusive loss of Msh6 expression on IHC (Figure 1). This finding is in line with the fact that the U.S. Food and Drug Administration has approved the use of pembrolizumab in 2017 for unresectable or metastatic solid tumors with MMR deficiency (14). In conclusion, dMMR melanoma seems to be a particular subset of disease that can be identified with high sensibility and specificity by predictive IHC as a complete loss of one or more DNA MMR proteins and that deserves targeted therapy.

Yi D, Xu L, Luo J, et al.
Germline TP53 and MSH6 mutations implicated in sporadic triple-negative breast cancer (TNBC): a preliminary study.
Hum Genomics. 2019; 13(1):4 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
BACKGROUND: Germline BRCA1/2 prevalence is relatively low in sporadic triple-negative breast cancer (TNBC). We hypothesized that non-BRCA genes may also have significant germline contribution to Chinese sporadic TNBC, and the somatic mutational landscape of TNBC may vary between ethnic groups. We therefore conducted this study to investigate germline and somatic mutations in 43 cancer susceptibility genes in Chinese sporadic TNBC.
PATIENTS AND METHODS: Sixty-six Chinese sporadic TNBC patients were enrolled in this study. Germline and tumor DNA of each patient were subjected to capture-based next-generation sequencing using a 43-gene panel. Standard bioinformatic analysis and variant classification were performed to identify deleterious/likely deleterious germline mutations and somatic mutations. Mutational analysis was conducted to identify significantly mutated genes.
RESULTS: Deleterious/likely deleterious germline mutations were identified in 27 (27/66, 40.9%) patients. Among the 27 patients, 9 (9/66, 13.6%) were TP53 carriers, 5 (5/66, 7.6%) were MSH6 carriers, and 5 (5/66, 7.6%) were BRCA1 carriers. Somatic mutations were identified in 64 (64/66, 97.0%) patients. TP53 somatic mutations occurred in most of the patients (45/66, 68.2%) and with highest mean allele frequency (28.1%), while NF1 and POLE were detected to have the highest mutation counts.
CONCLUSIONS: Our results supported our hypotheses and suggested great potentials of TP53 and MSH6 as novel candidates for TNBC predisposition genes. The high frequency of somatic NF1 and POLE mutations in this study showed possibilities for clinical benefits from androgen-blockade therapies and immunotherapies in Chinese TNBC patients. Our study indicated necessity of multi-gene testing for TNBC prevention and treatment.

Sui QQ, Jiang W, Wu XD, et al.
A frameshift mutation in exon 19 of MLH1 in a Chinese Lynch syndrome family: a pedigree study.
J Zhejiang Univ Sci B. 2019 Jan.; 20(1):105-108 [PubMed] Article available free on PMC after 01/04/2020 Related Publications
Lynch syndrome (LS), an autosomal dominantly inherited disease previously known as hereditary non-polyposis colorectal cancer (HNPCC), leads to a high risk of colorectal cancer (CRC) as well as malignancy at certain sites including endometrium, ovary, stomach, and small bowel (Hampel et al., 2008; Lynch et al., 2009). Clinically, LS is considered the most common hereditary CRC-predisposing syndrome, accounting for about 3% of all CRC cases (Popat et al., 2005). LS is associated with mutations of DNA mismatch repair (MMR) genes such as MLH1, MSH2, MSH6, PMS2, and EPCAM (Ligtenberg et al., 2009; Lynch et al., 2009), which can trigger a high frequency of replication errors in both microsatellite regions and repetitive sequences in the coding regions of various cancer-related genes. Immunohistochemistry (IHC) tests followed by genetic analysis of these mutations play a significant role in diagnosis, treatment determination, and therapeutic response prediction of LS (Lynch et al., 2009; Alex et al., 2017; Ryan et al., 2017). Here, we report substitution of one base-pair in exon 1 of MLH3 (c.1397C>A) and a frameshift mutation in exon 19 of MLH1 (c.2250_2251ins AA) in a 43-year-old Chinese male with an LS pedigree.

