ASCL1

Gene Summary

Gene:ASCL1; achaete-scute family bHLH transcription factor 1
Aliases: ASH1, HASH1, MASH1, bHLHa46
Location:12q23.2
Summary:This gene encodes a member of the basic helix-loop-helix (BHLH) family of transcription factors. The protein activates transcription by binding to the E box (5'-CANNTG-3'). Dimerization with other BHLH proteins is required for efficient DNA binding. This protein plays a role in the neuronal commitment and differentiation and in the generation of olfactory and autonomic neurons. Mutations in this gene may contribute to the congenital central hypoventilation syndrome (CCHS) phenotype in rare cases. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:achaete-scute homolog 1
Source:NCBIAccessed: 10 March, 2017

Ontology:

What does this gene/protein do?
Show (51)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transfection
  • Carcinoma, Neuroendocrine
  • Transcription Factor HES-1
  • Nuclear Proteins
  • Uteroglobin
  • Small Cell Carcinoma
  • Basic Helix-Loop-Helix Transcription Factors
  • Biomarkers, Tumor
  • Gene Expression Profiling
  • RTPCR
  • Messenger RNA
  • Neurosecretory Systems
  • DNA-Binding Proteins
  • Young Adult
  • Cell Proliferation
  • Immunohistochemistry
  • Phenotype
  • Helix-Loop-Helix Motifs
  • Neuroblastoma
  • Cancer RNA
  • ASCL1
  • p53 Protein
  • Reproducibility of Results
  • Lung Cancer
  • Oligonucleotide Array Sequence Analysis
  • Chromosome 12
  • Small Cell Lung Cancer
  • Cell Differentiation
  • Xenograft Models
  • Signal Transduction
  • Western Blotting
  • Apoptosis
  • Cancer Gene Expression Regulation
  • Homeodomain Proteins
  • Promoter Regions
  • Antineoplastic Agents
  • Transcription Factors
  • Non-Small Cell Lung Cancer
  • Nerve Tissue Proteins
  • Transcriptional Activation
  • Adenocarcinoma
Tag cloud generated 10 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ASCL1 (cancer-related)

Ito T, Kudoh S, Ichimura T, et al.
Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1.
Hum Cell. 2017; 30(1):1-10 [PubMed] Related Publications
Small cell lung cancer (SCLC) is one of the most malignant neoplasms in common human cancers. The tumor is composed of small immature-looking cells with a round or fusiform shape, which possesses weak adhesion features among them, suggesting that SCLC shows the morphological characteristics of epithelial to mesenchymal transition (EMT). SCLC is characterized by high metastatic and recurrent rates, sensitivity to the initial chemotherapy, and easy acquirement of chemoresistance afterwards. These characters may be related to the EMT phenotype of SCLC. Notch signaling is an important signaling pathway, and could have roles in regulating neuroendocrine differentiation, proliferation, cell adhesion, EMT, and chemoresistance. Notch1 is usually absent in SCLC in vivo, but could appear after chemotherapy. Notch1 can enhance cell adhesion by induction of E-cadherin in SCLC, which indicates mesenchymal to epithelial transition. On the other hand, achaete-scute complex homologue 1 (ASCL1), negatively regulated by Notch signaling, is a lineage-specific gene of SCLC, and functions to promote neuroendocrine differentiation as well as EMT. ASCL1-transfected adenocarcinoma cell lines induced neuroendocrine phenotypes and lost epithelial cell features. SCLC is characterized by neuroendocrine differentiation and EMT-like features, which could be produced by inactive Notch signaling and ASCL1 expression. In addition, chemical and radiation treatments can activate Notch signaling, which suppress neuroendocrine differentiation and induces chemoradioresistance, accompanied by secession from EMT. Thus, the status of Notch signaling and ASCL1 expression may determine the cell behaviors of SCLC partly through modifying EMT phenotypes.

Horie M, Saito A, Ohshima M, et al.
YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer.
Cancer Sci. 2016; 107(12):1755-1766 [PubMed] Free Access to Full Article Related Publications
Small cell lung cancer (SCLC) is a highly aggressive and metastatic malignancy that shows rapid development of chemoresistance and a high rate of recurrence. Recent genome and transcriptome studies have provided the whole landscape of genomic alterations and gene expression changes in SCLC. In light of the inter-individual heterogeneity of SCLC, subtyping of SCLC might be helpful for prediction of therapeutic response and prognosis. Based on the transcriptome data of SCLC cell lines, we undertook transcriptional network-defined SCLC classification and identified a unique SCLC subgroup characterized by relatively high expression of Hippo pathway regulators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) (YAP/TAZ subgroup). The YAP/TAZ subgroup displayed adherent cell morphology, lower expression of achaete-scute complex homolog 1 (ASCL1) and neuroendocrine markers, and higher expression of laminin and integrin. YAP knockdown caused cell morphological alteration reminiscent of floating growth pattern in many SCLC cell lines, and microarray analyses revealed a subset of genes regulated by YAP, including Ajuba LIM protein (AJUBA). AJUBA also contributed to cell morphology regulation. Of clinical importance, SCLC cell lines of the YAP/TAZ subgroup showed unique patterns of drug sensitivity. Our findings shed light on a subtype of SCLC with YAP and TAZ expression, and delineate molecular networks underlying the heterogeneity of SCLC.

