www.Cancer-Genetics.org
Navigate
IGF2; insulin-like growth factor 2 (11p15.5)

Gene Summary

Gene:IGF2; insulin-like growth factor 2
Aliases: IGF-II, PP9974, C11orf43
Location:11p15.5
Summary:This gene encodes a member of the insulin family of polypeptide growth factors, which are involved in development and growth. It is an imprinted gene, expressed only from the paternal allele, and epigenetic changes at this locus are associated with Wilms tumour, Beckwith-Wiedemann syndrome, rhabdomyosarcoma, and Silver-Russell syndrome. A read-through INS-IGF2 gene exists, whose 5' region overlaps the INS gene and the 3' region overlaps this gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2010]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:insulin-like growth factor II
HPRD
Source:NCBI
Updated:14 December, 2014

Gene
Ontology:

What does this gene/protein do?
Show (42)

Cancer Overview

The loss of imprinting of insulin-like growth factor 2 (IGF2) and an overexpression of this growth factor gene have been reported in a wide range of cancers, particularly in Wilms' tumour.

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Notable (8)

Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Colorectal CancerIGF2 and Colorectal Cancer View Publications96
Wilms TumourIGF2 Imprinting and Overexpression in Wilms' Tumour View Publications91
Liver CancerIGF2 Expression in Hepatocarcinoma View Publications59
Breast CancerIGF2 and Breast Cancer View Publications51
Liver CancerIGF2 and Hepatoblastoma View Publications23
Adrenocortical CancerIGF2 Expression in Adrenocortical Carcinoma View Publications17
Bladder CancerIGF2 and Bladder Cancer View Publications12
Stomach CancerIGF2 and Stomach Cancer View Publications10

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Related Links

Latest Publications: IGF2 (cancer-related)

Philip PA, Goldman B, Ramanathan RK, et al.
Dual blockade of epidermal growth factor receptor and insulin-like growth factor receptor-1 signaling in metastatic pancreatic cancer: phase Ib and randomized phase II trial of gemcitabine, erlotinib, and cixutumumab versus gemcitabine plus erlotinib (SWOG S0727).
Cancer. 2014; 120(19):2980-5 [PubMed] Related Publications
BACKGROUND: Targeting a single pathway in pancreatic adenocarcinoma (PC) is unlikely to affect its natural history. We tested the hypothesis that simulataneous targeting of the epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor-1 (IGF-1R) pathways would significantly improve progression-free survival (PFS) by abrogating reciprocal signaling that promote drug resistance
METHODS: This was a phase Ib/II study testing cixutumumab, combined with erlotinib and gemcitabine (G) in patients with untreated metastatic PC. The control arm was erlotinib plus G. The primary end point was PFS. Eligibility included performance status 0/1 and normal fasting blood glucose. Polymorphisms in genes involved in G metabolism and in the EGFR pathway were also studied
RESULTS: The phase I results (n = 10) established the safety of cixutumumab 6 mg/kg/week intravenously, erlotinib 100 mg/day orally, and G 1000 mg/m(2) intravenously on days 1, 8, and 15 of a 28-day cycle. In the RP2 portion (116 eligible patients; median age, 63), the median PFS and overall survival (OS) were 3.6 and 7.0 months, respectively, on the cixutumumab arm, and 3.6 and 6.7 months, respecively, on the control arm. Major grades 3 and 4 toxicities with cixutumumab and control were elevation of transaminases, 12% and 6%, respectively; fatigue, 16% and 12%, respectively; gastrointestinal, 35% and 28%, respectively; neutropenia, 21% and 10%, respectively; and thrombocytopenia, 16% and 7%, respecively. Grade 3/4 hyperglycemia was seen in 16% of patients on cixutumumab. Grade 3 or 4 skin toxicity was similar in both arms of the study (< 5%). No significant differences in PFS by genotype were seen for any of the polymorphisms.
CONCLUSIONS: Adding the IGF-1R inhibitor cixutumumab to erlotinib and G did not lead to longer PFS or OS in metastatic PC.

Related: Monoclonal Antibodies IGF1 Cancer of the Pancreas Pancreatic Cancer Signal Transduction Gemcitabine EGFR Erlotinib (Tarceva)


Tian F, Yourek G, Shi X, Yang Y
The development of Wilms tumor: from WT1 and microRNA to animal models.
Biochim Biophys Acta. 2014; 1846(1):180-7 [PubMed] Related Publications
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.