Fulk K, Milam MR, Li S, et al.
Women with breast and uterine cancer are more likely to harbor germline mutations than women with breast or uterine cancer alone: A case for expanded gene testing.
Gynecol Oncol. 2019; 152(3):612-617 [PubMed] Related Publications
OBJECTIVE: We explored the germline mutation spectrum and prevalence among 1650 women with breast and uterine cancer (BUC) who underwent multi-gene hereditary cancer panel testing at a single commercial laboratory.
METHODS: The combined frequency of mutations in 23 BC and/or UC genes was compared between BUC cases and control groups with (1) no personal cancer history; (2) BC only; and (3) UC only using logistic regression.
RESULTS: Fourteen percent (n = 231) of BUC cases tested positive for mutations in BC and/or UC genes and were significantly more likely to test positive than individuals with BC only (P < 0.001), UC only (P < 0.01), or unaffected controls (P < 0.001). Analysis of gene-specific mutation frequencies revealed that MSH6, CHEK2, BRCA1, BRCA2, ATM, PMS2, PALB2 and MSH2 were most frequently mutated among BUC cases. Compared to BC only, BRCA1, MLH1, MSH2, MSH6, PMS2 and PTEN mutations were more frequent among BUC; however, only ATM mutations were more frequent among BUC compared to UC only. All of the more commonly mutated genes have published management guidelines to guide clinical care. Of patients with a single mutation in a gene with established testing criteria (n = 152), only 81.6% met their respective criteria, and 65.8% met criteria for multiple syndromes.
CONCLUSIONS: Women with BUC are more likely to carry hereditary cancer gene mutations than women with breast or uterine cancer alone, potentially warranting expanded genetic testing for these women. Most mutations found via multi-gene panel testing in women with BUC have accompanying published management guidelines and significant implications for clinical care.

Keränen A, Ghazi S, Carlson J, et al.
Testing strategies to reduce morbidity and mortality from Lynch syndrome.
Scand J Gastroenterol. 2018; 53(12):1535-1540 [PubMed] Related Publications
OBJECTIVE: Lynch syndrome (LS) has an autosomal dominant inheritance pattern and is associated with increased risk for colorectal cancer (CRC) and other cancers. Various strategies are used to identify patients at risk and offer surveillance and preventive programs, the cost effectiveness of which is much dependent on the prevalence of LS in a population. Universal testing (UT) is proposed as an effective measure, targeting all newly diagnosed CRC patients under a certain age.
MATERIALS AND METHODS: LS cases were identified in a cohort of 572 consecutive CRC patients. Immunohistochemistry was performed in 539 cases, using antibodies against mismatch repair proteins MLH1, PMS2, MSH2, and MSH6. Microsatellite instability and gene mutation screening were performed in 57 cases.
RESULTS: In total 11 pathogenic variants were detected, identifying LS in 1.9% of new CRC cases. Comparing the results with current clinical methods, 2 pathogenic variants were found with Amsterdam criteria and 9 when using either Bethesda guidelines or our institution's prior clinical criteria. Pathogenic variants in MSH6 were the most common in our series. We also found different outcomes using different age cut offs.
CONCLUSION: Our study demonstrates that UT of tumors before age on onset at 75 years would most likely be cost-efficient and essentially equivalent to applying the Bethesda guidelines or our institution's prior clinical criteria on all new CRC.

Ding N, Miller SA, Savant SS, O'Hagan HM
JAK2 regulates mismatch repair protein-mediated epigenetic alterations in response to oxidative damage.
Environ Mol Mutagen. 2019; 60(4):308-319 [PubMed] Related Publications
At sites of chronic inflammation epithelial cells undergo aberrant DNA methylation that contributes to tumorigenesis. Inflammation is associated with an increase in reactive oxygen species (ROS) that cause oxidative DNA damage, which has also been linked to epigenetic alterations. We previously demonstrated that in response to ROS, mismatch repair proteins MSH2 and MSH6 recruit epigenetic silencing proteins DNA methyltransferase 1 (DNMT1) and polycomb repressive complex 2 (PRC2) members to sites of DNA damage, resulting in transcriptional repression of tumor suppressor genes (TSGs). However, it was unclear what signal is unique to ROS that results in the chromatin binding of MSH2 and MSH6. Herein, we demonstrate that in response to hydrogen peroxide (H