Fujino K, Motooka Y, Hassan WA, et al.
Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer.
Am J Pathol. 2015; 185(12):3164-77 [PubMed] Related Publications
Insulinoma-associated protein 1 (INSM1) is expressed exclusively in embryonic developing neuroendocrine (NE) tissues. INSM1 gene expression is specific for small-cell lung cancer (SCLC), along with achaete-scute homolog-like 1 (ASCL1) and several NE molecules, such as chromogranin A, synaptophysin, and neural cell adhesion molecule 1. However, the underlying biological role of INSM1 in lung cancer remains largely unknown. We first showed that surgically resected SCLC samples specifically expressed INSM1. Forced expression of the INSM1 gene in adenocarcinoma cell lines (H358 and H1975) induced the expression of ASCL1, brain-2 (BRN2), chromogranin A, synaptophysin, and neural cell adhesion molecule 1; in contrast, knockdown of the INSM1 gene by siRNA in SCLC (H69 and H889) decreased their expression. However, forced/knockdown expression of ASCL1 and BRN2 did not affect INSM1 expression. A chromatin immunoprecipitation study revealed that INSM1 bound to the promoter region of the ASCL1 gene. A xenotransplantation assay using tet-on INSM1 gene-transfected adenocarcinoma cell lines demonstrated that INSM1 induced NE differentiation and growth inhibition. Furthermore, we found that INSM1 was not expressed in non-small-cell lung cancer and some SCLC cell lines expressing Notch1-Hes1. By forced/knockdown expression of Notch1 or Hes1 genes, we revealed that Notch1-Hes1 signaling suppressed INSM1, as well as ASCL1 and BRN2. INSM1, expressed exclusively in SCLC, is a crucial regulator of NE differentiation in SCLCs, and is regulated by the Notch1-Hes1 signaling pathway.

Somnay YR, Dull BZ, Eide J, et al.
Chrysin suppresses achaete-scute complex-like 1 and alters the neuroendocrine phenotype of carcinoids.
Cancer Gene Ther. 2015; 22(10):496-505 [PubMed] Free Access to Full Article Related Publications
Carcinoids are neuroendocrine neoplasms that cause significant morbidity and mortality and for which few effective therapies are available. Given the recent identification of the anticancer flavonoid chrysin, we sought to investigate its therapeutic potential in carcinoids. Here we report chrysin's ability to modulate the achaete-scute complex-like 1 (ASCL1), a neuroendocrine-specific transcription factor highly implicated in the malignant phenotype of carcinoids and other neuroendocrine cancers. Moreover, we elucidate the role of ASCL1 in carcinoid growth and bioactivity. Treatment of two carcinoid cell lines (BON and H727) with varying chrysin concentrations suppressed cell proliferation, while reducing expression of ASCL1 and the neuroendocrine biomarker chromogranin A (CgA), demonstrated by western blotting. Propidium iodide and phycoerythrin AnnexinV/7-aminoactinomycin D staining and sorting following chrysin treatment revealed S/G2 phase arrest and apoptosis, respectively. This was corroborated by chrysin-induced cleavage of caspase-3 and poly ADP-ribose polymerase and activation of p21(Waf1/Cip1). Furthermore, direct ASCL1 knockdown with an ASCL1-specific small interfering RNA inhibited CgA and synaptophysin expression as well as carcinoid proliferation, while also reducing cyclin B1 and D1 and increasing p21(Waf1/Cip1) and p27(Kip1) expression, suggesting an arrest of the cell cycle. Collectively, these findings warrant the deliberation of targeted ASCL1 suppression by chrysin or other agents as a therapeutic approach for carcinoid management.

