Gene Summary

Gene:PDGFRA; platelet derived growth factor receptor alpha
Aliases: CD140A, PDGFR2, PDGFR-2
Summary:This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. Studies suggest that this gene plays a role in organ development, wound healing, and tumor progression. Mutations in this gene have been associated with idiopathic hypereosinophilic syndrome, somatic and familial gastrointestinal stromal tumors, and a variety of other cancers. [provided by RefSeq, Mar 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:platelet-derived growth factor receptor alpha
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (65)
Pathways:What pathways are this gene/protein implicaed in?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (11)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Gastrointestinal CancersPDGFRA and Gastrointestinal Cancers View Publications435
Gastrointestinal Stromal TumorsPDGFRA and Gastrointestinal Stromal Tumors View Publications395
LeukaemiaFIP1L1-PDGFRA fusion in Leukemia
Fusions of the FIP1L1 and PDGFRA genes are reported in acute myeloid leukemia, T-cell lymphoblastic lymphoma, chronic eosinophilic leukemia - all with eosinophilia (Bain, 2010). Cools et al (2003) reported that many examples of what had previously been categorized as idiopathic hypereosinophilic syndrome were actually chronic eosinophilic leukemia - and that this condition with the FIP1L1-PDGFRA fusion is sensitive to treatments with tyrosine kinase inhibitors such as imatinib. Most FIP1L1-PDGFRA fusions are caused by a cryptic deletion: del(4)(q12), but occasionally by other rearrangements such as translocations t(1;4)(q44;q12)6 and t(4;10)(q12;p11).
View Publications72
LeukaemiaPDGFRA and Leukaemia View Publications58
Stomach CancerPDGFRA and Stomach Cancer View Publications49
Skin CancerPDGFRA and Skin Cancer View Publications9
-FIP1L1-PDGFRA Fusions in Myeloid Sarcoma
Myeloid sarcoma (aka granulocytic sarcoma) is a rare extramedullary tumor of immature granulocytic cells, usually accompanied by or following acute myeloid leukemia (Yilmaz et al, 2013). The fusion if the FIP1L1-PDGFRA genes is reported in some meyloid sarcomas.
View Publications7
Testicular CancerPDGFRA and Testicular Cancer View Publications7
Cervical CancerPDGFRA and Cervical Cancer View Publications4
Thyroid CancerPDGFRA and Thyroid Cancer View Publications5

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PDGFRA (cancer-related)

Appiah-Kubi K, Lan T, Wang Y, et al.
Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies.
Crit Rev Oncol Hematol. 2017; 109:20-34 [PubMed] Related Publications
PURPOSE: To investigate oncogenic platelet-derived growth factor receptor(PDGFR) fusion genes involvement in hematological malignancies, the advances in the PDGFR fusion genes diagnosis and development of PDGFR fusions inhibitors.
METHODS: Literature search was done using terms "PDGFR and Fusion" or "PDGFR and Myeloid neoplasm" or 'PDGFR and Lymphoid neoplasm' or "PDGFR Fusion Diagnosis" or "PDGFR Fusion Targets" in databases including PubMed, ASCO.org, and Medscape.
RESULTS: Out of the 36 fusions detected, ETV6(TEL)-PDGFRB and FIP1L1-PDGFRA fusions were frequently detected, 33 are as a result of chromosomal translocation, FIP1L1-PDGFRA and EBF1-PDGFRB are the result of chromosomal deletion and CDK5RAP2- PDGFRΑ is the result of chromosomal insertion. Seven of the 34 rare fusions have detectable reciprocals.
CONCLUSION: RNA aptamers are promising therapeutic target of PDGFRs and diagnostic tools of PDGFRs fusion genes. Also, PDGFRs have variable prospective therapeutic strategies including small molecules, RNA aptamers, and interference therapeutics as well as development of adaptor protein Lnk mimetic drugs.

Jasek K, Buzalkova V, Minarik G, et al.
Detection of mutations in the BRAF gene in patients with KIT and PDGFRA wild-type gastrointestinal stromal tumors.
Virchows Arch. 2017; 470(1):29-36 [PubMed] Related Publications
Gastrointestinal stromal tumors (GISTs) are characterized by mutations in exons 9, 11, 13, and 17 of KIT or exons 12, 14, and 18 of PDGFRA gene. However, approximately 10 to 15 % of GISTs lack the mutations in KIT and PDGFRA, and these are referred to as wild-type GISTs which are less sensitive to tyrosine-kinase inhibitors. The aim of this study was to detect BRAF mutations in patients with wild-type GISTs. We applied a sensitive allele-specific PCR, which was optimized using the V600E mutation-harboring cell line RKO, followed by verification of the results by dideoxy sequencing. We selected 149 GIST patients without detectable mutations in KIT and PDGFRA genes from the Slovak national GIST register and analyzed biopsy specimens for the presence of BRAF mutations in exon 15. We identified nine patients with the V600E mutation. The BRAF-driven GISTs were primary gastric (n = 3), small intestinal (n = 3), colon (n = 1), and of uncertain origin (n = 1). We also included a liver metastasis of a patient with a simultaneous KIT exon 11-mutated intra-abdominal metastasis. We conclude that genome analysis of wild-type GISTs for mutations should include the BRAF gene, as its mutation status contributes to understanding of pathogenesis and might be important for decisions on therapy.

