Gene Summary

Gene:AKT2; AKT serine/threonine kinase 2
Summary:This gene is a putative oncogene encoding a protein belonging to a subfamily of serine/threonine kinases containing SH2-like (Src homology 2-like) domains. The gene was shown to be amplified and overexpressed in 2 of 8 ovarian carcinoma cell lines and 2 of 15 primary ovarian tumors. Overexpression contributes to the malignant phenotype of a subset of human ductal pancreatic cancers. The encoded protein is a general protein kinase capable of phophorylating several known proteins. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:RAC-beta serine/threonine-protein kinase
Source:NCBIAccessed: 30 August, 2019


What does this gene/protein do?
Show (49)
Pathways:What pathways are this gene/protein implicaed in?
Show (14)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AKT2 (cancer-related)

Afshar E, Hashemi-Arabi M, Salami S, et al.
Screening of acetaminophen-induced alterations in epithelial-to-mesenchymal transition-related expression of microRNAs in a model of stem-like triple-negative breast cancer cells: The possible functional impacts.
Gene. 2019; 702:46-55 [PubMed] Related Publications
Current protocols for therapy inefficiently targets triple negative breast cancer and barely eradicate cancer stem cells. Elucidation of the pleiotropic effect of clinically proven therapeutics on cancer cells shed light on novel application of old friends. The pleiotropic effect of acetaminophen (APAP) on breast cancer was previously reported. In a cell model of triple negative breast cancer with stem-like CD44

Li J, Feng D, Gao C, et al.
Isoforms S and L of MRPL33 from alternative splicing have isoform‑specific roles in the chemoresponse to epirubicin in gastric cancer cells via the PI3K/AKT signaling pathway.
Int J Oncol. 2019; 54(5):1591-1600 [PubMed] Free Access to Full Article Related Publications
Drug resistance is a major cause of cancer‑associated mortality. Epirubicin‑based chemotherapy initially benefits patients with metastatic or advanced gastric cancer; however, tumor recurrence can occur following several courses of treatment. Mitochondrial ribosomal protein L33 (MRPL33)‑long (L) and MRPL33‑short (S), isoforms of MRPL33 that arise from AS, have been reported to regulate cell growth and apoptosis in cancer; however, few studies have evaluated the roles of MRPL33‑L and MRPL33‑S in gastric cancer. In the present study, MRPL33‑L was demonstrated to be significantly more abundant in gastric tumor tissues than the MRPL33‑S isoform. MRPL33‑S promoted chemosensitivity to epirubicin in gastric cancer as demonstrated by a chemoresponse assay; chemosensitivity was suppressed in response to MRPL33‑L. Gene microarray analysis was performed to investigate the underlying mechanisms. Bioinformatic analysis revealed that overexpression of MRPL33‑L and MRPL33‑S served critical roles in transcription, signal transduction and apoptosis. In particular, the phosphoinositide 3‑kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway was markedly regulated. A total of 36 target genes, including PIK3 regulatory subunit α, AKT2, cAMP response element‑binding protein (CREB) 1, forkhead box 3, glycogen synthase kinase 3β and mammalian target of rapamycin, which are involved in the PI3K/AKT signaling pathway, were selected for further investigation via protein‑protein interaction network and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, western blot analysis indicated that MRPL33‑S promoted the chemoresponse to epirubicin by deactivating PI3K/AKT/CREB signaling and inducing apoptosis, while MRPL33‑L had the opposite effects. In conclusion, the results of the present study revealed that isoforms S and L of MRPL33, which arise from alternative splicing, exhibited opposing roles in the chemoresponse to epirubicin in gastric cancer via the PI3K/AKT signaling pathway. These findings may contribute to the development of potential therapeutic strategies for the resensitization of patients with gastric cancer to epirubicin treatment.

Liang Y, Zhang C, Ma MH, Dai DQ
Identification and prediction of novel non-coding and coding RNA-associated competing endogenous RNA networks in colorectal cancer.
World J Gastroenterol. 2018; 24(46):5259-5270 [PubMed] Free Access to Full Article Related Publications
AIM: To identify and predict the competing endogenous RNA (ceRNA) networks in colorectal cancer (CRC) by bioinformatics analysis.
METHODS: In the present study, we obtained CRC tissue and normal tissue gene expression profiles from The Cancer Genome Atlas project. Differentially expressed (DE) genes (DEGs) were identified. Then, upregulated and downregulated miRNA-centered ceRNA networks were constructed by analyzing the DEGs using multiple bioinformatics approaches. DEmRNAs in the ceRNA networks were identified in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using KEGG Orthology Based Annotation System 3.0. The interactions between proteins were analyzed using the STRING database. Kaplan-Meier survival analysis was conducted for DEGs and real time quantitative polymerase chain reaction (RT-qPCR) was also performed to validate the prognosis-associated lncRNAs in CRC cell lines.
RESULTS: Eighty-one DElncRNAs, 20 DEmiRNAs, and 54 DEmRNAs were identified to construct the ceRNA networks of CRC. The KEGG pathway analysis indicated that nine out of top ten pathways were related with cancer and the most significant pathway was "colorectal cancer". Kaplan-Meier survival analysis showed that the overall survival was positively associated with five DEGs (IGF2-AS, POU6F2-AS2, hsa-miR-32, hsa-miR-141, and SERPINE1) and it was negatively related to three DEGs (LINC00488, hsa-miR-375, and PHLPP2). Based on the STRING protein database, it was found that SERPINE1 and PHLPP2 interact with AKT1. Besides, SERPINE1 can interact with VEGFA, VTN, TGFB1, PLAU, PLAUR, PLG, and PLAT. PHLPP2 can interact with AKT2 and AKT3. RT-qPCR revealed that the expression of IGF2-AS, POU6F2-AS2, and LINC00488 in CRC cell lines was consistent with the
CONCLUSION: CeRNA networks play an important role in CRC. Multiple DEGs are related with clinical prognosis, suggesting that they may be potential targets in tumor diagnosis and treatment.

