ATRX

Gene Summary

Gene:ATRX; ATRX, chromatin remodeler
Aliases: JMS, SHS, XH2, XNP, ATR2, SFM1, MRX52, RAD54, MRXHF1, RAD54L, ZNF-HX
Location:Xq21.1
Summary:The protein encoded by this gene contains an ATPase/helicase domain, and thus it belongs to the SWI/SNF family of chromatin remodeling proteins. This protein is found to undergo cell cycle-dependent phosphorylation, which regulates its nuclear matrix and chromatin association, and suggests its involvement in the gene regulation at interphase and chromosomal segregation in mitosis. Mutations in this gene are associated with an X-linked mental retardation (XLMR) syndrome most often accompanied by alpha-thalassemia (ATRX) syndrome. These mutations have been shown to cause diverse changes in the pattern of DNA methylation, which may provide a link between chromatin remodeling, DNA methylation, and gene expression in developmental processes. Multiple alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Aug 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcriptional regulator ATRX
Source:NCBIAccessed: 13 March, 2017

Ontology:

What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Latest Publications: ATRX (cancer-related)

Zhang YA, Zhou Y, Luo X, et al.
SHOX2 is a Potent Independent Biomarker to Predict Survival of WHO Grade II-III Diffuse Gliomas.
EBioMedicine. 2016; 13:80-89 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Diffuse gliomas, grades II and III, hereafter called lower-grade gliomas (LGG), have variable, difficult to predict clinical courses, resulting in multiple studies to identify prognostic biomarkers. The purpose of this study was to assess expression or methylation of the homeobox family gene SHOX2 as independent markers for LGG survival.
METHODS: We downloaded publically available glioma datasets for gene expression and methylation. The Cancer Genome Atlas (TCGA) (LGG, n=516) was used as a training set, and three other expression datasets (n=308) and three other methylation datasets (n=320), were used for validation. We performed Kaplan-Meier survival curves and univariate and multivariate Cox regression model analyses.
FINDINGS: SHOX2 expression and gene body methylation varied among LGG patients and highly significantly predicted poor overall survival. While they were tightly correlated, SHOX2 expression appeared more potent as a prognostic marker and was used for most further studies. The SHOX2 prognostic roles were maintained after analyses by histology subtypes or tumor grade. We found that the combination of SHOX2 expression and IDH genotype status identified a subset of LGG patients with IDH wild-type (IDHwt) and low SHOX2 expression with considerably favorable survival. We further investigated the combination of SHOX2 with other known clinically relevant markers of LGG (TERT expression, 1p/19q chromosome co-deletion, MGMT methylation, ATRX mutation and NES expression). When combined with SHOX2 expression, we identified subsets of LGG patients with significantly favorable survival outcomes, especially in the subgroup with worse prognosis for each individual marker. Finally, multivariate analysis demonstrated that SHOX2 was a potent independent survival marker.
INTERPRETATION: We have identified that SHOX2 expression or methylation are potent independent prognostic indicators for predicting LGG patient survival, and have potential to identify an important subset of LGG patients with IDHwt status with significantly better overall survival. The combination of IDH or other relevant markers with SHOX2 identified LGG subsets with significantly different survival outcomes, and further understanding of these subsets may benefit therapeutic target identification and therapy selections for glioma patients.

Kawashima M, Kojima M, Ueda Y, et al.
Telomere biology including TERT rearrangements in neuroblastoma: a useful indicator for surgical treatments.
J Pediatr Surg. 2016; 51(12):2080-2085 [PubMed] Related Publications
PURPOSE: Our telomere biology study of neuroblastomas (NBLs) has revealed that unfavorable NBLs acquired telomere stabilization by telomerase activation or ALT (alternative lengthening of telomeres). Recently, genomic rearrangements in a region proximal to the telomerase reverse transcriptase (TERT) gene have been discovered in NBLs. In this study, TERT rearrangements were examined in NBLs along with their relationship to other aspects of telomere biology.
METHODS: In 121 NBLs, including 67 cases detected by mass-screening whose telomere length, telomerase activity, ALT with ATRX/DAXX alterations, and MYCN amplification were already known, TERT rearrangements were examined using GeneChip SNP arrays.
RESULTS: The 11 ATRX/DAXX mutated ALT cases and 29 cases with high telomerase activity showed poor prognosis. MYCN amplification and TERT rearrangements were independently detected in 16 and 13 cases, respectively, and these alterations were significantly correlated with high telomerase activity. In 81 infant cases, MYCN amplification, TERT rearrangements and ATRX mutations were detected in 3, 4, and 3 cases, respectively. Among them, 6 cases showed progression or recurrences.
CONCLUSIONS: Telomere stabilization in NBLs is acquired by telomerase activation through MYCN amplification, TERT rearrangements or by ALT. Since these tumors usually show progression and recurrence, complete resection should be considered, even in infant cases.
LEVEL OF EVIDENCE: Prognosis study, level III.