Gümus M, Ozgur A, Tutar L, et al.
Design, Synthesis, and Evaluation of Heat Shock Protein 90 Inhibitors in Human Breast Cancer and Its Metastasis.
Curr Pharm Biotechnol. 2016; 17(14):1231-1245 [PubMed] Related Publications
BACKGROUND: Despite development of novel cancer drugs, invasive ductal breast carcinoma and its metastasis are still highly morbid. Therefore, new therapeutic approaches are being developed and Hsp90 is an important target for drug design. For this purpose, a series of benzodiazepine derivatives were designed and synthesized as novel Hsp90 inhibitor.
METHODS: Benzodiazepine derivatives anticancer activities were determined by XTT cell proliferation assay against human breast cancer cell line (MCF-7). Effects of the compounds on endothelial function were monitored on human vascular endothelium (HUVEC) cell line as well. In order to determine the anti-proliferative mechanism of the compounds, in silico molecular docking studies were performed between Hsp90 ATPase domain and the benzodiazepine derivatives. Further, these compounds perturbation on Hsp90 ATPase function were tested. Fluorescence binding experiments showed that the derivatives bind Hsp90 effectively. Expression analysis of known cancer drug target genes by PCR array experiments suggest that the benzodiazepine derivatives have remarkable anticancer activity.
RESULTS: A representative Benzodiazepine derivative D5 binds Hsp90 with Kd value of 3,93 μM and with estimated free energy of binding -7.99 (kcal/mol). The compound decreases Hsp90 ATPase function and inhibit Hsp90 client protein folding activity. The compound inhibits expression of both Hsp90 isoforms and key proteins (cell cycle receptors; PLK2 and TERT, kinases; PI3KC3 and PRKCE, and growth factors; IGF1, IGF2, KDR, and PDGFRA) on oncogenic pathways.
CONCLUSION: Benzodiazepine derivatives presented here display anticancer activity. The compounds effect on both breast cancer and endothelial cell lines show their potential as drug templates to inhibit breast cancer and its metastasis.

Liu J, Keisling MP, Samkari A, et al.
Malignant glioma with primitive neuroectodermal tumor-like component (MG-PNET): novel microarray findings in a pediatric patient.
Clin Neuropathol. 2016 Nov/Dec; 35(6):353-367 [PubMed] Related Publications
Central nervous system (CNS) tumors exhibiting dual features of malignant glioma (MG) and primitive neuroectodermal tumor (PNET) are rare and diagnostically challenging. Previous studies have shown that MG-PNET carry MYCN or MYC gene amplifications within the PNET component concomitant with glioma-associated alterations, most commonly 10q loss, in both components [9]. Here we confirm and extend the profile of molecular genetic findings in a MG-PNET involving the left frontal lobe of a 12-year-old male. Histologically, the PNET-like component showed morphological features akin to anaplastic medulloblastoma highlighted by widespread immunoreactivity for βIII-tubulin (TUBB3) and nonphosphorylated neurofilament protein, and to a lesser degree, Neu-N, synaptophysin, and CD99, whereas the gliomatous component was demarcated by glial fibrillary acidic protein (GFAP) labeling. Immunohistochemical labeling with an anti-H3K27M mutant-specific antibody was not detectable in either gliomatous and/or PNET-like areas. Interphase fluorescent in situ hybridization (FISH) study on touch preparations from frozen tumor and formaldehyde-fixed, paraffin-embedded histological sections showed amplification of MYC in both PNET-like and gliomatous areas. Single nucleotide polymorphism (SNP) microarray analysis revealed that the tumor carried gains of multiple chromosomes and chromosome arms, losses of multiple chromosomes and chromosome arms, gains of multiple chromosomal segments (not limited to amplification of chromosomal segments 4q12 including PDGFRA, and 8q24.21 including MYC), and a hitherto unreported chromothripsis-like abnormality on chromosome 8. No mutations were identified for IDH1, IDH2, or BRAF genes by sequence analysis. The molecular genetic findings support the presence of a CNS-PNET as an integral part of the tumor coupled with overlapping genetic alterations found in both adult and pediatric high-grade gliomas/glioblastoma. Collectively, microarray data point to a complex underpinning of genetic alterations associated with the MG-PNET tumor phenotype.

Lopez-Campistrous A, Adewuyi EE, Benesch MG, et al.
PDGFRα Regulates Follicular Cell Differentiation Driving Treatment Resistance and Disease Recurrence in Papillary Thyroid Cancer.
EBioMedicine. 2016; 12:86-97 [PubMed] Free Access to Full Article Related Publications
Dedifferentiation of follicular cells is a central event in resistance to radioactive iodine and patient mortality in papillary thyroid carcinoma (PTC). We reveal that platelet derived growth factor receptor alpha (PDGFRα) specifically drives dedifferentiation in PTC by disrupting the transcriptional activity of thyroid transcription factor-1 (TTF1). PDGFRα activation dephosphorylates TTF1 consequently shifting the localization of this transcription factor from the nucleus to the cytoplasm. TTF1 is required for follicular cell development and disrupting its function abrogates thyroglobulin production and sodium iodide transport. PDGFRα also promotes a more invasive and migratory cell phenotype with a dramatic increase in xenograft tumor formation. In patient tumors we confirm that nuclear TTF1 expression is inversely proportional to PDGFRα levels. Patients exhibiting PDGFRα at time of diagnosis are three times more likely to exhibit nodal metastases and are 18 times more likely to recur within 5years than those patients lacking PDGFRα expression. Moreover, high levels of PDGFRα and low levels of nuclear TTF1 predict resistance to radioactive iodine therapy. We demonstrate in SCID xenografts that focused PDGFRα blockade restores iodide transport and decreases tumor burden by >50%. Focused PDGFRα inhibitors, combined with radioactive iodine, represent an additional avenue for treating patients with aggressive variants of PTC.