Kašubová I, Holubeková V, Janíková K, et al.
Next Generation Sequencing in Molecular Diagnosis of Lynch Syndrome - a Pilot Study Using New Stratification Criteria.
Acta Medica (Hradec Kralove). 2018; 61(3):98-102 [PubMed] Related Publications
The development of the new technologies such as the next-generation sequencing (NGS) makes more accessible the diagnosis of genetically heterogeneous diseases such as Lynch syndrome (LS). LS is one of the most common hereditary form of colorectal cancer. This autosomal dominant inherited disorder is caused by deleterious germline mutations in one of the mismatch repair (MMR) genes - MLH1, MSH2, MSH6 or PMS2, or the deletion in the EPCAM gene. These mutations eventually result in microsatellite instability (MSI), which can be easily tested in tumor tissue. According to the actual recommendations, all patients with CRC that are suspect to have LS, should be offered the MSI testing. When the MSI is positive, these patients should be recommended to genetic counseling. Here we report a pilot study about the application of NGS in the LS diagnosis in patients considered to have sporadic colorectal cancer. The inclusion criteria for the NGS testing were MSI positivity, BRAF V600E and MHL1 methylation negativity. We have used 5 gene amplicon based massive parallel sequencing on MiSeq platform. In one patient, we have identified a new pathogenic mutation in the exon 4 of the MSH6 gene that was previously not described in ClinVar, Human Gene Mutation Database, Ensembl and InSight databases. This mutation was confirmed by the Sanger method. We have shown that the implementation of new criteria for colorectal patients screening are important in clinical praxis and the NGS gene panel testing is suitable for routine laboratory settings.

Bernstein-Molho R, Laitman Y, Schayek H, et al.
The rate of the recurrent MSH6 mutations in Ashkenazi Jewish breast cancer patients.
Cancer Causes Control. 2019; 30(1):97-101 [PubMed] Related Publications
BACKGROUND: Whether breast cancer (BC) should be considered within the spectrum of tumors in Lynch syndrome (LS) is unsettled. Recently, MSH6 and PMS2 germline mutations have reportedly been associated with an increased BC risk and with hereditary breast and ovarian cancer (HBOC) phenotype. We assessed the rates of the recurring Ashkenazi Jewish (AJ) mutations in the MSH6 gene (c.3984_3987dupGTCA and c.3959_3962delCAAG) in AJ cases with seemingly sporadic BC or HBOC phenotype, who were negative for the founder AJ BRCA1/2 mutations.
METHODS: All AJ individuals, affected with BC ≤ 70 years and/or ovarian cancer at any age who were counseled, genotyped and tested negative for the BRCA1/2 founder mutations between January 2010 and February 2018 at the Oncogenetics unit, Sheba Medical Center, were genotyped for the AJ mutations in MSH6.
RESULTS: Of 1016 genotyped participants (815 BC cases, 132 ovarian cancer cases, and 69 with more than one cancer), five carriers (0.49%) of the recurring AJ mutations in MSH6 were identified. All had BC, and two had personal history of additional cancers (pancreatic, endometrial, colorectal). The rate of MSH6 mutations was 0.93% (4/429) when considering only cases with a personal or first-degree relative with LS-related cancer, and 0.17% (1/587) of cases with second-degree relative or no family history of LS-related cancers (p = 0.087).
CONCLUSIONS: Our data suggest the spectrum of genotyped mutations in AJ BC patients with a personal or family history of LS-related cancers should be expanded. These data should be validated in other populations with a similar phenotype.

Nunziato M, Esposito MV, Starnone F, et al.
A multi-gene panel beyond BRCA1/BRCA2 to identify new breast cancer-predisposing mutations by a picodroplet PCR followed by a next-generation sequencing strategy: a pilot study.
Anal Chim Acta. 2019; 1046:154-162 [PubMed] Related Publications
By analyzing multiple gene panels, next-generation sequencing is more effective than conventional procedures in identifying disease-related mutations that are useful for clinical decision-making. Here, we aimed to test the efficacy of an 84 genes customized-panel in BRCA1 and BRCA2 mutation-negative patients. Twenty-four patients were enrolled in this study. DNA libraries were prepared using a picodroplet PCR-based approach and sequenced with the MiSeq System. Highly putative pathogenic mutations were identified in genes other than the commonly tested BRCA1/2: 2 pathogenic mutations one in TP53 and one in MUTYH; 2 missense variants in MSH6 and ATM, respectively; 2 frameshift variants in KLLN, and ATAD2, respectively; an intronic variant in ANPEP, and 3 not functionally known variants (a frameshift variant in ATM a nonsense variant in ATM and a missense variant in NFE2L2). Our results show that this molecular screening will increase diagnostic sensitivity leading to a better risk assessment in breast cancer patients and their families. This strategy could also reveal genes that have a higher penetrance for breast and ovarian cancers by matching gene mutation with familial and clinical data, thereby increasing information about hereditary breast and ovarian cancer genetics and improving cancer prevention measures or therapeutic approaches.