Nasirden A, Saito T, Fukumura Y, et al.
In Japanese patients with papillary thyroid carcinoma, TERT promoter mutation is associated with poor prognosis, in contrast to BRAF (V600E) mutation.
Virchows Arch. 2016; 469(6):687-696 [PubMed] Related Publications
The prognostic value of BRAF (V600E) and TERT promoter mutation in papillary thyroid carcinoma (PTC) is controversial. We examined alterations in BRAF (V600E) and TERT promoter by PCR-direct sequencing in PTC of 144 Japanese patients. Alternative lengthening of telomeres was examined as another mechanism of telomere maintenance by immunohistochemical staining for ATRX and DAXX. Of the clinicopathological characteristics, regional lymph node metastasis, extra-thyroid extension, multifocality/intrathyroidal spread, and advanced stage (III/V) were associated with shorter disease-free survival rate (DFSR). TERT promoter mutation was found in eight patients (6 %), and this was significantly associated with total thyroidectomy, multifocality/intrathyroidal spread, lymph node metastasis and advanced stage. The BRAF (V600E) mutation was found in 53 patients (38.2 %) but was not associated with any clinicopathological factors. TERT mutations were not correlated with BRAF (V600E) mutation status. TERT mutation-positive tumors (TERT+) showed lower DFSR than BRAF (V600E) -mutation-positive tumors (BRAF (V600E) +), and TERT+/BRAF (V600E) + tumors showed lower DFSR than BRAF (V600E) + tumors. No cases showed loss of ATRX/DAXX expression by immunohistochemistry. TERT promoter mutations showed a lower prevalence in our series and appeared to be associated with aggressive behavior. In PTCs, telomerase activation by TERT promoter mutation might be more important than alternative lengthening of telomeres.

Chaurasia A, Park SH, Seo JW, Park CK
Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival.
J Korean Med Sci. 2016; 31(8):1208-14 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs.

Jafri MA, Ansari SA, Alqahtani MH, Shay JW
Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies.
Genome Med. 2016; 8(1):69 [PubMed] Free Access to Full Article Related Publications
Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.

Wang HY, Tang K, Liang TY, et al.
The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas.
J Exp Clin Cancer Res. 2016; 35:86 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are frequent in low-grade gliomas and secondary glioblastomas (sGBM). Because they yield the same oncometabolite, D-2-hydroxyglutarate, they are often treated as equivalent and pooled. The objective of this study was to provide insight into the differences between IDH1 and IDH2 mutant gliomas.
METHODS: To investigate the different clinical and molecular characterization between IDH1 mutant and IDH2 mutant gliomas, we studied 811 patients with IDH1 mutations, IDH2 mutations and IDH1/2 wild-type. In addition, whole-transcriptome sequencing and DNA methylation data were used to assess the distribution of genetic changes in IDH1 and IDH2 mutant gliomas in a Chinese population-based cohort.
RESULTS: Among 811 gliomas in our cohort, 448 cases (55.2%) harbored an IDH1 mutation, 18 cases (2.2%) harbored an IDH2 mutation and 345 cases (42.6%) harbored an IDH1/2 wild-type. We found that IDH1 and IDH2 are mutually exclusive in gliomas, and IDH2 mutations are mutually exclusive with PTEN, P53 and ATRX mutations. Patients with IDH2 mutations had a higher frequency of 1p/19q co-deletion (p < 0.05) than IDH1 mutant patients. In addition, a Gene Set Enrichment Analysis (GSEA) showed that IDH2 mutant gliomas were associated with the oxidative phosphorylation gene set, and the four most representative biological processes for genes commonly altered by hypermethylation in IDH2 mutant gliomas were the regulation of cell proliferation, cell motion, cell migration and response to hypoxia. Patients with IDH2 mutant gliomas exhibited longer Overall survival (OS) (p < 0.05) and longer Progression-free survival (PFS) (p < 0.05) than patients with IDH1/2 wild-type gliomas. However, their OS and PFS did not differ from that of IDH1 mutant patients.
CONCLUSIONS: Our study revealed an intrinsic distinction between IDH1 and IDH2 mutant gliomas, and these mutations should be considered separately because their differences could have implications for the diagnosis and treatment of IDH1/2 mutant gliomas.