Gu ML, Wang YM, Zhou XX, et al.
An inhibitor of the acetyltransferases CBP/p300 exerts antineoplastic effects on gastrointestinal stromal tumor cells.
Oncol Rep. 2016; 36(5):2763-2770 [PubMed] Related Publications
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasm featured by activated mutations of KIT and PDGFRA. Although overall survival rates have greatly improved by the development of receptor tyrosine kinase inhibitors, most patients ultimately acquire resistance due to secondary mutations of KIT or PDGFRA. Inhibition of the histone acetyltransferases (HATs) CREB‑binding protein (CBP) and p300 results in antineoplastic effects in various cancers. To determine whether CBP/p300 can serve as an antineoplastic target for GISTs, specific short interfering RNA sequences and the selective HAT inhibitor C646 were administered to GIST882 cells. Cell viability, apoptosis and the cell cycle were analysed using the Cell Counting Kit-8, a caspase-3/7 activity assay or Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and PI staining. Gene and protein expression levels were measured by quantitative real-time polymerase chain reaction and western blotting, respectively. Transcriptional blockage of CBP, rather than p300, resulted in suppression of cell proliferation. Interestingly, both CBP and p300 depletion enhanced caspase-3/7 activity. A lack of CBP and p300 caused ETS translocation variant 1 (ETV1) downregulation and KIT inhibition in GIST cells. Nevertheless, the absence of CBP, not p300, leads to extracellular signal-regulated kinase 1/2 inactivation and c-Jun NH2-terminal kinase activation, suggesting a more crucial role for CBP than p300 in cell proliferation and survival. Furthermore, proliferation of GIST cells was reduced by administration of C646, a selective HAT inhibitor for CBP/p300. Apoptosis induction and cell cycle arrest were detected after exposure to C646, indicating that its antitumor activities were supported by its antiproliferative and proapoptotic effects. Additionally, C646 treatment attenuated ETV1 protein expression and inactivated KIT-dependent pathways. Taken together, the present study suggests that CBP/p300 may serve as novel antineoplastic targets and that use of the selective HAT inhibitor C646 is a promising antitumor strategy for GISTs.

Zhang H, Gao B, Shi B
Identification of Differentially Expressed Kinase and Screening Potential Anticancer Drugs in Papillary Thyroid Carcinoma.
Dis Markers. 2016; 2016:2832980 [PubMed] Free Access to Full Article Related Publications
Aim. We aim to identify protein kinases involved in the pathophysiology of papillary thyroid carcinoma (PTC) in order to provide potential therapeutic targets for kinase inhibitors and unfold possible molecular mechanisms. Materials and Methods. The gene expression profile of GSE27155 was analyzed to identify differentially expressed genes and mapped onto human protein kinases database. Correlation of kinases with PTC was addressed by systematic literature search, GO and KEGG pathway analysis. Results. The functional enrichment analysis indicated that "mitogen-activated protein kinases pathway" expression was extremely enriched, followed by "neurotrophin signaling pathway," "focal adhesion," and "GnRH signaling pathway." MAPK, SRC, PDGFRa, ErbB, and EGFR were significantly regulated to correct these pathways. Kinases investigated by the literature on carcinoma were considered to be potential novel molecular therapeutic target in PTC and application of corresponding kinase inhibitors could be possible therapeutic tool. Conclusion. SRC, MAPK, and EGFR were the most important differentially expressed kinases in PTC. Combined inhibitors may have high efficacy in PTC treatment by targeting these kinases.

Rodriquenz MG, Rossi S, Ricci R, et al.
Gastrointestinal stromal tumors (GISTs) and second malignancies: A novel "sentinel tumor"? A monoinstitutional, STROBE-compliant observational analysis.
Medicine (Baltimore). 2016; 95(38):e4718 [PubMed] Free Access to Full Article Related Publications
Several evidences showed that patients with gastrointestinal stromal tumors (GISTs) develop additional malignancies. However, thorough incidence of second tumors remains uncertain as the possibility of a common molecular pathogenesis.A retrospective series of 128 patients with histologically proven GIST treated at our institution was evaluated. Molecular analysis of KIT and PDGFR-α genes was performed in all patients. Following the involvement of KRAS mutation in many tumors' pathogenesis, analysis of KRAS was performed in patients with also second neoplasms.Forty-six out of 128 GIST patients (35.9%) had a second neoplasm. Most second tumors (52%) raised from gastrointestinal tract and 19.6% from genitourinary tract. Benign neoplasms were also included (21.7%). Molecular analysis was available for 29/46 patients with a second tumor: wild-type GISTs (n. 5), exon 11 (n. 16), exon 13 (n. 1), exon 9 (n. 1) KIT mutations, exon 14 PDGFR-α mutation (n. 2) and exon 18 PDGFR-α mutation (n. 4). KIT exon 11 mutations were more frequent between patients who developed a second tumor (P = 0.0003). Mutational analysis of KRAS showed a wild-type sequence in all cases. In metachronous cases, the median time interval between GIST and second tumor was 21.5 months.The high frequency of second tumors suggests that an unknown common molecular mechanism might play a role, but it is not likely that KRAS is involved in this common pathogenesis. The short interval between GIST diagnosis and the onset of second neoplasms asks for a careful follow-up, particularly in the first 3 years after diagnosis.

Szucs Z, Thway K, Fisher C, et al.
Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications.
Future Oncol. 2017; 13(1):93-107 [PubMed] Related Publications
Gastrointestinal stromal tumors (GISTs) are composed of various molecular subtypes, with differing prognostic and predictive relevance. Previously, tumors lacking mutations in the KIT and PDGFRA genes have been designated as 'wild-type' GISTs; however, they represent a heterogeneous group currently undergoing further subclassification. Primary and secondary resistance to imatinib poses a significant clinical challenge, therefore ongoing research is trying to evaluate mechanisms to overcome resistance. Thorough understanding of the prognostic and predictive relevance of different genetic subtypes of GIST can guide clinical decision-making both in the adjuvant and the metastatic setting. Further work is required to identify tailored therapies for specific subgroups of GISTs wild-type for KIT and PDGFRA mutations and to identify predictive factors of resistance to currently approved systemic therapies.