Lenhart R, Kirov S, Desilva H, et al.
Sensitivity of Small Cell Lung Cancer to BET Inhibition Is Mediated by Regulation of ASCL1 Gene Expression.
Mol Cancer Ther. 2015; 14(10):2167-74 [PubMed] Related Publications
The BET (bromodomain and extra-terminal) proteins bind acetylated histones and recruit protein complexes to promote transcription elongation. In hematologic cancers, BET proteins have been shown to regulate expression of MYC and other genes that are important to disease pathology. Pharmacologic inhibition of BET protein binding has been shown to inhibit tumor growth in MYC-dependent cancers, such as multiple myeloma. In this study, we demonstrate that small cell lung cancer (SCLC) cells are exquisitely sensitive to growth inhibition by the BET inhibitor JQ1. JQ1 treatment has no impact on MYC protein expression, but results in downregulation of the lineage-specific transcription factor ASCL1. SCLC cells that are sensitive to JQ1 are also sensitive to ASCL1 depletion by RNAi. Chromatin immunoprecipitation studies confirmed the binding of the BET protein BRD4 to the ASCL1 enhancer, and the ability of JQ1 to disrupt the interaction. The importance of ASCL1 as a potential driver oncogene in SCLC is further underscored by the observation that ASCL1 is overexpressed in >50% of SCLC specimens, an extent greater than that observed for other putative oncogenes (MYC, MYCN, and SOX2) previously implicated in SCLC. Our studies have provided a mechanistic basis for the sensitivity of SCLC to BET inhibition and a rationale for the clinical development of BET inhibitors in this disease with high unmet medical need.

Walter RF, Werner R, Ting S, et al.
Identification of deregulation of apoptosis and cell cycle in neuroendocrine tumors of the lung via NanoString nCounter expression analysis.
Oncotarget. 2015; 6(28):24690-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis.
MATERIALS AND METHODS: Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated.
RESULTS: ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC.
CONCLUSION: Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.

Taggart MW, Hanna EY, Gidley P, et al.
Achaete-scute homolog 1 expression closely correlates with endocrine phenotype and degree of differentiation in sinonasal neuroendocrine tumors.
Ann Diagn Pathol. 2015; 19(3):154-6 [PubMed] Related Publications
Primary sinonasal tumors with neuroendocrine differentiation (STNDs) are uncommon, with overlapping histology. According to the amount of neuroendocrine component, they can be subcategorized into esthesioneuroblastoma, high-grade sinonasal neuroendocrine carcinoma/small cell carcinoma, and sinonasal undifferentiated carcinoma. Achaete-scute homolog 1 (ASH1) is a master gene for neuroendocrine differentiation and is expressed in fetal and adult neuroendocrine tissues. Expression of ASH1 protein may be a useful marker for cancers with neuroendocrine features. The aim of this study was to compare and assess the value of ASH1 protein expression/levels in STND. We reviewed the morphological features and performed immunohistochemical analyses for ASH1 in 30 samples of surgically resected cancers with neuroendocrine differentiation from our institution. Achaete-scute homolog 1 was found to be expressed in STND, indicating that it is instrumental in the development of a subset of neurons and neuroendocrine cells and plays a key role in regulating neuroendocrine differentiation in tumor cells. Achaete-scute homolog 1 levels were associated with the degree of STND tumor differentiation (high-grade tumors show increased expression of this protein), correlating well with studies indicating that expression of ASH1 appears to be restricted to immature cells.

Torchia J, Picard D, Lafay-Cousin L, et al.
Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis.
Lancet Oncol. 2015; 16(5):569-82 [PubMed] Related Publications
BACKGROUND: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours.
METHODS: We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling.
FINDINGS: Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes.
INTERPRETATION: An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours.
FUNDING: C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.

Vargas T, Moreno-Rubio J, Herranz J, et al.
ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients.
Oncotarget. 2015; 6(9):7348-63 [PubMed] Free Access to Full Article Related Publications
Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group.