Ishaque N, Abba ML, Hauser C, et al.
Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer.
Nat Commun. 2018; 9(1):4782 [PubMed] Free Access to Full Article Related Publications
Incomplete understanding of the metastatic process hinders personalized therapy. Here we report the most comprehensive whole-genome study of colorectal metastases vs. matched primary tumors. 65% of somatic mutations originate from a common progenitor, with 15% being tumor- and 19% metastasis-specific, implicating a higher mutation rate in metastases. Tumor- and metastasis-specific mutations harbor elevated levels of BRCAness. We confirm multistage progression with new components ARHGEF7/ARHGEF33. Recurrently mutated non-coding elements include ncRNAs RP11-594N15.3, AC010091, SNHG14, 3' UTRs of FOXP2, DACH2, TRPM3, XKR4, ANO5, CBL, CBLB, the latter four potentially dual protagonists in metastasis and efferocytosis-/PD-L1 mediated immunosuppression. Actionable metastasis-specific lesions include FAT1, FGF1, BRCA2, KDR, and AKT2-, AKT3-, and PDGFRA-3' UTRs. Metastasis specific mutations are enriched in PI3K-Akt signaling, cell adhesion, ECM and hepatic stellate activation genes, suggesting genetic programs for site-specific colonization. Our results put forward hypotheses on tumor and metastasis evolution, and evidence for metastasis-specific events relevant for personalized therapy.

Kleemann M, Schneider H, Unger K, et al.
Induction of apoptosis in ovarian cancer cells by miR-493-3p directly targeting AKT2, STK38L, HMGA2, ETS1 and E2F5.
Cell Mol Life Sci. 2019; 76(3):539-559 [PubMed] Related Publications
Apoptosis is a form of directed programmed cell death with a tightly regulated signalling cascade for the destruction of single cells. MicroRNAs (miRNAs) play an important role as fine tuners in the regulation of apoptotic processes. MiR-493-3p mimic transfection leads to the induction of apoptosis causing the breakdown of mitochondrial membrane potential and the activation of Caspases resulting in the fragmentation of DNA in several ovarian carcinoma cell lines. Ovarian cancer shows with its pronounced heterogeneity a very high death-to-incidence ratio. A target gene analysis for miR-493-3p was performed for the investigation of underlying molecular mechanisms involved in apoptosis signalling pathways. Elevated miR-493-3p levels downregulated the mRNA and protein expression levels of Serine/Threonine Kinase 38 Like (STK38L), High Mobility Group AT-Hook 2 (HMGA2) and AKT Serine/Threonine Kinase 2 (AKT2) by direct binding as demonstrated by luciferase reporter assays. Notably, the protein expression of RAF1 Proto-Oncogene, Serine/Threonine Kinase (RAF1) was almost completely downregulated by miR-493-3p. This interaction, however, was indirect and regulated by STK38L phosphorylation. In addition, RAF1 transcription was diminished as a result of reduced transcription of ETS proto-oncogene 1 (ETS1), another direct target of miR-493-3p. Taken together, our observations have uncovered the apoptosis inducing potential of miR-493-3p through its regulation of multiple target genes participating in the extrinsic and intrinsic apoptosis pathway.

Li D, Wang G, Jin G, et al.
Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway.
Int J Mol Med. 2019; 43(1):630-640 [PubMed] Related Publications
Colon cancer is a common type of cancer worldwide and accounts for a significant number of cancer‑related deaths. Although surgical techniques and treatment strategies for colon cancer have advanced over the past two decades, the prognosis has not improved considerably. Resveratrol, a natural stilbene compound, possesses antioxidant, cardioprotective and anticancer properties. However, the role of resveratrol in colon cancer has not been fully elucidated. The present study demonstrated that resveratrol inhibited cell proliferation and colony growth in DLD1 and HCT15 colon cancer cells, but did not affect normal colon epithelial cells. The resveratrol‑mediated inhibition of cell proliferation correlated with an induction of apoptosis and with G1 phase cell cycle arrest in colon cancer cells. Additionally, resveratrol treatment decreased the protein expression levels of cyclin D1, cyclin E2 and BCL2 apoptosis regulator, while it increased BCL2 associated X and tumor protein p53, all of which are involved in the regulation of cell cycle and apoptosis. Notably, the results obtained from in silico computational screening identified AKT serine/threonine kinase 1 (AKT1) and AKT2 as novel targets of resveratrol. Computational docking suggested that there are three or four possible hydrogen bonds in the active pocket of AKT1 and AKT2 that contribute to the mode of action of resveratrol. The present study confirmed that resveratrol bound to AKT1 and AKT2 with a pull‑down assay. Furthermore, knockdown of AKT1 and AKT2 inhibited cell proliferation and colony growth, by attenuating cell cycle progression and increasing apoptosis in colon cancer cells, effects that were similar to those caused by resveratrol treatment. Taken together, the present results suggest that the targeting effects of resveratrol to AKT1 and AKT2 may be a potent strategy for chemoprevention or therapy for colon cancer.