Yan W, Zhang A, Powell MJ
Genetic alteration and mutation profiling of circulating cell-free tumor DNA (cfDNA) for diagnosis and targeted therapy of gastrointestinal stromal tumors.
Chin J Cancer. 2016; 35(1):68 [PubMed] Free Access to Full Article Related Publications
Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identification of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the efficacy of cancer therapy by matching targeted drugs to specific mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by the KIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target amplification technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived "driver" and "drug-resistant" alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called "liquid biopsy" allows for the dynamic monitoring of the patients' tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR amplification of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

Aras Y, Erguven M, Aktas E, et al.
Antagonist activity of the antipsychotic drug lithium chloride and the antileukemic drug imatinib mesylate during glioblastoma treatment in vitro.
Neurol Res. 2016; 38(9):766-74 [PubMed] Related Publications
OBJECTIVES: Glioblastoma (GBM), the most common primary tumour of the central nervous system, is characterised by a high malignancy and poor prognosis. The aims of this study were to investigate whether the combination of imatinib mesylate (IM) and lithium chloride (LiCl) exhibited a synergistic effect in treatment and to determine whether midkine (MK) affected the fate of this treatment in vitro.
METHODS: Monolayer and spheroid cultures of the T98G human GBM cell line were treated with an IM and LiCl combination for 72 h. The cell proliferation index, apoptotic index, cell cycle distribution, apoptotic and anti-apoptotic protein levels, and cAMP level as well as the cellular morphology and ultrastructure were evaluated.
RESULTS: All applications inhibited cell proliferation and induced apoptosis. The most substantial decreases in cell proliferation and the caspase-3, epidermal growth factor receptor (EGFR), platelet derived growth factor receptor-alpha (PDGFR-α), multidrug resistance protein-1 (MRP-1), aquaporin-4 (AQP-4) and cAMP levels were induced by the LiCl treatment, which exhibited more pronounced effects compared with the combination treatment. LiCl was less effective in decreasing the MK and B cell lymphoma-2 (Bcl-2) levels compared with the combination treatment. The most substantial decrease in the p170 levels was identified following the combination treatment, whereas IM induced the second greatest decrease. LiCl alone had no effect on the p170 levels. IM induced the most substantial decrease in the phospho-glycogen synthase kinase 3-beta (p-GSK-3β)/glycogen synthase kinase 3-beta (GSK-3β) ratio, and LiCl induced the second most substantial decrease. Both LiCl and the combination treatment induced G2 + M arrest, whereas IM induced G0 + G1 arrest after 72 h of exposure. An apoptotic appearance and autophagic vacuoles were commonly identified in the LiCl, combination and IM groups, respectively.
CONCLUSIONS: The combination of IM and LiCl exhibited an antagonist effect, and MK had a role at this antagonism.

Chetty R, Serra S
Molecular and morphological correlation in gastrointestinal stromal tumours (GISTs): an update and primer.
J Clin Pathol. 2016; 69(9):754-60 [PubMed] Related Publications
Gastrointestinal stromal tumours (GISTs) are a commonly encountered tumour in routine practice. In the main, the morphology of spindle, epithelioid or mixed are well recognised along with mutations of c-kit However, there are other genes that are mutated resulting in characteristic clinicopathological correlations. GISTs harbouring platelet-derived growth factor receptor α (PDGFRα) gene mutations lead to a typical morphological constellation of findings: gastric and omental location, gross tumour that is cystic and haemorrhagic, composed of epithelioid, plasmacytoid cells exhibiting pleomorphism, low mitotic count and containing characteristic giant cells with peripherally placed nuclei. These cells are set in a myxoid stroma containing several mast cells. In addition, perivascular/intratumoural hyalinisation is often seen. These tumours are CD117 and DOG-1 positive. GISTs with SDH mutations are multinodular/bilobed/dumb-bell shape tumour masses with mucosal ulceration and histologically characterised by fibrous bands around and within nodules of epithelioid or mixed epithelioid/spindle cells. Lymphovascular invasion with lymph node metastases are usual. Immunohistochemically, the GISTs are CD117, DOG-1 positive, SDHA negative (if SDHA mutated), SDHA positive (if SDHA intact) and SDHB negative. BRAF and NF-1 mutated GISTs do not have any characteristic morphological features.

Baskin Y, Kocal GC, Kucukzeybek BB, et al.
PDGFRA and KIT Mutation Status and Its Association With Clinicopathological Properties, Including DOG1.
Oncol Res. 2016; 24(1):41-53 [PubMed] Related Publications
Most of the gastrointestinal stromal tumors (GISTs) have gain-of-function mutations in the KIT gene, which can be used as a prognostic marker for the biological behavior of tumors, predictive marker for the response of tyrosine kinase inhibitors, and diagnostic marker. Researchers have focused on PDGFRA mutations because of both their prognostic and predictive potential and DOG1 positivity for diagnosis on GISTs. The aim of this study is to investigate the effect DOG1, PDGFRA, and KIT mutations on the prediction of the outcome for GIST management. Polymerase chain reaction was performed for KIT gene exons 9, 11, 13, and 17 and PDGFRA gene exons 12 and 18 with the genomic DNA of 46 GIST patients, and amplicons were sequenced in both directions. Immunocytochemical stainings were done by using primary antibodies. Molecular analysis revealed that the KIT mutation was observed in 63% of all cases, while the PDGFRA mutation was observed in 23.9% of cases. Significant relationships were found between age and KIT mutation, tumor location and KIT mutations, and tumor location and PDGFRA mutations (p ≤ 0.05). DOG1 positivity was detected in 65.2% of all GISTs and DOG1-positive cells had a higher KIT mutation ratio than DOG1-negative cells (p ≤ 0.05). KIT gene exon 11 mutations in DOG1-positive cells was higher than DOG1-negative cells (p ≤ 0.05). Conversely, KIT gene exon 13 mutations were higher in DOG1-negative cells than DOG1-positive cells (p ≤ 0.05). In this study, KIT mutation frequency was found similar with the European population; conversely, PDGFRA mutation frequency was similar with an Asian-Chinese-based study. KIT/PDGFRA mutations and tumor location can be used for the prediction of tumor behavior and the management of disease in GISTs. DOG1 positivity might be a candidate marker to support KIT and PDGFRA mutations, due to the higher DOG1 positivity in KIT exon 11 mutant and stomach- and small intestine-localized GISTs.