Li YF, Hsiao YH, Lai YH, et al.
DNA methylation profiles and biomarkers of oral squamous cell carcinoma.
Epigenetics. 2015; 10(3):229-36 [PubMed] Free Access to Full Article Related Publications
Oral squamous cell carcinoma (OSCC) constitutes >90% of oral cancers and is the sixth most common malignancy among males worldwide and the fourth leading cause of death due to cancer among males in Taiwan. However, most patients do not receive a diagnosis of OSCC until the late stages, which have a lower survival rate. The use of molecular marker analysis to identify early-stage OSCC would permit optimal timing for treatments and consequently prolong survival. The aim of this study was to identify biomarkers of OSCC using the Illumina GoldenGate Methylation Cancer Panel, which comprised a total of 1,505 CpG sites covering 807 genes. Samples of buccal mucosa resected from 40 OSCC patients and normal tissue samples obtained from 15 patients (normal mucosa from OSCC patients or from patients undergoing surgery unrelated to OSCC) were analyzed. Fms-related tyrosine kinase 4 (FLT4) methylation exhibited a perfect specificity for detecting OSCC, with an area under the receiver operating characteristic curve of 0.91 for both all-stage and early-stage OSCC. Methylation of 7 genes (ASCL1, FGF3, FLT4, GAS7, KDR, TERT, and TFPI2) constitutes the top-20 panels for detecting OSCC. The top-20 panels for detecting early-stage OSCC contain 8 genes: ADCYAP1, EPHA7, FLT4, GSTM2, KDR, MT1A, NPY, and TFPI2. FLT4 RNA expression and methylation level were validated using RT-PCR and a pyrosequencing methylation assay. The median level of FLT4 expression was 2.14-fold for normal relative to OSCC tissue samples (P < 0.0001). Among the 8 pyrosequenced FLT4 CpG sites, methylation level was much higher in the OSCC samples. In conclusion, methylation statuses of selected genes, and especially FLT4, KDR, and TFPI2, might be of great potential as biomarkers for early detection of buccal OSCC.

Augustyn A, Borromeo M, Wang T, et al.
ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers.
Proc Natl Acad Sci U S A. 2014; 111(41):14788-93 [PubMed] Free Access to Full Article Related Publications
Aggressive neuroendocrine lung cancers, including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), represent an understudied tumor subset that accounts for approximately 40,000 new lung cancer cases per year in the United States. No targeted therapy exists for these tumors. We determined that achaete-scute homolog 1 (ASCL1), a transcription factor required for proper development of pulmonary neuroendocrine cells, is essential for the survival of a majority of lung cancers (both SCLC and NSCLC) with neuroendocrine features. By combining whole-genome microarray expression analysis performed on lung cancer cell lines with ChIP-Seq data designed to identify conserved transcriptional targets of ASCL1, we discovered an ASCL1 target 72-gene expression signature that (i) identifies neuroendocrine differentiation in NSCLC cell lines, (ii) is predictive of poor prognosis in resected NSCLC specimens from three datasets, and (iii) represents novel "druggable" targets. Among these druggable targets is B-cell CLL/lymphoma 2, which when pharmacologically inhibited stops ASCL1-dependent tumor growth in vitro and in vivo and represents a proof-of-principle ASCL1 downstream target gene. Analysis of downstream targets of ASCL1 represents an important advance in the development of targeted therapy for the neuroendocrine class of lung cancers, providing a significant step forward in the understanding and therapeutic targeting of the molecular vulnerabilities of neuroendocrine lung cancer.

Huang C, Chan JA, Schuurmans C
Proneural bHLH genes in development and disease.
Curr Top Dev Biol. 2014; 110:75-127 [PubMed] Related Publications
Proneural genes encode evolutionarily conserved basic-helix-loop-helix transcription factors. In Drosophila, proneural genes are required and sufficient to confer a neural identity onto naïve ectodermal cells, inducing delamination and subsequent neuronal differentiation. In vertebrates, proneural genes are expressed in cells that already have a neural identity, but they are still required and sufficient to initiate neurogenesis. In all organisms, proneural genes control neurogenesis by regulating Notch-mediated lateral inhibition and initiating the expression of downstream differentiation genes. The general mode of proneural gene function has thus been elucidated. However, the regulatory mechanisms that spatially and temporally control proneural gene function are only beginning to be deciphered. Understanding how proneural gene function is regulated is essential, as aberrant proneural gene expression has recently been linked to a variety of human diseases-ranging from cancer to neuropsychiatric illnesses and diabetes. Recent insights into proneural gene function in development and disease are highlighted herein.

Endo T, Yazawa T, Shishido-Hara Y, et al.
Expression of developing neural transcription factors in lung carcinoid tumors.
Pathol Int. 2014; 64(8):365-74 [PubMed] Related Publications
In lung tumors, the association between carcinoids and high-grade neuroendocrine tumors (HGNETs) is controversial. To understand the phenotypic similarities/differences between lung carcinoids and HGNETs, we comparatively investigated the expression of three kinds of developing neural transcription factors (DNTFs: BRN2, TTF1 and ASCL1) and multiple endocrine neoplasia type 1 (MEN1) as well as RB1 and P53 using 18 carcinoids and 16 HGNETs. The DNTFs were expressed in 10 of the 18 carcinoids and in all the HGNETs, while normal neuroendocrine cells, which are considered the major cell origin of lung carcinoids and small cell carcinomas, did not express DNTFs. Both the DNTF(-) and DNTF(+) carcinoids contained typical and atypical carcinoids. All the DNTF(-) carcinoids examined were formed in the bronchial wall. All the MEN1(-) carcinoids examined were classified into the DNTF(-) carcinoids, while all the HGNETs expressed MEN1. This finding suggests that DNTF(-) MEN1(-) carcinoids are unlikely to be precursors of HGNETs. Although the status of RB1 and P53 between carcinoids and HGNETs were apparently different, the DNTF(+) carcinoids of two male patients and one female patient revealed morphologies resembling HGNET cells and relatively high Ki67 indices. Further investigation of DNTF expression in carcinoids might provide important clues to understand the association between carcinoids and HGNETs.