Christodoulou C, Oikonomopoulos G, Koliou GA, et al.
Evaluation of the Insulin-like Growth Factor Receptor Pathway in Patients with Advanced Breast Cancer Treated with Trastuzumab.
Cancer Genomics Proteomics. 2018 Nov-Dec; 15(6):461-471 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Trastuzumab is a monoclonal antibody against HER2-positive breast cancer. Despite improving the natural history of the disease, there is a number of patients who are resistant to it, whereas all patients will eventually develop resistance and disease will progress. Inconsistent preclinical data show that the IGF-R pathway may contribute to either de novo or acquired resistance to trastuzumab.
MATERIALS AND METHODS: In total, 227 trastuzumab-treated metastatic breast cancer patients were evaluated for IGF-1, IGF-1R, GLP-1R, Akt1, Akt2 Akt3 mRNA expression, and IGF-1Rα, IGF-1Rβ, IGF-2R protein expression.
RESULTS: Only 139 patients were truly HER2-positive by central assessment. Among HER2-positive patients, high Akt2 and GLP-1R mRNA expression showed a trend towards higher and lower risk of progression, respectively (HR=1.83, 95%CI=0.90-3.72, p=0.094 and HR=0.62, 95%CI=0.36-1.06, p=0.079), while high Akt1 and GLP-1R mRNA expression presented a trend towards unfavorable survival (HR=1.67, 95%CI=0.93-2.99, p=0.086 and HR=1.67, 95%CI=0.94-2.96, p=0.080). Among HER2-negative patients, high GLP-1R mRNA expression and negative stromal IGF-1Rβ protein expression showed a trend towards worse survival (HR=2.31, 95%CI=0.87-6.13, p=0.094 and HR=2.03, 95%CI=0.94-4.35, p=0.071, respectively). In the multivariate analyses, HER2-positive patients with high Akt1 and GLP-1R mRNA expression had a worse survival (HR=1.86, 95%CI=1.01-3.43, p=0.045 and HR=1.83, 95%CI=0.99-3.41, p=0.055, respectively).
CONCLUSION: This study revealed a crosstalk between the IGF-R pathway and HER2. There was evidence that high Akt1 and GLP-1R mRNA expression might affect survival among HER2-positive metastatic breast cancer patients treated with trastuzumab.

Dong Y, Huo X, Sun R, et al.
lncRNA Gm15290 promotes cell proliferation and invasion in lung cancer through directly interacting with and suppressing the tumor suppressor
Biosci Rep. 2018; 38(5) [PubMed] Free Access to Full Article Related Publications
Long non-coding RNAs (lncRNAs) have been involved in occurrence and progression of multiple cancers. In the present study, we investigated the role of lncRNA Gm15290 in the proliferation and invasion of non-small cell lung cancer (NSCLC) cells. First, we found that lncRNA Gm15290 was markedly up-regulated in tumor tissues from NSCLC patients and NSCLC cell lines, compared with adjacent normal tissues and normal lung cell line HBE respectively. Then, different concentrations of pcDNA-Gm15290 expression vector and Gm15290 siRNA were respectively transfected into A549 NSCLC cells. Our results showed that overexpression of Gm15290 significantly increased the proliferation and invasion of A549 cells and suppressed cell apoptosis. Knockdown of Gm15290 suppressed A549 cell proliferation and invasion and promoted cell apoptosis. Subsequently, we explored the underlying mechanism through which Gm15290 promoted cell proliferation and invasion. The output of RNA hybrid bioinformatic tool revealed that Gm15290 potentially interacted with tumor suppressor

Ding Y, Wang C, Li X, et al.
Novel clinicopathological and molecular characterization of metanephric adenoma: a study of 28 cases.
Diagn Pathol. 2018; 13(1):54 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metanephric adenoma is a rare, benign renal neoplasm with occasional misdiagnosis. However, its molecular characterization is not fully understood.
METHODS: In this study, we use the hybrid capture-based Next-Generation Sequencing to sequence a panel of 295 well-established oncogene or tumor suppressor genes in 28 cases of MA patients in China. Novel clinicopathological markers associated with the mitogen-activated protein kinase (MAPK) pathway in metanephric adenoma were detected by immunohistochemistry.
RESULTS: It was found that except for BRAF (22/28) mutations (c.1799 T > A, p.V600E), NF1 (6/28), NOTCH1 (5/28), SPEN (5/28), AKT2 (4/28), APC (4/28), ATRX (3/28), and ETV4 (3/28) mutations could also be detected. Meanwhile, a novel and rare gene fusion of STARD9-BRAF, CUX1-BRAF, and LOC100507389-BRAF was detected in one MA patient. In addition, although MEK phosphorylation was normally activated, the phosphorylation level of ERK was low in metanephric adenoma cases. Highly expressed p16 and DUSP6 may have contributed to these results, which maintained MA as a benign renal tumor.
CONCLUSIONS: This study provides novel molecular and pathological markers for metanephric adenoma, which could improve its diagnosis and increase the understanding of its pathologic mechanism.

Wu SG, Liu YN, Yu CJ, et al.
Driver mutations of young lung adenocarcinoma patients with malignant pleural effusion.
Genes Chromosomes Cancer. 2018; 57(10):513-521 [PubMed] Related Publications
Young lung cancer patients have several distinct characteristics. However, there are limited epidemiological data of genetic abnormalities in this population. We conducted a prospective cohort study to delineate the various oncogenic driver mutations of lung adenocarcinoma in young Asian patients. We consecutively collected malignant pleural effusions (MPEs) from lung adenocarcinoma patients. RNA was extracted from MPEs for mutation analysis by reverse transcription-polymerase chain reaction and direct sequencing. Selected gene mutations for testing included EGFR, HER2, BRAF, KRAS, PIK3CA, JAK2, MEK1, NRAS, and AKT2 mutations, as well as EML4-ALK, ROS1, and RET fusions. We collected MPEs from 142 patients aged ≤50 years and 730 patients aged >50 years. Patients aged ≤50 years (91%) had a higher incidence of driver gene mutations than those aged >50 years (84%; P = .036), especially EML4-ALK (P < .001) and ROS1 (P < .001). Among patients aged ≤50 years, EGFR mutation was the major oncogenic driver mutation. The mutation rates of other genes were 18% EML4-ALK, 6% ROS1, 5% HER2, 1% RET, 1% BRAF, and 1% KRAS. We did not detect PIK3CA, JAK2, MEK1, NRAS, or AKT2 mutations. No difference in gender or smoking history was noted among those with different driver mutations. Patients who had a good performance status or received appropriate targeted therapy had longer overall survival. In conclusion, lung adenocarcinoma in Asian patients aged ≤50 years had a higher gene mutation rate than in those aged >50 years, especially EML4-ALK and ROS1 fusion. Mutation analysis may be helpful in determining targeted therapy for the majority of these patients.