Blake SM, Stricker SH, Halavach H, et al.
Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation.
Elife. 2016; 5 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors.

Fassan M, Salmaso R, Saraggi D, et al.
Plexiform fibromyxoma of the gallbladder.
Pathologica. 2015 Sep-Dec; 107(3-4):181-4 [PubMed] Related Publications
We report the unusual case of a plexiform fibromyxoma, occasionally assessed in a lithiasic gallbladder. The full thickness assessment of the gallbladder wall revealed an intra-mural, well demarked multi-nodular tumor (1 cm), consisting of a plexiform growth of spindle cells, included within a fibromyxoid stroma with a rich micro-vascular network. The tumor cells featured no nuclear atypia, nor mitotic activity. At the immunohistochemical profiling, the spindle shaped cells unequivocally featured vimentin, SMA, HHF35, collagen IV, and CD34; no cells expressed CD117, PDGFRA, CD10, desmin, GFAP, EMA, and S-100. Faint STAT6 nuclear expression was observed in isolated tumor cells. The molecular profiling did not revealed any CKIT and PDGFRA genes mutations. The uncommon site of the tumor presentation and its aberrant CD34 expression both confer to the reported case a unique place among the myxoid tumors of the gastrointestinal tract.

Shi X, Wu H, Lu J, et al.
Screening for major driver oncogene alterations in adenosquamous lung carcinoma using PCR coupled with next-generation and Sanger sequencing methods.
Sci Rep. 2016; 6:22297 [PubMed] Free Access to Full Article Related Publications
We investigated the frequency of major driver oncogenes in lung adenosquamous cell carcinoma (ASC) cases. Frequency of EGFR, K-Ras, B-Raf, PIK3CA, DDR2, ALK, and PDGFRA gene mutations was examined in 56 patients using next-generation sequencing, polymerase chain reaction, and Sanger sequencing. Macrodissection or microdissection was performed in 37 cases to separate the adenomatous and squamous components of ASC. The overall mutation rate was 64.29%, including 55.36%, 7.14%, and 1.79% for EGFR, K-Ras, and B-Raf mutations, respectively. PIK3CA mutation was detected in three cases; all involved coexisting EGFR mutations. Of the 37 cases, 34 were convergent in two components, while three showed EGFR mutations in the glandular components and three showed PIK3CA mutations in the squamous components. With respect to EGFR mutations, the number of young female patients, nonsmokers, and those with positive pleural invasion was higher in the mutation-positive group than that in the mutation-negative. K-Ras mutation was significantly associated with smoking. Overall survival in the different EGFR mutation groups differed significantly. The frequency and clinicopathological characteristics of EGFR- and K-Ras-mutated adenosquamous lung carcinoma were similar to that noted in Asian adenocarcinomas patients. The high convergence mutation rate in both adenomatous and squamous components suggests monoclonality in ASC.

Ghigna MR, Dorfmuller P, Crutu A, et al.
Bronchial Paraganglioma with SDHB Deficiency.
Endocr Pathol. 2016; 27(4):332-337 [PubMed] Related Publications
Though most paragangliomas arise as sporadic tumors, the recent advantages in the genetic screening revealed that about 30 % of paragangliomas are linked to hereditary mutations, such as those involving SDH genes. A 22-year-old woman carrying a left main bronchus tumor underwent surgery in our institution. Her past medical history included a GIST without KIT or PDGFRA mutation. The histological examination revealed a nested proliferation of medium-sized cells expressing neuroendocrine markers (chromogranin A and synaptophysin). The neoplastic cells failed to express SDHB gene product. These findings led us to the final diagnosis of bronchial paraganglioma in the setting of Carney-Stratakis syndrome. Bronchial paragangliomas are exceedingly rare tumors with polymorphous clinical presentation, and usually benign clinical course. Though most paragangliomas are sporadic, some tumors are associated with specific hereditary disease, especially those occurring in young patients or in combination with other neoplasms.

Benevolenskaya EV, Islam AB, Ahsan H, et al.
DNA methylation and hormone receptor status in breast cancer.
Clin Epigenetics. 2016; 8:17 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA).
RESULTS: DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity.
CONCLUSIONS: Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when evaluated on independent set of samples, with different racioethnic distribution, thus providing evidence that this set of DNA methylation biomarkers will likely generalize to prospective patient samples.