Kasim M, Benko E, Winkelmann A, et al.
Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia.
J Biol Chem. 2014; 289(39):26973-88 [PubMed] Free Access to Full Article Related Publications
The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.

Beyeler S, Joly S, Fries M, et al.
Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma.
Stem Cells. 2014; 32(10):2583-95 [PubMed] Related Publications
Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.

Li S, Mattar P, Dixit R, et al.
RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis.
J Neurosci. 2014; 34(6):2169-90 [PubMed] Related Publications
Neural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascl1 are key cell fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors, which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an intermixed neuronal component. A core abnormality in both tumor groups is overactive RAS/ERK signaling, a pro-proliferative signal whose contributions to cell differentiation in oncogenesis are largely unexplored. We found that RAS/ERK activation levels differ in two distinct human tumors associated with constitutively active BRAF. Pilocytic astrocytomas, which contain abnormal glial cells, have higher ERK activation levels than gangliogliomas, which contain abnormal neuronal and glial cells. Using in vivo gain of function and loss of function in the mouse embryonic neocortex, we found that RAS/ERK signals control a proneural genetic switch, inhibiting Neurog2 expression while inducing Ascl1, a competing lineage determinant. Furthermore, we found that RAS/ERK levels control Ascl1's fate specification properties in murine cortical progenitors--at higher RAS/ERK levels, Ascl1(+) progenitors are biased toward proliferative glial programs, initiating astrocytomas, while at moderate RAS/ERK levels, Ascl1 promotes GABAergic neuronal and less glial differentiation, generating glioneuronal tumors. Mechanistically, Ascl1 is phosphorylated by ERK, and ERK phosphoacceptor sites are necessary for Ascl1's GABAergic neuronal and gliogenic potential. RAS/ERK signaling thus acts as a rheostat to influence neural cell fate selection in both normal cortical development and gliomagenesis, controlling Neurog2-Ascl1 expression and Ascl1 function.

Tesfazghi S, Eide J, Dammalapati A, et al.
Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line.
Cancer Med. 2013; 2(5):734-43 [PubMed] Free Access to Full Article Related Publications
Medullary thyroid cancer (MTC) is an aggressive neuroendocrine tumor (NET). Previous research has shown that activation of Notch signaling has a tumor suppressor role in NETs. The potential therapeutic effect of thiocoraline on the activation of the Notch pathway in an MTC cell line (TT) was investigated. Thiocoraline was isolated from a marine bacterium Verrucosispora sp. MTT assay (3-[4, 5-dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide) was used to determine the IC50 value and to measure cell proliferation. Western blot revealed the expression of Notch isoforms, NET, and cell cycle markers. Cell cycle progression was validated by flow cytometry. The mRNA expression of Notch isoforms and downstream targets were measured using real-time PCR. The IC50 value for thiocoraline treatment in TT cells was determined to be 7.6 nmol/L. Thiocoraline treatment decreased cell proliferation in a dose- and time-dependent manner. The mechanism of growth inhibition was found to be cell cycle arrest in G1 phase. Thiocoraline activated the Notch pathway as demonstrated by the dose-dependent increase in mRNA and protein expression of Notch isoforms. Furthermore, treatment with thiocoraline resulted in changes in the expression of downstream targets of the Notch pathway (HES1, HES2, HES6, HEY1, and HEY2) and reduced expression of NET markers, CgA, and ASCL1. Thiocoraline is a potent Notch pathway activator and an inhibitor of MTC-TT cell proliferation at low nanomolar concentrations. These results provide exciting evidence for the use of thiocoraline as a potential treatment for intractable MTC.