Related: Kidney Cancer WT1 Wilms' Tumour Wilms Tumour


Duregon E, Rapa I, Votta A, et al.
MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations.
Hum Pathol. 2014; 45(8):1555-62 [PubMed] Related Publications
Several microRNAs (miRNAs) were shown to be deregulated in adrenocortical carcinoma (ACC) as compared with adenoma, but a detailed assessment of their expression in its histologic variants and correlation with clinicopathologic characteristics has not been performed, so far. Our aim was to assess the expression of 5 selected miRNAs (IGF2 gene-related miR-483-3p and 5p and hypoxia-induced miR-210, miR-195, and miR-1974) in a series of 51 ACCs (35 classical, 6 myxoid, and 10 oncocytic) as compared with clinical and pathologic features and immunohistochemical expression of prognostic markers, including steroidogenic factor 1, p53, β-catenin, and glucose transporter 1. Oncocytic carcinomas had a reduced expression of miR-483-3p (P = .0325), miR-483-5p (P = .0175), and miR-210 (P = .0366), as compared with other histotypes. Overexpression of miR-210 was associated with the presence of necrosis (P = .0035), high Ki-67 index (P = .0013), and high glucose transporter 1 expression (P = .0043), whereas an inverse correlation with mitotic rate was observed in cases with high miR-493-3p (P = .0191) and miR-1974 (P = .0017) expression. High miR-1974 was also associated with low Ki-67 (P = .0312) and European Network for the Study of Adrenal Tumors stage (P = .0082) and negative p53 (P = .0013). At univariate analysis myxoid/classic histotype (P = .026), high miR-210 (P = .0465), high steroidogenic factor 1 protein (P = .0017), high Ki-67 (P = .0066), and high mitotic index (P = .0006) were significantly associated the shorter overall survival, the latter being the sole independent prognostic factor at multivariate analysis (P = .017). In conclusion, (a) miR-483-3p, miR-483-5p, and miR-210 are differentially expressed in ACC variants, and (b) high miR-210 is associated with clinicopathologic parameters of aggressiveness and a poor prognosis.

Related: Adrenocortical Cancer Adrenocortical Carcinoma - Molecular Biology


Shiovitz S, Bertagnolli MM, Renfro LA, et al.
CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer.
Gastroenterology. 2014; 147(3):637-45 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND & AIMS: The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL).
METHODS: We analyzed data from patients with stage III colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL after surgery, from April 1999 through April 2001. The primary end point of the trial was overall survival and the secondary end point was disease-free survival. DNA isolated from available tumor samples (n = 615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated.
RESULTS: Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio = 1.36; 95% confidence interval: 1.01-1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared with treatment with fluorouracil and leucovorin (hazard ratio = 0.62; 95% CI: 0.37-1.05; P = .07), but not for patients with CIMP-negative tumors (hazard ratio = 1.38; 95% CI: 1.00-1.89; P = .049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P = .01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease-free survival times were comparable among all analyses.
CONCLUSIONS: Patients with stage III, CIMP-positive, MMR-intact colon tumors have longer survival times when irinotecan is added to combination therapy with fluorouracil and leucovorin.