Comino-Méndez I, Tejera ÁM, Currás-Freixes M, et al.
ATRX driver mutation in a composite malignant pheochromocytoma.
Cancer Genet. 2016; 209(6):272-7 [PubMed] Related Publications
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively. Approximately 40% of PCCs/PGLs are due to germline mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in 5 main genes. Recently, somatic ATRX mutations have been found in succinate dehydrogenase (SDH)-associated hereditary PCCs/PGLs. In the present study we applied whole-exome sequencing to the germline and tumor DNA of a patient with metastatic composite PCC and no alterations in known PCC/PGL susceptibility genes. A somatic loss-of-function mutation affecting ATRX was identified in tumor DNA. Transcriptional profiling analysis classified the tumor within cluster 2 of PCCs/PGLs (without SDH gene mutations) and identified downregulation of genes involved in neuronal development and homeostasis (NLGN4, CD99 and CSF2RA) as well as upregulation of Drosha, an important gene involved in miRNA and rRNA processing. CpG island methylator phenotype typical of SDH gene-mutated tumors was ruled out, and SNP array data revealed a unique profile of gains and losses. Finally, we demonstrated the presence of alternative lengthening of telomeres in the tumor, probably associated with the failure of ATRX functions. In conclusion, somatic variants affecting ATRX may play a driver role in sporadic PCC/PGL.

Masui K, Mischel PS, Reifenberger G
Molecular classification of gliomas.
Handb Clin Neurol. 2016; 134:97-120 [PubMed] Related Publications
The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients.

Pinto A, Howitt B
Uterine Adenosarcoma.
Arch Pathol Lab Med. 2016; 140(3):286-90 [PubMed] Related Publications
Müllerian adenosarcoma is an uncommon biphasic tumor composed of malignant stromal and benign epithelial components. Morphologically, adenosarcoma is characterized by a broad leaflike architecture, reminiscent of phyllodes tumors of the breast. Periglandular cuffing of the stromal cells around the compressed or cystically dilated glands is characteristic. The mesenchymal component is typically a low-grade spindle cell sarcoma, whereas the epithelial counterpart is commonly endometrioid with frequent squamous or mucinous metaplasia and may, in some circumstances, show mild to moderate atypia. In all cases, it is important to assess for the presence of sarcomatous overgrowth and myometrial invasion, which are the prognostic factors. In this brief review, we present the clinical, histopathologic, and immunohistochemical features of adenosarcoma, as well as updates on the molecular biology of this neoplasm.

Mäkinen N, Aavikko M, Heikkinen T, et al.
Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12.
PLoS Genet. 2016; 12(2):e1005850 [PubMed] Free Access to Full Article Related Publications
Uterine leiomyosarcomas (ULMSs) are aggressive smooth muscle tumors associated with poor clinical outcome. Despite previous cytogenetic and molecular studies, their molecular background has remained elusive. To examine somatic variation in ULMS, we performed exome sequencing on 19 tumors. Altogether, 43 genes were mutated in at least two ULMSs. Most frequently mutated genes included tumor protein P53 (TP53; 6/19; 33%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 5/19; 26%), and mediator complex subunit 12 (MED12; 4/19; 21%). Unlike ATRX mutations, both TP53 and MED12 alterations have repeatedly been associated with ULMSs. All the observed ATRX alterations were either nonsense or frameshift mutations. ATRX protein levels were reliably analyzed by immunohistochemistry in altogether 44 ULMSs, and the majority of tumors (23/44; 52%) showed clearly reduced expression. Loss of ATRX expression has been associated with alternative lengthening of telomeres (ALT), and thus the telomere length was analyzed with telomere-specific fluorescence in situ hybridization. The ALT phenotype was confirmed in all ULMSs showing diminished ATRX expression. Exome data also revealed one nonsense mutation in death-domain associated protein (DAXX), another gene previously associated with ALT, and the tumor showed ALT positivity. In conclusion, exome sequencing revealed that TP53, ATRX, and MED12 are frequently mutated in ULMSs. ALT phenotype was commonly seen in tumors, indicating that ATR inhibitors, which were recently suggested as possible new drugs for ATRX-deficient tumors, could provide a potential novel therapeutic option for ULMS.

Pillai S, Gopalan V, Smith RA, Lam AK
Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era.
Crit Rev Oncol Hematol. 2016; 100:190-208 [PubMed] Related Publications
Genetic mutations of phaeochromocytoma (PCC) and paraganglioma (PGL) are mainly classified into two major clusters. Cluster 1 mutations are involved with the pseudo hypoxic pathway and comprised of PHD2, VHL, SDHx, IDH, HIF2A, MDH2 and FH mutated PCC/PGL. Cluster 2 mutations are associated with abnormal activation of kinase signalling pathways and included mutations of RET, NF1, KIF1Bβ, MAX and TMEM127. In addition, VHL, SDHx (cluster 1 genes) and RET, NF1 (cluster 2 genes) germline mutations are involved in the neuronal precursor cell pathway in the pathogeneses of PCC/PGL. Also, GDNF, H-ras, K-ras, GNAS, CDKN2A (p16), p53, BAP1, BRCA1&2, ATRX and KMT2D mutations have roles in the development of PCC/PGLs. Overall, known genetic mutations account for the pathogenesis of approximately 60% of PCC/PGLs. Genetic mutations, pathological parameters and biochemical markers are used for better prediction of the outcome of patients with this group of tumours. Immunohistochemistry and gene sequencing can ensure a more effective detection, prediction of malignant potential and treatment of PCC/PCLs.