Teicher BA
Targets in small cell lung cancer.
Biochem Pharmacol. 2014; 87(2):211-9 [PubMed] Related Publications
Recurrent small cell lung cancer is a recalcitrant malgnancy. The application of genomic technologies has begun to elucidate the large number of genetic abnormalities in SCLC. Several cell surface receptors are known to be overexpressed by SCLC in clinic specimens and cell in culture including GPCRs such as the bradykinin receptor, the chemokine receptor CXCR4, the vasopression receeptor and the three bomebsin receptors. The glucose transporter GLUT1, the tetraspanin family member PETA/CD151 and the immunoglobulin superfamily member ALCAM/CD166 are also overexpressed by SCLC. NCAM/CD56 is overexpressed by nearly all SCLC and is currently the target for an antibody drug conjugate in Phase II trial. Although SCLC is not considered a RTK driven disease, IGF1R and FGFRs are often overexpressed by SCLC. SCLC abberantly expresses several developmental transcription factors including ASCL1, SOX2, 4, and 11, OCT4, NANOG, PAX5; however, overexpression of MYC may be a driver in SCLC. Like other cancers, SCLC expresses survival factors and uses aerobic glycolysis as a major source of ATP. The drawback of many potential targets overexpressed by SCLC is expression of the same proteins by normal tissues. We are slowly learning more about the molecular abnormalities that occur in SCLC; however, therapeutic impact from new findings remains a goal to work toward.

Kosari F, Ida CM, Aubry MC, et al.
ASCL1 and RET expression defines a clinically relevant subgroup of lung adenocarcinoma characterized by neuroendocrine differentiation.
Oncogene. 2014; 33(29):3776-83 [PubMed] Free Access to Full Article Related Publications
ASCL1 is an important regulatory transcription factor in pulmonary neuroendocrine (NE) cell development, but its value as a biomarker of NE differentiation in lung adenocarcinoma (AD) and as a potential prognostic biomarker remains unclear. We examined ASCL1 expression in lung cancer samples of varied histologic subtype, clinical outcome and smoking status and compared with expression of traditional NE markers. ASCL1 mRNA expression was found almost exclusively in smokers with AD, in contrast to non-smokers and other lung cancer subtypes. ASCL1 protein expression by immunohistochemical (IHC) analysis correlated best with synaptophysin compared with chromogranin and CD56/NCAM. Analysis of a compendium of 367 microarray-based gene expression profiles in stage I lung adenocarcinomas identified significantly higher expression levels of the RET oncogene in ASCL1-positive tumors (ASCL1(+)) compared with ASCL1(-) tumors (q-value <10(-9)). High levels of RET expression in ASCL1(+) but not in ASCL1(-) tumors was associated with significantly shorter overall survival (OS) in stage 1 (P=0.007) and in all AD (P=0.037). RET protein expression by IHC had an association with OS in the context of ASCL1 expression. In silico gene set analysis and in vitro experiments by ASCL1 shRNA in AD cells with high endogenous expression of ASCL1 and RET implicated ASCL1 as a potential upstream regulator of the RET oncogene. Also, silencing ASCL1 in AD cells markedly reduced cell growth and motility. These results suggest that ASCL1 and RET expression defines a clinically relevant subgroup of ∼10% of AD characterized by NE differentiation.

Wang P, Zhang HL, Li W, et al.
Generation of patient-specific induced neuronal cells using a direct reprogramming strategy.
Stem Cells Dev. 2014; 23(1):16-23 [PubMed] Free Access to Full Article Related Publications
Direct reprogramming of human fibroblasts into functional neurons in vitro by defined factors provides an invaluable resource for regenerative medicine. However, clinical applications must consider the risk of immune rejection, thus patient-specific induced neuronal cells (iNCs) may serve as an ideal source for autologous cell replacement. In this study, we report a robust process for functional neuronal cells from the patients' scalp by lentiviral gene delivery of Ascl1, Myt1l, and Sox2. These three-factor iNCs are similar to human neuronal cells in morphology, surface antigens, gene expression, and electrophysiological characteristics. Our findings might provide a source of patient-specific functional neurons for cell therapy.

Jin C, Yu D, Čančer M, et al.
Tat-PTD-modified oncolytic adenovirus driven by the SCG3 promoter and ASH1 enhancer for neuroblastoma therapy.
Hum Gene Ther. 2013; 24(8):766-75 [PubMed] Free Access to Full Article Related Publications
Secretogranin III (SGC3) belongs to the granin family and is highly expressed in endocrine and neural tissues. The human SCG3 promoter has not yet been characterized. We identified that a 0.5-kb DNA fragment upstream of the SCG3 gene can selectively drive transgene expression in neuroblastoma cell lines. The strength of transgene expression was further increased, with specificity maintained, by addition of the human achaete-scute complex homolog 1 (ASH1) enhancer. We developed an oncolytic serotype 5-based adenovirus, in which the SCG3 promoter and ASH1 enhancer drive E1A gene expression. The virus was further modified with a cell-penetrating peptide (Tat-PTD) in the viral capsid, which we have previously shown results in increased adenovirus transduction efficiency of many neuroblastoma cell lines. The virus, Ad5PTD(ASH1-SCG3-E1A), shows selective and efficient killing of neuroblastoma cell lines in vitro, including cisplatin-, etoposide-, and doxorubicin-insensitive neuroblastoma cells. Furthermore, it delays tumor growth and thereby prolonged survival for nude mice harboring subcutaneous human neuroblastoma xenograft. In conclusion, we report a novel oncolytic adenovirus with potential use for neuroblastoma therapy.