Yang X, Qu S, Wang L, et al.
PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612.
Oncogene. 2018; 37(50):6399-6413 [PubMed] Related Publications
Nuclear-enriched RNA-binding proteins (RBPs) are mainly involved in transcriptional regulation, which is a critical checkpoint to tune gene diversity and expression levels. We analyzed nuclear RBPs in human HCC tissues and matched normal control tissues. Based on the gene expression levels, PTBP3 was identified as top-ranked in the nuclei of HCC cells. HCC cell lines then were transfected with siRNAs or lentiviral vectors. PTBP3 promoted HCC cell proliferation and metastasis both in vitro and in vivo. RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and qRT-PCR assays verified that PTBP3 protein recruited abundant lnc-NEAT1 splicing variants (NEAT1_1 and NEAT1_2) and pre-miR-612 (precursor of miR-612) in the nucleus. NEAT1_1, NEAT1_2 and miR-612 expression levels were determined by PTBP3. Correlational analyses revealed that PTBP3 was positively correlated with NEAT1, but it was inversely correlated with miR-612 in HCC. The P53/CCND1 and AKT2/EMT pathways were determined by NEAT1 and miR-612 respectively in HCC. The PTBP3

Turkez H, Tozlu OO, Lima TC, et al.
A Comparative Evaluation of the Cytotoxic and Antioxidant Activity of
Oxid Med Cell Longev. 2018; 2018:2083923 [PubMed] Free Access to Full Article Related Publications
Cancer is a major public health problem around the globe. This disorder is affected by alterations in multiple physiological processes, and oxidative stress has been etiologically implicated in its pathogenesis. Glioblastoma (GBM) is considered the most common and aggressive brain tumor with poor prognosis despite recent improvements in surgical, radiation, and chemotherapy-based treatment approaches. The purpose of this study was to evaluate antitumor activity from

Xu PP, Sun C, Cao X, et al.
Immune Characteristics of Chinese Diffuse Large B-Cell Lymphoma Patients: Implications for Cancer Immunotherapies.
EBioMedicine. 2018; 33:94-104 [PubMed] Free Access to Full Article Related Publications
Immunotherapeutic agents have demonstrated encouraging signs of clinical utility in non-Hodgkin lymphoma. The goal of this study is to analyze the immune characteristics of Chinese patients with diffuse large B-cell lymphoma (DLBCL) to inform the development of immunotherapies in this patient population. Tumor samples from 211 DLBCL patients were analyzed for cell of origin (COO) and immune characteristics using the NanoString platform as well as MYC protein expression through immunohistochemistry. Lower incidence of the germinal center B-cell (GCB) subtype (93/211, 44.1%) was observed in this cohort. Compared to the GCB subtype, the activated B-cell (ABC) subtype was associated with significantly increased expression of multiple pro-inflammatory gene signatures and decreased expression of anti-inflammatory gene signatures. Instead of affecting the pro-inflammatory genes, MYC protein overexpression showed a negative correlation with the expression of T-cell receptor (TCR) and T regulatory genes as well as the OX40 gene. Regardless of COO, higher PD-L1 or IDO1 gene expression correlated with increased expression of T effector and Interferon-γ gene signatures while the expression of multiple oncogenes including ACTR3B, ERBB2, AKT2 and SMARCD1 was down-regulated. Our findings may thus be helpful in guiding further development of immunotherapies for the different subsets of Chinese DLBCL patients.

Deng S, Wang H, Fan H, et al.
Over-expressed miRNA-200b ameliorates ulcerative colitis-related colorectal cancer in mice through orchestrating epithelial-mesenchymal transition and inflammatory responses by channel of AKT2.
Int Immunopharmacol. 2018; 61:346-354 [PubMed] Related Publications
Our study was to explore the potential role of miRNA-200b in modulating tumorigenesis in the model of ulcerative colitis-related colorectal cancer (UCRCC) and, further, to decipher the underlying mechanisms associated with this effect. In this study, we examined a greater number of polyps or adenomas, a higher grade of epithelial dysplasia accompanied with a decrease in survival ratio in azoxymethane (AOM)/dextran sulfate sodium (DSS) model mice compared to mice treated with over-expressed miRNA-200b. Surprisingly, enforced miRNA-200b expression significantly suppressed AOM/DSS-induced up-regulation of oncologic markers including β-catenin and CD133. Independent of this, treatment with miRNA-200b obviously attenuated inflammatory responses, as indicated by down-regulating tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β) and blockade of AKT2-mediated NF-κB/IL-6/STAT3 signaling pathway. Furthermore, a simultaneous shift in epithelial-mesenchymal transition (EMT) markers such as E-cadherin and N-cadherin were observed to be increased and decreased, respectively. Coupled with the associated influence of over-expressed miRNA-200b were change in colorectal cell morphology shown by Transmission electron microscope (TEM) and a decrease in expression of rho-kinase2 (ROCK2) together with AKT2 phosphorylation (p-AKT2). Moreover, mice which were transfected with negative control of miRNA-200b possessed results that were in line with that obtained from AOM/DSS model mice. Additionally, we demonstrated that the 3'untranslated region (UTR) of AKT2 was a direct target of miRNA-200b through bioinformatics analysis and dual-luciferase assay. Collectively, these findings suggest that miRNA-200b's contribution to tumor-suppressing program was correlated with EMT and inflammatory responses in a AKT2-dependent manner.