Ceccarelli M, Barthel FP, Malta TM, et al.
Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.
Cell. 2016; 164(3):550-63 [PubMed] Free Access to Full Article Related Publications
Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.

Diamandis P, Ferrer-Luna R, Huang RY, et al.
Case Report: Next generation sequencing identifies a NAB2-STAT6 fusion in Glioblastoma.
Diagn Pathol. 2016; 11:13 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Molecular profiling has uncovered genetic subtypes of glioblastoma (GBM), including tumors with IDH1 mutations that confer increase survival and improved response to standard-of-care therapies.  By mapping the genetic landscape of brain tumors in routine clinical practice, we enable rapid identification of targetable genetic alterations.
CASE PRESENTATION: A 29-year-old male presented with new onset seizures prompting neuroimaging studies, which revealed an enhancing 5 cm intra-axial lesion involving the right parietal lobe. He underwent a subtotal resection and pathologic examination revealed glioblastoma with mitoses, microvascular proliferation and necrosis. Immunohistochemical (IHC) analysis showed diffuse expression of GFAP, OLIG2 and SOX2 consistent with a tumor of glial lineage. Tumor cells were positive for IDH1(R132H) and negative for ATRX. Clinical targeted-exome sequencing (DFBWCC Oncopanel) identified multiple functional variants including IDH1 (p.R132H), TP53 (p.Y126_splice), ATRX (p.R1302fs*), HNF1A (p.R263H) and NF1 (p.H2592del) variants and a NAB2-STAT6 gene fusion event involving NAB2 exon 3 and STAT6 exon 18. Array comparative genomic hybridization (aCGH) further revealed a focal amplification of NAB2 and STAT6.  IHC analysis demonstrated strong heterogenous STAT6 nuclear localization (in 20 % of tumor cells).
CONCLUSIONS: While NAB2:STAT6 fusions are common in solitary fibrous tumors (SFT), we report this event for the first time in a newly diagnosed, secondary-type GBM or any other non-SFT. Our study further highlights the value of comprehensive genomic analyses in identifying patient-specific targetable mutations and rearrangements.

Nakazato H, Takeshima H, Kishino T, et al.
Early-Stage Induction of SWI/SNF Mutations during Esophageal Squamous Cell Carcinogenesis.
PLoS One. 2016; 11(1):e0147372 [PubMed] Free Access to Full Article Related Publications
The SWI/SNF chromatin remodeling complex is frequently inactivated by somatic mutations of its various components in various types of cancers, and also by aberrant DNA methylation. However, its somatic mutations and aberrant methylation in esophageal squamous cell carcinomas (ESCCs) have not been fully analyzed. In this study, we aimed to clarify in ESCC, what components of the SWI/SNF complex have somatic mutations and aberrant methylation, and when somatic mutations of the SWI/SNF complex occur. Deep sequencing of components of the SWI/SNF complex using a bench-top next generation sequencer revealed that eight of 92 ESCCs (8.7%) had 11 somatic mutations of 7 genes, ARID1A, ARID2, ATRX, PBRM1, SMARCA4, SMARCAL1, and SMARCC1. The SMARCA4 mutations were located in the Forkhead (85Ser>Leu) and SNF2 family N-terminal (882Glu>Lys) domains. The PBRM1 mutations were located in a bromodomain (80Asn>Ser) and an HMG-box domain (1,377Glu>Lys). For most mutations, their mutant allele frequency was 31-77% (mean 61%) of the fraction of cancer cells in the same samples, indicating that most of the cancer cells in individual ESCC samples had the SWI/SNF mutations on one allele, when present. In addition, a BeadChip array analysis revealed that a component of the SWI/SNF complex, ACTL6B, had aberrant methylation at its promoter CpG island in 18 of 52 ESCCs (34.6%). These results showed that genetic and epigenetic alterations of the SWI/SNF complex are present in ESCCs, and suggested that genetic alterations are induced at an early stage of esophageal squamous cell carcinogenesis.