Pei D, Luther W, Wang W, et al.
Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models.
PLoS Genet. 2013; 9(6):e1003533 [PubMed] Free Access to Full Article Related Publications
Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b(+), ascl1(+), elavl3(-) cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events.

Rheinbay E, Suvà ML, Gillespie SM, et al.
An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma.
Cell Rep. 2013; 3(5):1567-79 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is thought to be driven by a subpopulation of cancer stem cells (CSCs) that self-renew and recapitulate tumor heterogeneity yet remain poorly understood. Here, we present a comparative analysis of chromatin state in GBM CSCs that reveals widespread activation of genes normally held in check by Polycomb repressors. These activated targets include a large set of developmental transcription factors (TFs) whose coordinated activation is unique to the CSCs. We demonstrate that a critical factor in the set, ASCL1, activates Wnt signaling by repressing the negative regulator DKK1. We show that ASCL1 is essential for the maintenance and in vivo tumorigenicity of GBM CSCs. Genome-wide binding profiles for ASCL1 and the Wnt effector LEF-1 provide mechanistic insight and suggest widespread interactions between the TF module and the signaling pathway. Our findings demonstrate regulatory connections among ASCL1, Wnt signaling, and collaborating TFs that are essential for the maintenance and tumorigenicity of GBM CSCs.

Li J, Wang Y, Zhu Y, Oupický D
Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.
J Control Release. 2013; 172(2):589-600 [PubMed] Free Access to Full Article Related Publications
Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations.

Ishii J, Sato H, Sakaeda M, et al.
POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer.
Pathol Int. 2013; 63(3):158-68 [PubMed] Related Publications
BRN2 is a developmental neural cell-specific POU domain transcription factor and is crucial for cell lineage determination. We investigated the importance of BRN2 in the expression of the lineage-specific transcription factors (achaete-scute homolog-like 1 (ASCL1) and NeuroD1 (ND1)) and neural/neuroendocrine marker molecules (neural cell adhesion molecule 1 (NCAM1), synaptophysin (SYP) and chromogranin A (CHGA)) in small cell lung cancer (SCLC) using cultured lung cancer cells. All examined SCLC cell lines expressed BRN2, as well as ASCL1, ND1, NCAM1, SYP and CHGA. The expression levels of ASCL1, ND1, NCAM1, SYP and CHGA considerably decreased when BRN2 was knocked down in SCLC cells, and the addition of a BRN2 transgene into non-SCLC (NSCLC) cells induced the expression of ASCL1, ND1, NCAM1, SYP and CHGA. However, the BRN2 gene was not activated by the forced expression of ASCL1 or ND1 in NSCLC cells. The knockdown of BRN2 caused significant growth retardation with decrease of S to G2 phase population and mitotic cell rates and unaltered Ki-67-labeled or apoptotic cell rates in SCLC cells, indicating increase of G1 phase population. These findings suggest that BRN2 is a higher level regulator than ASCL1 and ND1 and BRN2 might be involved in aggressiveness of SCLC.

Wang XY, Jensen-Taubman SM, Keefe KM, et al.
Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6)-methylguanine-DNA methyltransferase.
PLoS One. 2012; 7(12):e52832 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1) is a member of the basic helix-loop-helix (bHLH) transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7) and O(6)-methylguanine-DNA methyltransferase (MGMT). Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