Related: Fluorouracil Leucovorin Irinotecan


Cao Y, Lindström S, Schumacher F, et al.
Insulin-like growth factor pathway genetic polymorphisms, circulating IGF1 and IGFBP3, and prostate cancer survival.
J Natl Cancer Inst. 2014; 106(6):dju085 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
BACKGROUND: The insulin-like growth factor (IGF) signaling pathway has been implicated in prostate cancer (PCa) initiation, but its role in progression remains unknown.
METHODS: Among 5887 PCa patients (704 PCa deaths) of European ancestry from seven cohorts in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium, we conducted Cox kernel machine pathway analysis to evaluate whether 530 tagging single nucleotide polymorphisms (SNPs) in 26 IGF pathway-related genes were collectively associated with PCa mortality. We also conducted SNP-specific analysis using stratified Cox models adjusting for multiple testing. In 2424 patients (313 PCa deaths), we evaluated the association of prediagnostic circulating IGF1 and IGFBP3 levels and PCa mortality. All statistical tests were two-sided.
RESULTS: The IGF signaling pathway was associated with PCa mortality (P = .03), and IGF2-AS and SSTR2 were the main contributors (both P = .04). In SNP-specific analysis, 36 SNPs were associated with PCa mortality with P trend less than .05, but only three SNPs in the IGF2-AS remained statistically significant after gene-based corrections. Two were in linkage disequilibrium (r 2 = 1 for rs1004446 and rs3741211), whereas the third, rs4366464, was independent (r 2 = 0.03). The hazard ratios (HRs) per each additional risk allele were 1.19 (95% confidence interval [CI] = 1.06 to 1.34; P trend = .003) for rs3741211 and 1.44 (95% CI = 1.20 to 1.73; P trend < .001) for rs4366464. rs4366464 remained statistically significant after correction for all SNPs (P trend.corr = .04). Prediagnostic IGF1 (HRhighest vs lowest quartile = 0.71; 95% CI = 0.48 to 1.04) and IGFBP3 (HR = 0.93; 95% CI = 0.65 to 1.34) levels were not associated with PCa mortality.
CONCLUSIONS: The IGF signaling pathway, primarily IGF2-AS and SSTR2 genes, may be important in PCa survival.

Related: IGF1 Prostate Cancer Signal Transduction USA


Rüping K, Altendorf-Hofmann A, Chen Y, et al.
High IGF2 and FGFR3 are associated with tumour progression in undifferentiated pleomorphic sarcomas, but EGFR and FGFR3 mutations are a rare event.
J Cancer Res Clin Oncol. 2014; 140(8):1315-22 [PubMed] Related Publications
AIM: Pleomorphic undifferentiated sarcomas (formerly known as malignant fibrous histiocytomas) are recognised by the actual WHO classification as an undifferentiated, unclassifiable category of pleomorphic sarcomas which show no definable line of differentiation and are still a diagnosis of exclusion. Therefore, diagnostic, prognostic and therapeutic options of these tumours are urgently needed.
METHODS: Three hundred and twenty-seven spindle cell tumours of a German consultation and reference centre of soft tissue tumours consisting of 200 undifferentiated pleomorphic sarcomas (UPS), 45 low-grade sarcomas (10 low-grade fibromyxoid sarcomas, 32 low-grade myofibroblastic sarcomas and three myxoinflammatory fibroblastic sarcomas) and 82 tumours of the fasciitis family were revisited. The specimens were analysed immunohistochemically with distinct markers including tyrosine kinases and expression correlated with clinicopathological parameters. Additionally, mutational analysis was performed on specimens with high expression of EGFR and FGFR3.
RESULTS: At the protein level high IGF2 expression was observed in 86 %, FGFR3 (69 %), PDGFRA (62 %), PDGFRB (39 %), FGFR1 (8 %), EGFR (5 %), KDR/VEGFR2 (3 %), ALK (0 %) and high Ki67 (63 %) in UPS. High expressions of IGF2 and FGFR3 are significantly correlated with a higher grading (p = 0.023 and p = 0.016, respectively) and a high Ki67 index (p = 0.017 and p = 0.001, respectively). No mutations were found in the hot spots of tumour specimens with a high expression of EGFR gene (exons 18-21) and FGFR3 gene (exons 7, 10 and 15).
CONCLUSIONS: High expressions of IGF2 and FGFR3 are significantly associated with tumour progression, grading and Ki67 and might classify a subgroup of undifferentiated pleomorphic sarcoma. These markers might guide targeted therapies in these neoplasms.

Related: Soft Tissue Sarcomas EGFR


Chu TY, Yang JT, Huang TH, Liu HW
Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells.
Radiat Res. 2014; 181(5):540-7 [PubMed] Related Publications
Crosstalk between cancer cells and the surrounding cancer associated fibroblasts (CAFs) plays an illusive role in cancer radiotherapy. This study investigated the effect of cancer cell-cancer associated fibroblasts crosstalk on the proliferation and survival of irradiated cervical cancer cells. A pretreatment with conditioned medium from a mixed culture of CAF and HeLa cells (mixCAF) had a stronger effect on enhancing the proliferation and survival of irradiated HeLa cells compared to pretreatment with CAF conditioned medium alone. In addition, pretreatment with a mixed culture of CAF and HeLa cells conditioned medium reduced the levels of two major radiation-induced genes, GADD45 and BTG2, and phosphorylation of p38. Profiling of the growth and survival factors in the conditioned medium revealed PDGF and VEGF, and IGF2, EGF, FGF-4, IGFBPs and GM-CSF to be specifically secreted from HeLa cells and CAFs, respectively. This study demonstrated radiation protective effects of CAF-cancer cell crosstalk, and identified multiple growth factors and radiation response genes that might be involved in these effects.