Fransson S, Östensson M, Djos A, et al.
Estimation of copy number aberrations: Comparison of exome sequencing data with SNP microarrays identifies homozygous deletions of 19q13.2 and CIC in neuroblastoma.
Int J Oncol. 2016; 48(3):1103-16 [PubMed] Related Publications
In the pediatric cancer neuroblastoma, analysis of recurrent chromosomal aberrations such as loss of chromosome 1p, 11q, gain of 17q and MYCN amplification are used for patient stratification and subsequent therapy decision making. Different analysis techniques have been used for detection of segmental abnormalities, including fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH)-microarrays and multiplex ligation-dependent probe amplification (MLPA). However, as next-generation sequencing becomes available for clinical use, this technique could also be used for assessment of copy number alterations simultaneously with mutational analysis. In this study we compare genomic profiles generated through exome sequencing data with profiles generated from high resolution Affymetrix single nucleotide polymorphism (SNP) microarrays on 30 neuroblastoma tumors of different stages. Normalized coverage reads for tumors were calculated using Control-FREEC software and visualized through a web based Shiny application, prior to comparison with corresponding SNP-microarray data. The two methods show high-level agreement for breakpoints and copy number of larger segmental aberrations and numerical aneuploidies. However, several smaller gene containing deletions that could not readily be detected through the SNP-microarray analyses were identified through exome profiling, most likely due to difference between spatial distribution of microarray probes and targeted regions of the exome capture. These smaller aberrations included focal ATRX deletion in two tumors and three cases of novel deletions in chromosomal region 19q13.2 causing homozygous loss of multiple genes including the CIC (Capicua) gene. In conclusion, genomic profiles generated from normalized coverage of exome sequencing show concordance with SNP microarray generated genomic profiles. Exome sequencing is therefore a useful diagnostic tool for copy number variant (CNV) detection in neuroblastoma tumors, especially considering the combination with mutational screening. This enables detection of theranostic targets such as ALK and ATRX together with detection of significant segmental aneuploidies, such as 2p-gain, 17q-gain, 11q-deletion as well as MYCN amplification.

Shinozuka K, Tang H, Jones RB, et al.
Impact of Polymorphic Variations of Gemcitabine Metabolism, DNA Damage Repair, and Drug-Resistance Genes on the Effect of High-Dose Chemotherapy for Relapsed or Refractory Lymphoid Malignancies.
Biol Blood Marrow Transplant. 2016; 22(5):843-9 [PubMed] Related Publications
The goal of this study was to determine whether single nucleotide polymorphisms (SNPs) in genes involved in gemcitabine metabolism, DNA damage repair, multidrug resistance, and alkylator detoxification influence the clinical outcome of patients with refractory/relapsed lymphoid malignancies receiving high-dose gemcitabine/busulfan/melphalan (Gem/Bu/Mel) with autologous stem cell support. We evaluated 21 germline SNPs of the gemcitabine metabolism genes CDA, deoxycytidine kinase, and hCNT3; DNA damage repair genes RECQL, X-ray repair complementing 1, RAD54L, ATM, ATR, MLH1, MSH2, MSH3, TREX1, EXO1, and TP73; and multidrug-resistance genes MRP2 and MRP5; as well as glutathione-S-transferase GSTP1 in 153 patients with relapsed or refractory lymphoma or myeloma receiving Gem/Bu/Mel. We studied the association of genotypes with overall survival (OS), progression-free survival (PFS), and nonhematological grade 3 or 4 toxicity. CDA C111T and TREX1 Ex14-460C>T genotypes had a significant effect on OS (P = .007 and P = .005, respectively), and CDA C111T, ATR C340T, and EXO1 P757L genotypes were significant predictors for severe toxicity (P = .037, P = .024, and P = .025, respectively) in multivariable models that adjusted for clinical variables. The multi-SNP risk score analysis identified the combined genotypes of TREX1 Ex14-460 TT and hCNT3 Ex5 +25A>G AA as significant predictors for OS and the combination of MRP2 Ex10 + 40GG/GA and MLH1 IVS12-169 TT as significant predictor for PFS. Polymorphic variants of certain genes involved in gemcitabine metabolism and DNA damage repair pathways may be potential biomarkers for clinical outcome in patients with refractory/relapsed lymphoid tumors receiving Gem/Bu/Mel.