Sato N, Fujishima F, Nakamura Y, et al.
Myosin 5a regulates tumor migration and epithelial-mesenchymal transition in esophageal squamous cell carcinoma: utility as a prognostic factor.
Hum Pathol. 2018; 80:113-122 [PubMed] Related Publications
Esophageal squamous cell carcinoma (ESCC) is highly malignant. Recently, the expression of myosin 5a, a member of the myosin superfamily, was reported to be associated with increased invasiveness and metastasis in many tumor types. Moreover, myosin 5a is upregulated by Snail and activated by Akt2, both of which are epithelial-mesenchymal transition (EMT) markers. In this study, we confirmed the expression of myosin 5a in ESCC surgical specimens and cell lines, revealing its correlation with tumor invasion, migration, patient prognosis, and expression of EMT-related proteins. The expression of myosin 5a, vimentin, and E-cadherin was immunohistochemically evaluated in 118 patients with ESCC who underwent esophagectomy without chemotherapy or irradiation therapy prior to surgery. We also investigated ESCC cell migration under myosin 5a silencing by siRNA induction. The high expression of myosin 5a was correlated with tumor depth, lymph node metastasis, pathological stage, high vimentin expression, and low E-cadherin expression. Patients with high expression of myosin 5a, including those with pT1 cancer, exhibited significantly worse survival. Moreover, the expression level of vimentin mRNA and the number of migrated ESCC cells decreased significantly following myosin 5a silencing. Our findings demonstrate that high expression of myosin 5a may be an independent prognostic factor in patients with ESCC, even in early invasive carcinoma, and indicate myosin 5a has a role in both cell migration and EMT.

Sundaramoorthy S, Devanand P, Ryu MS, et al.
J Cancer Res Clin Oncol. 2018; 144(8):1445-1462 [PubMed] Related Publications
PURPOSE: It has been reported that PI3K/AKT pathway is altered in various cancers and AKT isoforms specifically regulate cell growth and metastasis of cancer cells; AKT1, but not AKT2, reduces invasion of cancer cells but maintains cancer growth. We propose here a novel mechanism of the tumor suppresser, TIS21
METHODS: Transduction of adenovirus carrying TIS21
RESULTS: We observed that TIS21

Rafael D, Gener P, Andrade F, et al.
AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells.
Drug Deliv. 2018; 25(1):961-972 [PubMed] Free Access to Full Article Related Publications
Development of RNA interference-based therapies with appropriate therapeutic window remains a challenge for advanced cancers. Because cancer stem cells (CSC) are responsible of sustaining the metastatic spread of the disease to distal organs and the progressive gain of resistance of advanced cancers, new anticancer therapies should be validated specifically for this subpopulation of cells. A new amphihilic-based gene delivery system that combines Pluronic

Grassilli S, Brugnoli F, Lattanzio R, et al.
Vav1 downmodulates Akt in different breast cancer subtypes: a new promising chance to improve breast cancer outcome.
Mol Oncol. 2018; 12(7):1012-1025 [PubMed] Free Access to Full Article Related Publications
Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p-Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor-derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER-negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p-Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow-up of patients with low p-Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple-negative phenotype, for which target-based therapies are not currently available.

Ruvolo PP, Ruvolo VR, Burks JK, et al.
Role of MSC-derived galectin 3 in the AML microenvironment.
Biochim Biophys Acta Mol Cell Res. 2018; 1865(7):959-969 [PubMed] Free Access to Full Article Related Publications
In acute myeloid leukemia (AML), high Galectin 3 (LGALS3) expression is associated with poor prognosis. The role of LGALS3 derived from mesenchymal stromal cells (MSC) in the AML microenvironment is unclear; however, we have recently found high LGALS3 expression in MSC derived from AML patients is associated with relapse. In this study, we used reverse phase protein analysis (RPPA) to correlate LGALS3 expression in AML MSC with 119 other proteins including variants of these proteins such as phosphorylated forms or cleaved forms to identify biologically relevant pathways. RPPA revealed that LGALS3 protein was positively correlated with expression of thirteen proteins including MYC, phosphorylated beta-Catenin (p-CTNNB1), and AKT2 and negatively correlated with expression of six proteins including integrin beta 3 (ITGB3). String analysis revealed that proteins positively correlated with LGALS3 showed strong interconnectivity. Consistent with the RPPA results, LGALS3 suppression by shRNA in MSC resulted in decreased MYC and AKT expression while ITGB3 was induced. In co-culture, the ability of AML cell to adhere to MSC LGALS3 shRNA transductants was reduced compared to AML cell adhesion to MSC control shRNA transductants. Finally, use of novel specific LGALS3 inhibitor CBP.001 in co-culture of AML cells with MSC reduced viable leukemia cell populations with induced apoptosis and augmented the chemotherapeutic effect of AraC. In summary, the current study demonstrates that MSC-derived LGALS3 may be critical for important biological pathways for MSC homeostasis and for regulating AML cell localization and survival in the leukemia microenvironmental niche.