van Marcke C, Collard A, Vikkula M, Duhoux FP
Prevalence of pathogenic variants and variants of unknown significance in patients at high risk of breast cancer: A systematic review and meta-analysis of gene-panel data.
Crit Rev Oncol Hematol. 2018; 132:138-144 [PubMed] Related Publications
BACKGROUND: Gene-panels are used to assess predisposition to breast cancer by simultaneous testing of multiple susceptibility genes. This approach increases the identification of variants of unknown significance (VUS) that cannot be used in clinical decision-making. We performed a systematic review of published studies to calculate the prevalence of VUS and pathogenic variants (PV) in routinely tested breast cancer susceptibility genes in patients at high risk of breast cancer.
METHODS: We comprehensively searched the literature using Medline through May 23, 2017 for studies conducting gene-panel testing on germline DNA of women with familial breast cancer and reporting on both PVs and VUSs. A meta-analysis of the collected data was carried out to obtain pooled VUS and PV prevalence estimates per gene using a generalized linear mixed model with logit link for binomial distribution.
RESULTS: Of 602 publications, 4 were eligible and included 1870 patients. The panels encompassed 4-27 considered genes. Overall, the estimated probability per gene of a PV and VUS was 55% (95% confidence interval (CI) 26%-81%) and 91% (95% CI 78%-97%), respectively (p =  0.0066). The estimated probability per patient of a PV and VUS was 8% (95% CI 1%-34%) and 23% (95% CI 7%-52%), respectively (p =  0.0052). The ratio of VUS to PV was highest in the mismatch repair genes MLH1, MSH2, MSH6, PMS2 (18.7), CDH1 (13.4) and ATM (9.5). Amongst the 1468 patients tested for BRCA1 and BRCA2, only these two genes had a VUS to PV ratio of less than one (0.2 and 0.6, respectively).
CONCLUSION: With the current panels, the probability of detecting a VUS is significantly higher than the probability of detecting a PV. Better classification of VUSs is therefore critical and requires gene-specific VUS-assessment in every future study of gene-panel testing in patients at high risk of breast cancer.

Vošmik M, Vošmiková H, Sieglová K, et al.
HPV Status and Mutation Analysis Using Multiparallel Sequencing in Distal Oesophageal and Gastro-oesophageal Junction Adenocarcinomas.
Folia Biol (Praha). 2018; 64(2):41-45 [PubMed] Related Publications
The incidence of adenocarcinoma of oesophagus or gastro-oesophageal junction is increasing in Europe and other regions of the Western world. Research of possible causes has shifted to the molecular level. This study evaluated human papillomavirus (HPV) using real-time PCR and mutational status of selected genes using the multiparallel sequencing method (NGS) in DNA extracted from paraffin-embedded tumour tissue of 56 patients with oesophageal or gastro-oesophageal junction adenocarcinoma. The genetic material was in sufficient quality for the analysis in 37 cases (66 %). No HPV-positive sample was found. NGS revealed higher frequency of mutations in TP53, ARID1A, PIK3CA, SMAD4, ERBB2, MSH6, BRCA2, and RET genes. Association between gene mutations and histological grade, subtype according to Lauren, or primary tumour site was not statistically significant. In conclusion, the study did not confirm any HPV-positive sample of oesophageal and gastro-oesophageal junction adenocarcinoma. The study confirmed the usefulness of NGS analysis of paraffin-embedded tissue of these tumours, and it could be used in clinical studies to evaluate the prognostic and/or predictive value of the tested mutations. The association between gene mutations and histological features should be tested in larger patient cohorts.

Antonarakis ES, Shaukat F, Isaacsson Velho P, et al.
Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations.
Eur Urol. 2019; 75(3):378-382 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Mismatch repair (MMR) gene mutations are rare in prostate cancer, and their histological and clinical characteristics are largely unknown. We conducted a retrospective study to explore disease characteristics and treatment outcomes of men with metastatic prostate cancer harboring germline and/or somatic MMR mutations detected using clinical-grade genomic assays. Thirteen patients with a deleterious MMR gene mutation were identified. Median age was 64 yr, 75% had grade group 5 (Gleason sum 9 or 10), 23% had intraductal histology, 46% had metastatic disease at initial diagnosis, and 31% had visceral metastases. Most patients (46%) had MSH6 mutations, 73% demonstrated microsatellite instability, and median tumor mutational load was 18/Mb (range, 3-165 mutations/Mb). Surprisingly, responses to standard hormonal therapies were very durable (median progression-free survival [PFS] of 67 mo to initial androgen deprivation and median PFS of 26 mo to abiraterone/enzalutamide). Two of four men receiving PD-1 inhibitors achieved a ≥50% prostate-specific antigen response at 12 wk, with a median PFS duration in these four men of 9 mo. Despite aggressive clinical and pathological features, patients with MMR-mutated advanced prostate cancer appear to have particular sensitivity to hormonal therapies, as well as anecdotal responses to PD-1 inhibitors. Certain histological features (grade group 5, intraductal carcinoma) should prompt evaluation for MMR deficiency. These data are only hypothesis generating. PATIENT SUMMARY: Prostate cancers with mismatch repair gene mutations have aggressive clinical and pathological features; however, these are very sensitive to standard and novel hormonal therapies, and also demonstrate anecdotal sensitivity to PD-1 inhibitors such as pembrolizumab.