Rajmohan KS, Sugur HS, Shwetha SD, et al.
Prognostic significance of histomolecular subgroups of adult anaplastic (WHO Grade III) gliomas: applying the 'integrated' diagnosis approach.
J Clin Pathol. 2016; 69(8):686-94 [PubMed] Related Publications
AIMS: Anaplastic gliomas (AGs; WHO Grade III) include anaplastic astrocytoma (AA), anaplastic oligodendroglioma (AO) and anaplastic oligoastrocytoma (AOA) and are known to have variable prognosis. Since biomarkers have a major impact on prognosis of gliomas, we compared the prognostic significance of the established biomarkers of AGs and the 'histomolecular' subgroups based on the proposed International Society of Neuropathology-Haarlem ('ISN-Haarlem') guidelines, with the current WHO 2007 classification.
METHODS: The study was carried out on formalin-fixed paraffin-embedded (FFPE) tissues from 91 adult patients with AG. Clinical, histological and molecular parameters, including 1p/19q codeletion, isocitrate dehydrogenase gene (IDH1)-R132H positivity, α thalassemia/mental retardation syndrome X-linked gene (ATRX) expression and O(6)-methylguanine-DNA-methyltransferase gene (MGMT) promoter methylation (mMGMT), were correlated with overall survival (OS) and recurrence-free survival (RFS). Subsequently, following sequencing for rare IDH mutations, we derived three 'histomolecular' subgroups based on the 'integrated' diagnosis approach proposed by 'ISN-Haarlem' guidelines and correlated this with clinical outcome.
RESULTS: Gross tumour resection, administration of radiochemotherapy, 1p/19q codeletion, IDH1-R132H positivity and mMGMT were associated with favourable OS and RFS (p≤0.001), while the WHO histological subgroups were prognostically not significant. The ISN 'histomolecular' subgroups prognosticated best with AOs (IDHmut, 1p/19q codeleted, ATRX predominantly retained) having the best survival, followed by the AAs (IDHmut, ATRX loss or retained, 1p19q non-codeleted) and AA IDH wild type group having the worst OS and RFS (p=<0.001 for OS).
CONCLUSIONS: Our study reiterates the prognostic significance of biomarkers, 1p/19q codeletion, IDH1-R132H positivity and mMGMT in AGs. Importantly, we show that the 'histomolecular' subgroups of AGs based on the 'integrated' diagnosis has a prognostic value, superior to the WHO histological classification.

Hoffman LM, DeWire M, Ryall S, et al.
Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics.
Acta Neuropathol Commun. 2016; 4:1 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization.
RESULTS: Median age at diagnosis was 6.1 years (range: 2.9-23.3 years). Median overall survival was 13.2 months (range: 11.2-32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved.
CONCLUSION: Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy.

Draaisma K, Wijnenga MM, Weenink B, et al.
PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients.
Acta Neuropathol Commun. 2015; 3:88 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Recent advances in molecular diagnostics allow diffuse gliomas to be classified based on their genetic changes into distinct prognostic subtypes. However, a systematic analysis of all molecular markers has thus far not been performed; most classification schemes use a predefined and select set of genes/molecular markers. Here, we have analysed the TCGA dataset (combined glioblastoma (GBM) and lower grade glioma (LGG) datasets) to identify all prognostic genetic markers in diffuse gliomas in order to generate a comprehensive classification scheme.
RESULTS: Of the molecular markers investigated (all genes mutated at a population frequency >1.7 % and frequent chromosomal imbalances) in the entire glioma dataset, 57 were significantly associated with overall survival. Of these, IDH1 or IDH2 mutations are associated with lowest hazard ratio, which confirms IDH as the most important prognostic marker in diffuse gliomas. Subsequent subgroup analysis largely confirms many of the currently used molecular classification schemes for diffuse gliomas (ATRX or TP53 mutations, 1p19q codeletion). Our analysis also identified PI3-kinase mutations as markers of poor prognosis in IDH-mutated + ATRX/TP53 mutated diffuse gliomas, median survival 3.7 v. 6.3 years (P = 0.02, Hazard rate (HR) 2.93, 95 % confidence interval (CI) 1.16 - 7.38). PI3-kinase mutations were also prognostic in two independent datasets. In our analysis, no additional molecular markers were identified that further refine the molecular classification of diffuse gliomas. Interestingly, these molecular classifiers do not fully explain the variability in survival observed for diffuse glioma patients. We demonstrate that tumor grade remains an important prognostic factor for overall survival in diffuse gliomas, even within molecular glioma subtypes. Tumor grade was correlated with the mutational load (the number of non-silent mutations) of the tumor: grade II diffuse gliomas harbour fewer genetic changes than grade III or IV, even within defined molecular subtypes (e.g. ATRX mutated diffuse gliomas).
CONCLUSION: We have identified PI3K mutations as novel prognostic markers in gliomas. We also demonstrate that the mutational load is associated with tumor grade. The increase in mutational load may partially explain the increased aggressiveness of higher grade diffuse gliomas when a subset of the affected genes actively contributes to gliomagenesis and/or progression.