Reyes-Gibby CC, Wang J, Silvas MR, et al.
MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients.
BMC Genet. 2016; 17:40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Genetic susceptibility plays an important role in the risk of developing pain in individuals with cancer. As a complex trait, multiple genes underlie this susceptibility. We used gene network analyses to identify novel target genes associated with pain in patients newly diagnosed with squamous cell carcinoma of the head and neck (HNSCC).
RESULTS: We first identified 36 cancer pain-related genes (i.e., focus genes) from 36 publications based on a literature search. The Ingenuity Pathway Analysis (IPA) analysis identified additional genes that are functionally related to the 36 focus genes through pathway relationships yielding a total of 82 genes. Subsequently, 800 SNPs within the 82 IPA-selected genes on the Illumina HumanOmniExpress-12v1 platform were selected from a large-scale genotyping effort. Association analyses between the 800 candidate SNPs (covering 82 genes) and pain in a patient cohort of 1368 patients with HNSCC (206 patients with severe pain vs. 1162 with non-severe pain) showed the highest significance for MAPK1/ERK2, a gene belonging to the MAP kinase family (rs8136867, p value = 8.92 × 10(-4); odds ratio [OR] = 1.33, 95 % confidence interval [CI]: 1.13-1.58). Other top genes were PIK3C2G (a member of PI3K [complex], rs10770367, p value = 1.10 × 10(-3); OR = 1.46, 95 % CI: 1.16-1.82), TCRA (the alpha chain of T-cell receptor, rs6572493, p value = 2.84 × 10(-3); OR = 0.70, 95 % CI: 0.55-0.88), PDGFC (platelet-derived growth factor C, rs6845322, p value = 4.88 × 10(-3); OR = 1.32, 95 % CI: 1.09-1.60), and CD247 (a member of CD3, rs2995082, p value = 7.79 × 10(-3); OR = 0.76, 95 % CI: 0.62-0.93).
CONCLUSIONS: Our findings provide novel candidate genes and biological pathways underlying pain in cancer patients. Further study of the variations of these candidate genes could inform clinical decision making when treating cancer pain.

Rizzo FM, Palmirotta R, Marzullo A, et al.
Parallelism of DOG1 expression with recurrence risk in gastrointestinal stromal tumors bearing KIT or PDGFRA mutations.
BMC Cancer. 2016; 16:87 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are characterized by mutations of KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) or PDGFRA (platelet-derived growth factor receptor α) that may be efficiently targeted by tyrosine kinase inhibitors (TKI). Notwithstanding the early responsiveness to TKI, the majority of GISTs progress, imposing the need for alternative therapeutic strategies. DOG1 (discovered on GIST-1) shows a higher sensitivity as a diagnostic marker than KIT, however its prognostic role has been little investigated.
METHODS: We evaluated DOG1 expression by immunohistochemistry (IHC) in 59 patients with GISTs, and correlated its levels with clinical and pathological features as well as mutational status. Kaplan-Meier analysis was also applied to assess correlations of the staining score with patient recurrence-free survival (RFS).
RESULTS: DOG1 was expressed in 66% of CD117(+) GISTs and highly associated with tumor size and the rate of wild-type tumors. Kaplan-Meier survival analysis showed that a strong DOG1 expression demonstrated by IHC correlated with a worse 2-year RFS rate, suggesting its potential ability to predict GISTs with poor prognosis.
CONCLUSIONS: These findings suggest a prognostic role for DOG1, as well as its potential for inclusion in the criteria for risk stratification.

Zadeh G, Aldape K
Bringing IDH into the Fold.
Cancer Cell. 2016; 29(2):139-40 [PubMed] Related Publications
Glioma-associated mutations in IDH1 or IDH2 lead to aberrant DNA methylation. A recent paper shows that loss of methylation-sensitive CTCF binding in IDH mutant cells leads to disruption of enhancer boundary function, which results in aberrant activation of PDGFRA expression via an enhancer associated with an adjacent gene.

Sepulveda JL, Gutierrez-Pajares JL, Luna A, et al.
High-definition CpG methylation of novel genes in gastric carcinogenesis identified by next-generation sequencing.
Mod Pathol. 2016; 29(2):182-93 [PubMed] Related Publications
Gastric cancers are the most frequent gastric malignancy and usually arise in the sequence of Helicobacter pylori-associated chronic gastritis. CpG methylation is a central mechanism of epigenetic gene regulation affecting cancer-related genes, and occurs early in gastric carcinogenesis. DNA samples from non-metaplastic gastric mucosa with variable levels of gastritis (non-metaplastic mucosa), intestinal metaplasia, or gastric cancer were screened with methylation arrays for CpG methylation of cancer-related genes and 30 gene targets were further characterized by high-definition bisulfite next-generation sequencing. In addition, data from The Cancer Genome Atlas were analyzed for correlation of methylation with gene expression. Overall, 13 genes had significantly increased CpG methylation in gastric cancer vs non-metaplastic mucosa (BRINP1, CDH11, CHFR, EPHA5, EPHA7, FGF2, FLI1, GALR1, HS3ST2, PDGFRA, SEZ6L, SGCE, and SNRPN). Further, most of these genes had corresponding reduced expression levels in gastric cancer compared with intestinal metaplasia, including novel hypermethylated genes in gastric cancer (FLI1, GALR1, SGCE, and SNRPN), suggesting that they may regulate neoplastic transformation from non-malignant intestinal metaplasia to cancer. Our data suggest a tumor-suppressor role for FLI1 in gastric cancer, consistent with recently reported data in breast cancer. For the genes with strongest methylation/expression correlation, namely FLI1, the expression was lowest in microsatellite-unstable tumors compared with other gastric cancer molecular subtypes. Importantly, reduced expression of hypermethylated BRINP1 and SGCE was significantly associated with favorable survival in gastric cancer. In summary, we report novel methylation gene targets that may have functional roles in discrete stages of gastric carcinogenesis and may serve as biomarkers for diagnosis and prognosis of gastric cancer.