Bibaki E, Tsitoura E, Vasarmidi E, et al.
miR-185 and miR-29a are similarly expressed in the bronchoalveolar lavage cells in IPF and lung cancer but common targets DNMT1 and COL1A1 show disease specific patterns.
Mol Med Rep. 2018; 17(5):7105-7112 [PubMed] Free Access to Full Article Related Publications
Idiopathic pulmonary fibrosis (IPF) and lung cancer (LC) constitute two progressively devastating lung diseases with common risk factors including aging and smoking. There is an increasing interest in the investigation of common pathogenic mechanisms between IPF and LC with therapeutic implications. Several oncomirs, microRNAs associated with malignancy, are also linked with IPF. miR‑29a and miR‑185 downregulation is probably involved both in carcinogenesis and fibrogenesis. We have previously observed miR‑29a and miR‑185 downregulation in IPF cells from bronchoalveolar lavage (BAL) and in this study we investigated their expression in LC BAL cells. Common targets of miR‑29a and miR‑185 such as DNA methyltransferase (DNMT)1, DNMT3b, COL1A1, AKT1 and AKT2 were measured. Potential correlations with pulmonary function tests, smoking status and endobronchial findings were investigated. Similar levels of miR‑29a and miR‑185 were detected in IPF and LC while their common targets AKT1 and DNMT3b were not found to differ, suggesting potential pathogenetic similarities at the level of key epigenetic regulators. By conrast, COL1A1 mRNA levels were increased in IPF suggesting a disease‑specific mRNA signature. Notably, DNMT1 was downregulated in the LC group and its expression was further reduced in the presence of increasing malignant burden as it was implied by the endobronchial findings.

Bai B, Xie B, Pan Z, et al.
Identification of candidate genes and long non-coding RNAs associated with the effect of ATP5J in colorectal cancer.
Int J Oncol. 2018; 52(4):1129-1138 [PubMed] Free Access to Full Article Related Publications
The incidence and development of colorectal cancer (CRC) is a process with multiple gene interactions. We have previously demonstrated that ATP synthase-coupling factor 6, mitochondrial (ATP5J) is associated with CRC migration and 5-fluorouracil resistance; nevertheless, the exact molecular mechanism remains unclear. The following study uses microarray and bioinformatics methods to identify candidate genes and long non-coding RNAs (lncRNAs) in CRC cells (two pairs) with upregulated and downregulated ATP5J. Briefly, a total of 2,190 differentially expressed mRNAs (DEmRNAs) were sorted. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for 4 DEmRNAs to validate the results of microarray analysis. Functional annotation and pathway enrichment were analyzed for DEmRNAs using the Database for Annotation, Visualization and Integrated Discovery. Significantly enriched pathways included the regulation of gene expression and cell growth. The protein‑protein interaction network was constructed, and AKT serine/threonine kinase 2 (AKT2) was considered as one of the hub genes. For further analysis, 51 DEmRNAs and 30 DElncRNAs were selected that were positively or negatively associated with the expression of ATP5J in the two cell pairs. X-inactive specific transcript (XIST), premature ovarian failure 1B (POF1B) and calmin (CLMN) were identified in the DEmRNA-DElncRNA co-expression network. The expression of AKT2 and XIST in CRC cells was confirmed by RT-qPCR. To sum up, the candidate genes and lncRNAs, as well as potential signaling pathways, which were identified using integrated bioinformatics analysis, could improve the understanding of molecular events involved in the function of ATP5J in CRC.

Chorner PM, Moorehead RA
A-674563, a putative AKT1 inhibitor that also suppresses CDK2 activity, inhibits human NSCLC cell growth more effectively than the pan-AKT inhibitor, MK-2206.
PLoS One. 2018; 13(2):e0193344 [PubMed] Free Access to Full Article Related Publications
AKT is a serine-threonine kinase implicated in tumorigenesis as a central regulator of cellular growth, proliferation, survival, and metabolism. Activated AKT is commonly overexpressed in non-small cell lung cancer (NSCLC) and accordingly AKT inhibitors are under clinical investigation for NSCLC treatment. Thus far, the AKT inhibitors being evaluated broadly target all three (1-3) AKT isoforms but recent evidence suggests opposing roles in lung tumorigenesis where loss of Akt1 inhibits while the loss of Akt2 enhances lung tumor development. Based on these findings, we hypothesized that selective inhibition of AKT-1 would be a more effective therapeutic strategy than pan-AKT inhibition for NSCLC treatment. Using six NSCLC cell lines, we found that the AKT-1 inhibitor, A-674563, was significantly more effective at reducing NSCLC cell survival relative to the pan-AKT inhibitor MK-2206. Comparison of the downstream effects of the inhibitors suggests that altered cell cycle progression and off-target CDK2 inhibition are likely vital to the improved efficacy of A-674563 over MK-2206.

Yu Y, Dai M, Lu A, et al.
PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation.
Oncogene. 2018; 37(17):2225-2236 [PubMed] Free Access to Full Article Related Publications
PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.

Wu SJ, Chen J, Wu B, et al.
MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma.
J Exp Clin Cancer Res. 2018; 37(1):18 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Radioresistance is a major challenge during the treatment of NK/T cell lymphoma. This study aimed to investigate the potential role of MicroRNA-150 (miR-150) in increase the sensitivities of NK/T cell lymphoma to ionizing radiation.
RESULTS: In this study, we found that miR-150 was significantly decreased in NK/T cell lymphoma tissues and cell lines. Low expression of miR-150 was positively associated with therapeutic resistance in 36 NK/T cell lymphoma cases. Our further in vitro and in vivo studies illustrated that overexpression of miR-150 substantially enhanced the sensitivity of NK/T cell lymphoma cells to ionizing radiation treatment. Furthermore, luciferase reporter assays in NK/T cell lymphoma cells transfected with the AKT2 or AKT3 three prime untranslated region reporter constructs established AKT2 and AKT3 as direct targets of miR-150. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit Akt to verify miR-150 increase NK/T cell lymphoma cell radiorsensitivity through suppress the PI3K/AKT/mTOR pathway.
CONCLUSIONS: Taken together, this study demonstrates that miR-150 might serve as a potential therapeutic sensitizer through inhibition of the AKT pathway in NK/T cell lymphoma treatment.