Spaans VM, Scheunhage DA, Barzaghi B, et al.
Independent validation of the prognostic significance of invasion patterns in endocervical adenocarcinoma: Pattern A predicts excellent survival.
Gynecol Oncol. 2018; 151(2):196-201 [PubMed] Related Publications
OBJECTIVE: Recently, the pattern of invasion in usual-type human papillomavirus-associated endocervical adenocarcinoma (AC) was put forward as a novel variable to select patients with favourable prognosis. Based on destructiveness of stromal invasion, three patterns were proposed: A - no destructive stromal invasion, B - focal destructive stromal invasion, and C - diffuse destructive stromal invasion. We aimed to independently validate the clinical significance of this classification-system in 82 AC patients, and explored associations between invasion pattern and somatic mutations.
METHODS: All patients surgically treated for FIGO stage IB-IIA usual type AC (1990-2011, n = 82) were retrospectively reviewed and classified into pattern A, B or C. Additional immunohistochemical analyses were performed for p53, MSH6, and PMS2. Moreover, previously obtained data on somatic hotspot mutations in 13 relevant genes was integrated.
RESULTS: Of 82 AC, 22% showed pattern A, 37% pattern B, and 41% pattern C. Significant differences were observed between invasion patterns and tumour size, depth of invasion (DOI), lymph-vascular invasion (LVI), and lymph-node metastasis. Significantly fewer mutations were present in tumours with pattern A morphology (p = 0.036). All pattern A patients survived (p = 0.002) without recurrent disease (p = 0.005). In multivariate regression analysis including tumour size, DOI, LVI, and lymph node metastasis, invasion pattern was a strong independent predictor for recurrence-free and disease-specific survival (HR 3.75, 95%CI 1.16-12.11, and HR 5.08, 95%CI 1.23-20.98, respectively).
CONCLUSIONS: We have independently validated the clinical significance of invasion patterns for usual type endocervical AC. Pattern A predicts excellent survival, and a clinical trial should prove safety of a more conservative treatment for these patients.

Martin-Morales L, Rofes P, Diaz-Rubio E, et al.
Novel genetic mutations detected by multigene panel are associated with hereditary colorectal cancer predisposition.
PLoS One. 2018; 13(9):e0203885 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Half of the high-risk colorectal cancer families that fulfill the clinical criteria for Lynch syndrome lack germline mutations in the mismatch repair (MMR) genes and remain unexplained. Genetic testing for hereditary cancers is rapidly evolving due to the introduction of multigene panels, which may identify more mutations than the old screening methods. The aim of this study is the use of a Next Generation Sequencing panel in order to find the genes involved in the cancer predisposition of these families. For this study, 98 patients from these unexplained families were tested with a multigene panel targeting 94 genes involved in cancer predisposition. The mutations found were validated by Sanger sequencing and the segregation was studied when possible. We identified 19 likely pathogenic variants in 18 patients. Out of these, 8 were found in MMR genes (5 in MLH1, 1 in MSH6 and 2 in PMS2). In addition, 11 mutations were detected in other genes, including high penetrance genes (APC, SMAD4 and TP53) and moderate penetrance genes (BRIP1, CHEK2, MUTYH, HNF1A and XPC). Mutations c.1194G>A in SMAD4, c.714_720dup in PMS2, c.2050T>G in MLH1 and c.1635_1636del in MSH6 were novel. In conclusion, the detection of new pathogenic mutations in high and moderate penetrance genes could contribute to the explanation of the heritability of colorectal cancer, changing the individual clinical management. Multigene panel testing is a more effective method to identify germline variants in cancer patients compared to single-gene approaches and should be therefore included in clinical laboratories.