Conconi D, Panzeri E, Redaelli S, et al.
DNA copy number alterations and PPARG amplification in a patient with multifocal bladder urothelial carcinoma.
BMC Res Notes. 2012; 5:607 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Bladder cancer is the seventh most common cancer worldwide and over 90% are transitional cell carcinoma (TCC). At the first time of diagnosis at least 70% of TCC present as superficial bladder cancer. Because the clinical outcome of superficial bladder tumors is relatively unpredictable, there is a pressing need to identify markers that may predict tumor recurrence and progression and new treatment strategies.
CASE PRESENTATION: We present a unique case of a 67-year old male who underwent total cystectomy after repeated trans-urethral resections of the bladder for multifocal non-muscle invasive bladder cancer. The first and the third tumor were diagnosed as high grade non-infiltrating (HGNI), while the second as carcinoma in situ (CIS). We performed both array comparative genomic hybridization and a targeted chromosomal profile by UroVysion in order to detect copy number variations (CNVs) that may be involved with tumor recurrence and progression. The overall data from this study provide new evidence for the monoclonal origin of urothelial tumor multifocality as several genetic changes were found in different tumors of the same patient. From the analysis of shared CNVs two gained regions emerged at 3p25.2 and 12q23.2, including PPARG and ASCL1 genes, respectively. The copy number level of these genes would seem inversely mutually correlated and highly dependent on histological grade, because the highest level of amplification at 3p25.2 was evidenced in the two HGNI samples, while the highest level of copy number gain at 12q23.2 was reported in the CIS.
CONCLUSION: We provide new evidence on the role of PPARG in initiation and maintenance of bladder cancer. For the first time we also suggest a possible explanation for the elevated expression of PPARG in this type of tumor through a focal high level amplification at 3p25.2. Furthermore, a new gene, ASCL1, emerged as a potential candidate to assist PPARG in bladder carcinogenesis.

Xiao Y, Jaskula-Sztul R, Javadi A, et al.
Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy.
Nanoscale. 2012; 4(22):7185-93 [PubMed] Free Access to Full Article Related Publications
A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.

Demelash A, Rudrabhatla P, Pant HC, et al.
Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway.
Mol Biol Cell. 2012; 23(15):2856-66 [PubMed] Free Access to Full Article Related Publications
Our previous data suggested that the human basic helix-loop-helix transcription factor achaete-scute homologue-1 (hASH1) may stimulate both proliferation and migration in the lung. In the CNS, cyclin-dependent kinase 5 (Cdk5) and its activator p35 are important for neuronal migration that is regulated by basic helix-loop-helix transcription factors. Cdk5/p35 may also play a role in carcinogenesis. In this study, we found that the neuronal activator p35 was commonly expressed in primary human lung cancers. Cdk5 and p35 were also expressed by several human lung cancer cell lines and coupled with migration and invasion. When the kinase activity was inhibited by the Cdk5 inhibitor roscovitine or dominant-negative (dn) Cdk5, the migration of lung cancer cells was reduced. In neuroendocrine cells expressing hASH1, such as a pulmonary carcinoid cell line, knocking down the gene expression by short hairpin RNA reduced the levels of Cdk5/p35, nuclear p35 protein, and migration. Furthermore, expression of hASH1 in lung adenocarcinoma cells normally lacking hASH1 increased p35/Cdk5 activity and enhanced cellular migration. We were also able to show that p35 was a direct target for hASH1. In conclusion, induction of Cdk5 activity is a novel mechanism through which hASH1 may regulate migration in lung carcinogenesis.

Kashiwagi K, Ishii J, Sakaeda M, et al.
Differences of molecular expression mechanisms among neural cell adhesion molecule 1, synaptophysin, and chromogranin A in lung cancer cells.
Pathol Int. 2012; 62(4):232-45 [PubMed] Related Publications
Neural cell adhesion molecule 1 (NCAM1), synaptophysin (SYPT), and chromogranin A (CGA) are immunohistochemical markers for diagnosing lung neuroendocrine tumors (LNETs). However, the precise expression mechanisms have not been studied in enough detail. The purpose of the present study is to define the molecular mechanisms of NCAM1, SYPT, and CGA gene expressions, using cultivated lung cancer cells and focusing upon NeuroD1 (ND1), achaete-scute homolog-like 1 (ASCL1), and known transcription factors, repressor element 1 (RE1)-silencing transcription factor (REST) and c-AMP responsive element-binding protein (CREB). Promoter assays, chromatin immunoprecipitation, and transfection experiments revealed that ND1 activated NCAM1, that ASCL1 weakly upregulated SYPT expression, and that CGA expression was not regulated by ND1 or ASCL1. REST expression was restricted in non-small cell lung cancer (NSCLC) cells, and knockdown of REST could cause as much SYPT expression as in SCLC cells and weak CGA expression in NSCLC cells. However, CGA gene upregulation via CREB activation was not found in REST-lacking NSCLC cells, indicating the requirement of some additional mechanism for sufficient expression. These results suggest that NCAM1, SYPT and CGA expressions are differently regulated by neuroendocrine phenotype-specific transcription factors and provide a reason why NCAM1 and SYPT are frequently expressed in LNETs, irrespective of malignancy grade.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ASCL1, Cancer Genetics Web: http://www.cancer-genetics.org/ASCL1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 10 March, 2017     Cancer Genetics Web, Established 1999