Zheng B, Geng L, Zeng L, et al.
AKT2 contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis.
Cell Signal. 2018; 45:122-131 [PubMed] Related Publications
Multiple studies have shown that protein kinase Bβ (AKT2) is involved in the development and progression of ovarian cancer, however, its precise role remains unclear. Here we explored the underlying molecular mechanisms how AKT2 promotes ovarian cancer progression. We examined the effects of AKT2 in vitro in two ovarian cancer cell lines (SKOV3 and HEY), and in vivo by metastasis assay in nude mice. The migration and invasion ability of SKOV3 and HEY cells was determined by transwell assay. Overexpression and knockdown (with shRNA) experiments were carried out to unravel the underlying signaling mechanisms induced by AKT2. Overexpression of AKT2 led to increased expression of pyruvate kinase (PKM2) in ovarian cancer cells and in lung metastatic foci from nude mice. Elevated AKT2/PKM2 expression induced cell migration and invasion in vitro, as well as lung metastasis in vivo; silencing AKT2 blocked these effects. Meanwhile, PKM2 overexpression was unable to increase AKT2 expression. The expressions of p-PI3K, p-AKT2, and PKM2 were increased when stimulated by epidermal growth factor (EGF); however, these expressions were blocked when inhibited the PI3K by LY294002. STAT3 expression was elevated and NF-κB p65 nuclear translocation was activated both in vitro and in vivo when either AKT2 or PKM2 was overexpressed; and these effects were inhibited when silencing AKT2 expression. Taken together, AKT2 increases the migration and invasion of ovarian cancer cells in vitro and promotes lung metastasis in nude mice in vivo through PKM2-mediated elevation of STAT3 expression and NF-κB activation. In conclusion, we highlight a novel mechanism of the AKT2-PKM2-STAT3/NF-κB axis in the regulation of ovarian cancer progression, and our work suggested that both AKT2 and PKM2 may be potential targets for the treatment of ovarian cancer.

Qi L, Sun K, Zhuang Y, et al.
Study on the association between PI3K/AKT/mTOR signaling pathway gene polymorphism and susceptibility to gastric cancer.
J BUON. 2017 Nov-Dec; 22(6):1488-1493 [PubMed] Related Publications
PURPOSE: Excessive activation of PI3K/AKT/mTOR signaling pathway is one of the most common changes in human cancers, and single nucleotide polymorphisms (SNPs) existing in its functional region can affect the occurrence process of a variety of cancers. This study aimed to screen out the SNPs associated with susceptibility to gastric cancer in the PI3K/AKT/mT0R signaling pathway.
METHODS: In this case-control study, the tagging SNPs in the promoter region5'-UTR, exon region or 3'-UTR of PIK3CA, PIK3CB, PIK3R1, PIK3R2, PIK3R3, AKT1, AKT2, AKT3 and mTOR genes were screened out. The relationship between the genetic variation of PI3K/AKT/mT0R signaling pathway genes and the susceptibility to gastric cancer in Chinese Han population was investigated by this casecontrol study.
RESULTS: The results showed that the polymorphisms of the two loci, PIK3R3 rs7536272 (Additive model: OR=1.16, 95% CI=1.01-1.35) and mTOR rs2295080 (GG vs TT: OR=0.75, 95% CI=0.60-0.94; Additive model: OR=0.78, 95% CI=0.66- 0.93), were associated with the risk of gastric cancer in the studied population and there was a combined effect between the two loci (ptrend=0.005).
CONCLUSIONS: In conclusion, the polymorphisms of the two loci, PIK3R3 rs7536272 and mTOR rs2295080, on the PI3K/AKT/mTOR signaling pathway genes are associated with genetic susceptibility to gastric cancer in Chinese population.

Li Z, Liu J, Li L, et al.
Epithelial mesenchymal transition induced by the CXCL9/CXCR3 axis through AKT activation promotes invasion and metastasis in tongue squamous cell carcinoma.
Oncol Rep. 2018; 39(3):1356-1368 [PubMed] Related Publications
The present study aimed to assess the induction of epithelial-mesenchymal transition (EMT), invasion, and metastasis by the chemokine CXCL9/receptor CXCR3 axis in tongue squamous cell carcinoma (TSCC), unveiling the underlying mechanisms and providing new insights into the prevention and treatment of oral cancer metastasis. The expression levels of CXCL9 and CXCR3 in TSCC tissue specimens were determined by immunohistochemistry, assessing differences between samples with cervical lymph node metastasis and those without. Moreover, protein expression or activity in the TSCC Cal-27 cell line was controlled by neutralizing antibodies, gene transfection, or knock-out. Then, alterations of cell proliferation, migration, invasion, and the cytoskeleton were analyzed by CCK-8, cell scratch, Transwell, and cyto-skeleton staining assays, respectively. Alterations of EMT markers (E-cadherin and vimentin) in Cal-27 cells were detected by immunofluorescence and western blotting. In addition, western blotting was utilized to detect protein expression levels of Akt2, p-Akt2, eIF4E and p-eIF4E, and to explore the regulatory roles and mechanisms of the CXCL9/CXCR3 axis in invasion and metastasis. Significantly increased expression levels of CXCL9 and CXCR3 were detected in tissue specimens with lymph node metastasis compared with those without (P<0.01). Overexpression of CXCL9/CXCR3 in Cal-27 cells resulted in cytoskeleton alterations, decreased E-cadherin expression, increased vimentin levels, enhanced migration and invasion (P<0.05), and increased phosphorylated Akt2 and eIF4E levels (P<0.05). These results revealed that in TSCC, the CXCL9/CXCR3 axis could activate the Akt signaling pathway, with EMT and cytoskeleton rearrangement, promoting invasion and metastasis.