Hinrichs BH, Newman S, Appin CL, et al.
Farewell to GBM-O: Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups.
Acta Neuropathol Commun. 2016; 4:4 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Glioblastoma with oligodendroglioma component (GBM-O) was recognized as a histologic pattern of glioblastoma (GBM) by the World Health Organization (WHO) in 2007 and is distinguished by the presence of oligodendroglioma-like differentiation. To better understand the genetic underpinnings of this morphologic entity, we performed a genome-wide, integrated copy number, mutational and transcriptomic analysis of eight (seven primary, primary secondary) cases.
RESULTS: Three GBM-O samples had IDH1 (p.R132H) mutations; two of these also demonstrated 1p/19q co-deletion and had a proneural transcriptional profile, a molecular signature characteristic of oligodendroglioma. The additional IDH1 mutant tumor lacked 1p/19q co-deletion, harbored a TP53 mutation, and overall, demonstrated features most consistent with IDH mutant (secondary) GBM. Finally, five tumors were IDH wild-type (IDHwt) and had chromosome seven gains, chromosome 10 losses, and homozygous 9p deletions (CDKN2A), alterations typical of IDHwt (primary) GBM. IDHwt GBM-Os also demonstrated EGFR and PDGFRA amplifications, which correlated with classical and proneural expression subtypes, respectively.
CONCLUSIONS: Our findings demonstrate that GBM-O is composed of three discrete molecular subgroups with characteristic mutations, copy number alterations and gene expression patterns. Despite displaying areas that morphologically resemble oligodendroglioma, the current results indicate that morphologically defined GBM-O does not correspond to a particular genetic signature, but rather represents a collection of genetically dissimilar entities. Ancillary testing, especially for IDH and 1p/19q, should be used for determining these molecular subtypes.

Hoffman LM, DeWire M, Ryall S, et al.
Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics.
Acta Neuropathol Commun. 2016; 4:1 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization.
RESULTS: Median age at diagnosis was 6.1 years (range: 2.9-23.3 years). Median overall survival was 13.2 months (range: 11.2-32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved.
CONCLUSION: Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy.

Sun X, Zou Y, Hao Y, et al.
Pathological analysis of collision (double primary) cancer in the upper digestive tract concomitant with gastric stromal tumor: a case report.
Int J Clin Exp Pathol. 2015; 8(10):13523-7 [PubMed] Free Access to Full Article Related Publications
Carcinoma of the esophagus and cardiac cancer are common malignancies, while multiple primary cancers in the esophagus and cardia is rarely encountered and easily misdiagnosed. Multiple primary cancers mean the same organs (tissues) or different organs (tissues) have two or more than two primary malignant tumors at the same time or in sequence in the same individual. The case below of two independent primary lesions is double primary carcinoma which meets the diagnosis standard of multiple primary cancers. Gastrointestinal stromal tumor is the most common stromal tumor, which is usually considered as originating from Cajal cells in the gastrointestinal tract or mesenchymal stem cells with the mutation of KIT or PDGFRA gene. Study on stromal tumor with digestive tract cancer is less both at home and abroad, while double primary carcinoma with stromal tumor is rare, which has not been reported at present. Although scholars have different viewpoints on the prognosis, but the full understanding of this disease can be as a warning for the future work and to avoid misdiagnosis.

Vazquez Vde L, Vicente AL, Carloni A, et al.
Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas.
Melanoma Res. 2016; 26(2):93-9 [PubMed] Related Publications
Acral lentiginous melanoma (ALM) is the less common subtype with singular characterization. TERT (human telomerase reverse transcriptase) promoter mutations have being described as recurrent in melanomas and infrequent in ALM, but their real incidence and clinical relevance is unclear. The objectives of this study were to describe the prevalence of TERT promoter mutations in ALM, and correlate with the molecular profile of other drive genes and clinical features. Sixty-one samples from 48 patients with ALM were analyzed. After DNA isolation, the mutation profiles of the hotspot region of BRAF, NRAS, KIT, PDGFRA, and TERT genes were determined by PCR amplification followed by direct Sanger sequencing. KIT, PDGFRA, and VEGFR2 gene amplification was performed by quantitative PCR. Clinical information such as survival, clinical stage, and Breslow tumor classification were obtained from medical records. TERT promoter mutations were found in 9.3% of the cases, BRAF in 10.3%, NRAS in 7.5%, KIT in 20.7%, and PDGFRA in 14.8% of ALM. None of the cases showed KIT, PDGFRA, or VEGFR2 gene amplification. We found an association between KIT mutations and advanced Clark level (IV and V, P=0.043) and TERT promoter mutations with low mitotic index. No other significant associations were observed between mutation profile and patients' clinical features nor survival rates. Oncogenic TERT promoter mutations are present in a fraction of ALMs. No relevant associations were found between TERT mutation status and clinical/molecular features nor survival. Mutations of KIT and PDGFRA are the most common genetic alterations, and they can be therapeutic targets for these patients.

Flavahan WA, Drier Y, Liau BB, et al.
Insulator dysfunction and oncogene activation in IDH mutant gliomas.
Nature. 2016; 529(7584):110-4 [PubMed] Free Access to Full Article Related Publications
Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.