Nikiforova MN, Wald AI, Melan MA, et al.
Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors.
Neuro Oncol. 2016; 18(3):379-87 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Identification of genetic changes in CNS tumors is important for the appropriate clinical management of patients. Our objective was to develop a next-generation sequencing (NGS) assay for simultaneously detecting the various types of genetic alterations characteristic for adult and pediatric CNS tumors that can be applied to small brain biopsies.
METHODS: We report an amplification-based targeted NGS assay (GlioSeq) that analyzes 30 genes for single nucleotide variants (SNVs) and indels, 24 genes for copy number variations (CNVs), and 14 types of structural alterations in BRAF, EGFR, and FGFR3 genes in a single workflow. GlioSeq performance was evaluated in 54 adult and pediatric CNS tumors, and the results were compared with fluorescence in-situ hybridization, Sanger sequencing, and reverse transcription PCR.
RESULTS: GlioSeq correctly identified 71/71 (100%) genetic alterations known to be present by conventional techniques, including 56 SNVs/indels, 9 CNVs, 3 EGFRvIII, and 3 KIAA1549-BRAF fusions. Only 20 ng of DNA and 10 ng of RNA were required for successful sequencing of 100% frozen and 96% formalin-fixed, paraffin-embedded tissue specimens. The assay sensitivity was 3%-5% of mutant alleles for SNVs and 1%-5% for gene fusions. The most commonly detected alterations were IDH1, TP53, TERT, ATRX. CDKN2A, and PTEN in high-grade gliomas, followed by BRAF fusions in low-grade gliomas and H3F3A mutations in pediatric gliomas.
CONCLUSIONS: GlioSeq NGS assay offers accurate and sensitive detection of a wide range of genetic alterations in a single workflow. It allows rapid and cost-effective profiling of brain tumor specimens and thus provides valuable information for patient management.

Neychev V, Sadowski SM, Zhu J, et al.
Neuroendocrine Tumor of the Pancreas as a Manifestation of Cowden Syndrome: A Case Report.
J Clin Endocrinol Metab. 2016; 101(2):353-8 [PubMed] Related Publications
CONTEXT: Germline mutations in the phosphatase and tensin homolog (PTEN) tumor suppressor gene are found in the majority of patients with Cowden syndrome (CS), who have an increased risk of breast, thyroid, and endometrial cancer. According to our current understanding of genetic changes in the PTEN gene and the resultant phenotypic features of CS, pancreatic neuroendocrine tumors (NETs) are not considered part of the clinical spectrum of CS.
CASE DESCRIPTION: We report a unique case of an advanced NET of the pancreas in a patient with CS. The germline DNA sequencing confirmed the clinical diagnosis of CS and revealed a PTEN mutation c.697C→T (p.R233*) causing a premature stop codon in exon 7. The tumor DNA sequencing showed no loss of heterozygosity or any copy number changes and no other deleterious genetic alterations, including those commonly mutated in sporadic pancreatic NETs: MEN1, ATRX, DAXX, TP53, and genes involved in the mammalian target of rapamycin pathway. In addition, the high-throughput transcriptome analyzed by RNA-seq did not reveal any missed genetic alterations, aberrant splicing variants, gene fusions, or gene expression alterations. The immunohistochemical staining of the tumor for PTEN revealed an abnormal, uniformly strong cytoplasmic staining of tumor cells with virtually absent nuclear staining.
CONCLUSION: The results from genetic testing and histopathological techniques used to confirm CS diagnosis and characterize this unusual tumor tempted us to believe that in this case, the pancreatic NET was not a sporadic malignancy that occurred by coincidence, but rather represented a new entity in the spectrum of malignancies associated with CS.

Tanboon J, Williams EA, Louis DN
The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas.
J Neuropathol Exp Neurol. 2016; 75(1):4-18 [PubMed] Related Publications
A number of key mutations that affect treatment and prognosis have been identified in human gliomas. Two major ways to identify these mutations in a tumor sample are direct interrogation of the mutated DNA itself and immunohistochemistry to assess the effects of the mutated genes on proteins. Immunohistochemistry is an affordable, robust, and widely available technology that has been in place for decades. For this reason, the use of immunohistochemical approaches to assess molecular genetic changes has become an essential component of state-of-the-art practice. In contrast, even though DNA sequencing technologies are undergoing rapid development, many medical centers do not have access to such methodologies and may be thwarted by the relatively high costs of sending out such tests to reference laboratories. This review summarizes the current experience using immunohistochemistry of glioma samples to identify mutations in IDH1, TP53, ATRX, histone H3 genes, BRAF, EGFR, MGMT, CIC, and FUBP1 as well as guidelines for prudent use of DNA sequencing as a supplemental method.

Ye K, Wang J, Jayasinghe R, et al.
Systematic discovery of complex insertions and deletions in human cancers.
Nat Med. 2016; 22(1):97-104 [PubMed] Free Access to Full Article Related Publications
Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1, TP53, ARID1A, GATA3 and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR, whereas frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN and ATRX. Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR, MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research.

Watson LA, Goldberg H, Bérubé NG
Emerging roles of ATRX in cancer.
Epigenomics. 2015; 7(8):1365-78 [PubMed] Related Publications
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology, development and cancer research. This review summarizes recent breakthroughs in understanding ATRX function in heterochromatin structure, genome stability and its frequent dysregulation in a variety of cancers.

Nicolai S, Pieraccioli M, Peschiaroli A, et al.
Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis.
Cell Death Dis. 2015; 6:e2010 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.