Sun W, Zhang Y, Wong KC, et al.
Increased expression of GATA zinc finger domain containing 1 through gene amplification promotes liver cancer by directly inducing phosphatase of regenerating liver 3.
Hepatology. 2018; 67(6):2302-2319 [PubMed] Free Access to Full Article Related Publications
We identified that GATA zinc finger domain containing 1 (GATAD1), a transcriptional factor, was significantly up-regulated in hepatocellular carcinoma (HCC) through gene amplification. We demonstrated the critical role, molecular mechanisms, and clinical implications of GATAD1 as a novel oncogenic factor in HCC. We found that GATAD1 protein was expressed in 76.6% of primary HCCs (85/111) but silenced in normal liver tissues. Gene amplification of GATAD1 was positively correlated with its overexpression in primary HCCs (R = 0.629, P < 0.0001). GATAD1 significantly increased cell proliferation, G
CONCLUSION: GATAD1 plays a pivotal oncogenic role in HCC by directly inducing PRL3 transcription to activate the Akt signaling pathway. GATAD1 may serve as an independent poor prognostic factor for HCC patients. (Hepatology 2018;67:2302-2319).

Lv Z, Wei J, You W, et al.
Disruption of the c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis and chemotherapeutic resistance in colorectal cancer.
J Transl Med. 2017; 15(1):257 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastasis is a major threat to colorectal cancer (CRC) patients. We have reported that peroxiredoxin-2 (PRDX2) is associated with CRC invasion and metastasis. However, the mechanisms regulating PRDX2 expression remain unclear. We investigate whether microRNAs (miRNAs) regulate PRDX2 expression in CRC progression.
METHODS: Quantitative real-time polymerase chain reaction (qPCR) was used to measure microRNA-200b-3p (miR-200b-3p) expression. Immunohistochemistry (IHC) was performed to detect c-Myc and PRDX2 protein levels in CRC tissue samples (n = 97). Western blot was used to quantify PRDX2, c-Myc, AKT2/GSK3β pathway-associated proteins and epithelial-mesenchymal transition (EMT)-related proteins in CRC cells. Luciferase reporter assays were used to analyze the interaction between miR-200b-3p and 3'untranslated region (3'UTR) of PRDX2 mRNA and AKT2 mRNA as well as c-Myc and the miR-200b-3p promoter. Chromatin immunoprecipitation (ChIP) assay was used to evaluate binding of c-Myc to the miR-200b-3p promoter. Invasive assay and metastatic model were used to assess invasive and metastatic capacities of CRC cells in vitro and in vivo. Moreover, drug-induced apoptosis was measured by flow cytometry.
RESULTS: We found that miR-200b-3p was significantly downregulated, whereas c-Myc and PRDX2 were upregulated in metastatic CRC cells and CRC tissues compared to their counterparts. An inverse correlation existed between c-Myc and miR-200b-3p, and between miR-200b-3p and PRDX2. We also found that PRDX2 was a target of miR-200b-3p. Importantly, overexpression of nontargetable PRDX2 eliminated the suppressive effects of miR-200b-3p on proliferation, invasion, EMT, chemotherapeutic resistance and metastasis of CRC cells. Moreover, c-Myc bound to the promoter of miR-200b-3p and repressed its transcription. In turn, miR-200b-3p disrupted the stability of c-Myc protein by inducing c-Myc protein threonine 58 (T58) phosphorylation and serine 62 (S62) dephosphorylation via AKT2/GSK3β pathway.
CONCLUSIONS: Our findings reveal that the c-Myc/miR-200b/PRDX2 loop regulates CRC progression and its disruption enhances tumor metastasis and chemotherapeutic resistance in CRC.

Shen Y, Gao Y, Yuan H, et al.
Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration.
Int J Mol Med. 2018; 41(2):1147-1155 [PubMed] Related Publications
Prostate cancer (PCa) is a leading cause of cancer‑associated mortality in men; however, the factors that contribute to disease development have yet to be fully elucidated. Previous studies have suggested that prohibitin-2 (PHB2), which is a multifunctional protein that contributes to various cellular processes, is positively correlated with malignant progression of PCa; however, the molecular mechanisms underlying the effects of PHB2 on the enhancement of cell migration have not been identified. The present study induced overexpression and knockdown of PHB2 in PCa cell lines (PC3 and DU145) with the aim of examining the effects of PHB2 on PCa cell migration via wound healing assays. The results indicated that PHB2 overexpression promoted migration of both cell lines. AKT serine/threonine kinase 2 (AKT2), which interacts with PHB2, has been reported to participate in cell migration; therefore, the present study examined the effects PHB2 overexpression and knockdown on AKT2 in PCa cells. The present study demonstrated that overexpression of PHB2 reduced the expression of AKT2, whereas PHB2 knockdown increased AKT2 expression in both PCa cell lines. In addition, knockdown of PHB2 enhanced the protein stability of AKT2. Furthermore, AKT2 overexpression resulted in a significant decrease in migration, whereas AKT2 knockdown promoted migration of PC3 and DU145 PCa cells. The combined overexpression of PHB2 and AKT2 inhibited migration of both cell lines, thus suggesting that AKT2 overexpression abolished PHB2-induced migration. Mechanistically, the present study suggested that PHB2 may promote PCa cell migration by inhibiting the expression of AKT2. These results provide information regarding the role of PHB2 in PCa migration and malignancy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AKT2, Cancer Genetics Web: http://www.cancer-genetics.org/AKT2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999