Patrikidou A, Domont J, Chabaud S, et al.
Long-term outcome of molecular subgroups of GIST patients treated with standard-dose imatinib in the BFR14 trial of the French Sarcoma Group.
Eur J Cancer. 2016; 52:173-80 [PubMed] Related Publications
BACKGROUND: The added value of tumoural genomic profiles to conventional clinico-biological factors to predict progression-free survival (PFS) and overall survival (OS) was prospectively investigated in patients with advanced gastrointestinal stromal tumours (GIST) treated in the BFR14 study.
METHODS: Of the 434 included patients, mutational analysis was performed in 322 patients. Survival analysis was performed in patients with validated mutational status.
RESULTS: Mutational status was validated in 228 patients. We identified 196 patients with tumours harbouring 200 KIT alterations (exon 11: 173 patients, exon 9: 22 patients, exon 17: 3 patients, exon 13: 2 patients; 4 patients had double KIT mutations), 6 patients with PDGFRA mutations and 26 patients with wild-type (WT) GIST genotype. On a median follow-up of 73 months, median PFS/OS were 12.3/54.9 months for WT GIST, 12.6/55 months for KIT exon 9, and 39.4 months/not reached (69.1% at 5 years) for KIT exon 11. Tumour size, female gender, KIT exon 11 mutations and CD34 positivity were independent prognostic factors for a higher PFS. A higher OS was predicted by performance status (PS) <2, low neutrophil and normal lymphocyte counts, KIT exon 11 mutations, non-advanced tumour and female gender. KIT exon 11 mutations at codons 557-558 showed better tumour response (p=0.028) but shorter PFS (p=0.0176).
CONCLUSIONS: In GIST patients, presence of a KIT exon 11 mutation is an independent prognostic factor for PFS and OS, along with gender, PS, tumour size, lymphocyte and neutrophil counts. Subsets of exon 11 mutations are associated with significantly different response patterns and PFS.

Swalchick W, Shamekh R, Bui MM
Is DOG1 Immunoreactivity Specific to Gastrointestinal Stromal Tumor?
Cancer Control. 2015; 22(4):498-504 [PubMed] Related Publications
BACKGROUND: DOG1 is a novel gene on gastrointestinal stromal tumors (GISTs) that encodes the chloride channel protein anoctamin 1, also known as discovered on GIST-1 (DOG1) protein. DOG1 antibodies are a sensitive and specific marker against GIST positive for CD117 and CD34 and negative for CD117 and CD34. DOG1 is also independent of KIT or PDGFRA mutation status and considered specific for GIST when it was first discovered in 2004.
METHODS: The previous 10 years of literature was searched for articles relating to DOG1. We critically reviewed 12 studies that showed DOG1 was positive in 250 cases of 2,360 tested non-GIST neoplasms (10.6%) at different anatomical sites using monoclonal, polyclonal, or nonspecified antibodies. Criteria for positivity varied between the studies.
RESULTS: Monoclonal and polyclonal DOG1 antibodies were reactive in various different non-GIST tumor types spanning 9 organ systems in addition to normal salivary and pancreatic tissues. The tumors included were renal oncocytoma (100%), renal cell carcinoma chromophobe type (86%), solid pseudopapillary neoplasm of the pancreas (51%), neoplastic salivary tissue (17%), synovial sarcoma (15%), leiomyoma (10%), pancreatic adenocarcinoma (7%), and leiomyosarcoma (4%).
CONCLUSIONS: By contrast to the original concept that DOG1 antibodies are specific to GIST neoplasms, the studies reviewed showed that the data suggest DOG1 positivity in select non-GIST tumors. Only in the appropriate clinical and pathological context is DOG1 positivity specific and helpful in the diagnosis of GIST.

Akçakaya P, Lui WO
MicroRNAs and Gastrointestinal Stromal Tumor.
Adv Exp Med Biol. 2015; 889:51-70 [PubMed] Related Publications
Gastrointestinal stromal tumor (GIST) is the most commonly diagnosed mesenchymal tumor in the gastrointestinal tract. This tumor type is driven by gain-of-function mutations in receptor tyrosine kinases (such as KIT, PDGFRA, and BRAF) or loss-of-function mutations in succinate dehydrogenase complex subunit genes (SDHx). Molecular studies on GIST have improved our understanding of the biology of the disease and have led to the use of targeted therapy approach, such as imatinib for KIT/PDGFRA-mutated GIST. Recently, microRNAs have emerged as important regulators of KIT expression, cancer cell behavior, and imatinib response in GIST. This chapter aims to provide an overview on current understanding of the biological roles of microRNAs in GIST and possible implications in prognosis and therapeutic response.

Further References

Cools J, DeAngelo DJ, Gotlib J, et al.
A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome.
N Engl J Med. 2003; 348(13):1201-14 [PubMed] Related Publications
BACKGROUND: Idiopathic hypereosinophilic syndrome involves a prolonged state of eosinophilia associated with organ dysfunction. It is of unknown cause. Recent reports of responses to imatinib in patients with the syndrome suggested that an activated kinase such as ABL, platelet-derived growth factor receptor (PDGFR), or KIT, all of which are inhibited by imatinib, might be the cause.
METHODS: We treated 11 patients with the hypereosinophilic syndrome with imatinib and identified the molecular basis for the response.
RESULTS: Nine of the 11 patients treated with imatinib had responses lasting more than three months in which the eosinophil count returned to normal. One such patient had a complex chromosomal abnormality, leading to the identification of a fusion of the Fip1-like 1 (FIP1L1) gene to the PDGFRalpha (PDGFRA) gene generated by an interstitial deletion on chromosome 4q12. FIP1L1-PDGFRalpha is a constitutively activated tyrosine kinase that transforms hematopoietic cells and is inhibited by imatinib (50 percent inhibitory concentration, 3.2 nM). The FIP1L1-PDGFRA fusion gene was subsequently detected in 9 of 16 patients with the syndrome and in 5 of the 9 patients with responses to imatinib that lasted more than three months. Relapse in one patient correlated with the appearance of a T674I mutation in PDGFRA that confers resistance to imatinib.
CONCLUSIONS: The hypereosinophilic syndrome may result from a novel fusion tyrosine kinase - FIP1L1-PDGFRalpha - that is a consequence of an interstitial chromosomal deletion. The acquisition of a T674I resistance mutation at the time of relapse demonstrates that FIP1L1-PDGFRalpha is the target of imatinib. Our data indicate that the deletion of genetic material may result in gain-of-function fusion proteins.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PDGFRA, Cancer Genetics Web: http://www.cancer-genetics.org/PDGFRA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999