Özdemir TR, Alan M, Sancı M, Koç A
Targeted Next-Generation Sequencing of
Balkan Med J. 2019; 36(1):37-42 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Background: Lynch syndrome is an inherited cancer disorder that causes an increased lifetime risk of various types of cancers. Endometrial cancer is the most common extracolonic cancer in Lynch syndrome. Guidelines recommend that patients with endometrial cancer younger than 50 years of age should be evaluated for Lynch syndrome. Molecular analysis of the mismatch repair genes and
Aims: To report the mutation analysis of mismatch repair genes using targeted next-generation sequencing in endometrial cancer diagnosed patients <50 years of age.
Study Design: Retrospective cross-sectional study.
Methods: Seventy-nine endometrial cancer diagnosed patients <50 years of age underwent genetic counseling. They were selected among 1094 consecutive endometrial cancer patients between 2006 and 2017. Molecular analysis of
Results: Germline testing of mismatch repair genes was performed in 79 endometrial cancer patients. Lynch syndrome was confirmed in 4 patients (5%; 4/79). A total of 14 variants (6 in
Conclusion: Lynch syndrome should be investigated in patients diagnosed with endometrial cancer that are less than 50 years of age due to the increased lifetime risk of developing cancer.

Wagner AH, Devarakonda S, Skidmore ZL, et al.
Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer.
Nat Commun. 2018; 9(1):3787 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Nearly all patients with small cell lung cancer (SCLC) eventually relapse with chemoresistant disease. The molecular mechanisms driving chemoresistance in SCLC remain un-characterized. Here, we describe whole-exome sequencing of paired SCLC tumor samples procured at diagnosis and relapse from 12 patients, and unpaired relapse samples from 18 additional patients. Multiple somatic copy number alterations, including gains in ABCC1 and deletions in MYCL, MSH2, and MSH6, are identifiable in relapsed samples. Relapse samples also exhibit recurrent mutations and loss of heterozygosity in regulators of WNT signaling, including CHD8 and APC. Analysis of RNA-sequencing data shows enrichment for an ASCL1-low expression subtype and WNT activation in relapse samples. Activation of WNT signaling in chemosensitive human SCLC cell lines through APC knockdown induces chemoresistance. Additionally, in vitro-derived chemoresistant cell lines demonstrate increased WNT activity. Overall, our results suggest WNT signaling activation as a mechanism of chemoresistance in relapsed SCLC.

Buckley AR, Ideker T, Carter H, et al.
Exome-wide analysis of bi-allelic alterations identifies a Lynch phenotype in The Cancer Genome Atlas.
Genome Med. 2018; 10(1):69 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
BACKGROUND: Cancer susceptibility germline variants generally require somatic alteration of the remaining allele to drive oncogenesis and, in some cases, tumor mutational profiles. Whether combined germline and somatic bi-allelic alterations are universally required for germline variation to influence tumor mutational profile is unclear. Here, we performed an exome-wide analysis of the frequency and functional effect of bi-allelic alterations in The Cancer Genome Atlas (TCGA).
METHODS: We integrated germline variant, somatic mutation, somatic methylation, and somatic copy number loss data from 7790 individuals from TCGA to identify germline and somatic bi-allelic alterations in all coding genes. We used linear models to test for association between mono- and bi-allelic alterations and somatic microsatellite instability (MSI) and somatic mutational signatures.
RESULTS: We discovered significant enrichment of bi-allelic alterations in mismatch repair (MMR) genes and identified six bi-allelic carriers with elevated MSI, consistent with Lynch syndrome. In contrast, we find little evidence of an effect of mono-allelic germline variation on MSI. Using MSI burden and bi-allelic alteration status, we reclassify two variants of unknown significance in MSH6 as potentially pathogenic for Lynch syndrome. Extending our analysis of MSI to a set of 127 DNA damage repair (DDR) genes, we identified a novel association between methylation of SHPRH and MSI burden.
CONCLUSIONS: We find that bi-allelic alterations are infrequent in TCGA but most frequently occur in BRCA1/2 and MMR genes. Our results support the idea that bi-allelic alteration is required for germline variation to influence tumor mutational profile. Overall, we demonstrate that integrating germline, somatic, and epigenetic alterations provides new understanding of somatic mutational profiles.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSH6, Cancer Genetics Web: http://www.cancer-genetics.org/MSH6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999