Gee HE, Buffa FM, Harris AL, et al.
MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer.
Int J Radiat Oncol Biol Phys. 2015; 93(5):1104-14 [PubMed] Related Publications
PURPOSE: Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo.
METHODS AND MATERIALS: With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers--TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1--were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis.
RESULTS: We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy-treated patients but not in untreated matched control individuals (n=107; P<.05).
CONCLUSIONS: Biomarkers of DNA repair and cell cycle control can identify patients at high risk of treatment failure in those receiving radiation therapy for early breast cancer in independent cohorts. These should be further investigated prospectively, especially TOP2A and SKP2, for which targeted therapies are available.

Ma H, Takahashi A, Yoshida Y, et al.
Combining carbon ion irradiation and non-homologous end-joining repair inhibitor NU7026 efficiently kills cancer cells.
Radiat Oncol. 2015; 10:225 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Our previous data demonstrated that targeting non-homologous end-joining repair (NHEJR) yields a higher radiosensitivity than targeting homologous recombination repair (HRR) to heavy ions using DNA repair gene knockouts (KO) in mouse embryonic fibroblast (MEF). In this study, we determined if combining the use of an NHEJR inhibitor with carbon (C) ion irradiation was more efficient in killing human cancer cells compared with only targeting a HRR inhibitor.
METHODS: The TP53-null human non-small cell lung cancer cell line H1299 was used for testing the radiosensitizing effect of NHEJR-related DNA-dependent protein kinase (DNA-PK) inhibitor NU7026, HRR-related Rad51 inhibitor B02, or both to C ion irradiation using colony forming assays. The mechanism underlying the inhibitor radiosensitization was determined by flow cytometry after H2AX phosphorylation staining. HRR-related Rad54-KO, NHEJR-related Lig4-KO, and wild-type TP53-KO MEF were also included to confirm the suppressing effect specificity of these inhibitors.
RESULTS: NU7026 showed significant sensitizing effect to C ion irradiation in a concentration-dependent manner. In contrast, B02 showed a slight sensitizing effect to C ion irradiation. The addition of NU7026 significantly increased H2AX phosphorylation after C ion and x-ray irradiations in H1299 cells, but not B02. NU7026 had no effect on radiosensitivity to Lig4-KO MEF and B02 had no effect on radiosensitivity to Rad54-KO MEF in both irradiations.
CONCLUSION: These results suggest that inhibitors targeting the NHEJR pathway could significantly enhance radiosensitivity of human cancer cells to C ion irradiation, rather than targeting the HRR pathway.

Valentijn LJ, Koster J, Zwijnenburg DA, et al.
TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors.
Nat Genet. 2015; 47(12):1411-4 [PubMed] Related Publications
Whole-genome sequencing detected structural rearrangements of TERT in 17 of 75 high-stage neuroblastomas, with five cases resulting from chromothripsis. Rearrangements were associated with increased TERT expression and targeted regions immediately up- and downstream of TERT, positioning a super-enhancer close to the breakpoints in seven cases. TERT rearrangements (23%), ATRX deletions (11%) and MYCN amplifications (37%) identify three almost non-overlapping groups of high-stage neuroblastoma, each associated with very poor prognosis.

Zhang H, Liu Y, Zhou K, et al.
Genetic variations in the homologous recombination repair pathway genes modify risk of glioma.
J Neurooncol. 2016; 126(1):11-7 [PubMed] Related Publications
Accumulative epidemiological evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in homologous recombination (HR) DNA repair pathway play an important role in glioma susceptibility. However, the effects of such SNPs on glioma risk remain unclear. We used a used a candidate pathway-based approach to elucidate the relationship between glioma risk and 12 putative functional SNPs in genes involved in the HR pathway. Genotyping was conducted on 771 histologically-confirmed glioma patients and 752 cancer-free controls from the Chinese Han population. Odds ratios (OR) were calculated both for each SNP individually and for grouped analyses, examining the effects of the numbers of adverse alleles on glioma risk, and evaluated their potential gene-gene interactions using the multifactor dimensionality reduction (MDR). In the single-locus analysis, two variants, the NBS1 rs1805794 (OR 1.42, 95% CI 1.15-1.76, P = 0.001), and RAD54L rs1048771 (OR 1.61, 95% CI 1.17-2.22, P = 0.002) were significantly associated with glioma risk. When we examined the joint effects of the risk-conferring alleles of these three SNPs, we found a significant trend indicating that the risk increases as the number of adverse alleles increase (P = 0.005). Moreover, the MDR analysis suggested a significant three-locus interaction model involving NBS1 rs1805794, MRE11 rs10831234, and ATM rs227062. These results suggested that these variants of the genes involved in the HR pathway may contribute to glioma susceptibility.

Siegal T
Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.
Adv Tech Stand Neurosurg. 2016; (43):91-108 [PubMed] Related Publications
Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ATRX, Cancer Genetics Web: http://www.cancer-genetics.org/ATRX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999