Related: Cervical Cancer


Yao M, Wang L, Dong Z, et al.
Glypican-3 as an emerging molecular target for hepatocellular carcinoma gene therapy.
Tumour Biol. 2014; 35(6):5857-68 [PubMed] Related Publications
Glypican-3 (GPC-3), a membrane-associated heparan sulfate proteoglycan, plays a crucial role in cell proliferation and metastasis, particularly in hepatocellular carcinoma (HCC) progression, and perhaps is a valuable target for its gene therapy. However, its mechanism remains to be explored. In the present study, the biological behaviors of HCC cells were investigated by interfering GPC-3 gene transcription. After the cells were transfected with specific GPC-3 short hairpin RNA (shRNA), the inhibition of GPC-3 expression was 75.6 % in MHCC-97H or 73.8 % in Huh7 cells at mRNA level; the rates of proliferation and apoptosis were 53.6 and 60.5 % in MHCC-97H or 54.9 and 54.4 % in Huh7 cells, with the cell cycles arrested in the G1 phase; the incidences of cell migration, metastasis, and invasion inhibition were 80.1, 56.4, and 69.1 % in MHCC-97H or 80.9, 59.6, and 58.3 % in Huh7 cells, respectively. The cell biological behaviors were altered by silencing GPC-3 with down-regulation of β-catenin, insulin-like growth factor-II and vascular endothelial growth factor, and Gli1 up-regulation. The cell proliferation was significantly inhibited (up to 95.11 %) by shRNA plus anti-cancer drugs, suggesting that GPC-3 gene should be a potential target for promoting hepatoma cell apoptosis and inhibiting metastasis through the Wnt/β-catenin and Hh singling pathways.

Related: Liver Cancer VEGFA CTNNB1 gene


Szarvas T, Tschirdewahn S, Niedworok C, et al.
Prognostic value of tissue and circulating levels of IMP3 in prostate cancer.
Int J Cancer. 2014; 135(7):1596-604 [PubMed] Related Publications
Tissue levels of the oncofetal protein insulin-like growth factor 2 (IGF2) messenger RNA-binding protein 3 (IMP3) have been associated with poor prognosis in multiple human malignancies. However, its circulating levels have not yet been analyzed. Therefore, the aim of this study was to assess the prognostic value of both serum and tissue levels of IMP3 in prostate cancer (PC). IMP3 protein expression was analyzed in 124 PC and 13 benign prostate hyperplasia (BPH) patients using immunohistochemistry. Gene expression levels of IMP3 and its molecular target IGF2 were analyzed in 29 frozen and 26 paraffin-embedded PC tissues using real-time polymerase chain reaction and immunohistochemistry. Serum IMP3 levels were assessed in 94 PC and 20 BPH patients as well as in 20 controls using enzyme-linked immunosorbent assay. IMP3 immunostaining was present in 0% (0/13) of BPHs, 15% (15/101) of clinically localized PCs and 65% (15/23) of palliatively treated metastatic PCs (p < 0.001). Accordingly, serum IMP3 concentrations were significantly higher in PC compared to BPH patients which were higher than those in controls (p < 0.001 each). The highest concentrations were detected in metastatic PC patients (p = 0.036). In patients who underwent radical prostatectomy high IMP3 serum levels were independently associated with poor cancer-specific survival. IMP3 gene and protein expressions were not correlated with those of IGF2. In conclusion, we found enhanced IMP3 levels in tissue and serum samples of PC patients compared to non-PC men. Moreover, IMP3 was associated with metastasis and PC-specific survival. The tumor promoting effect of IMP3 appears to be independent from its regulatory role on IGF2 in PC.


Berg M, Hagland HR, Søreide K
Comparison of CpG island methylator phenotype (CIMP) frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.
PLoS One. 2014; 9(1):e86657 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
BACKGROUND: In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP). However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer.
METHODS: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G) were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared.
RESULTS: For 47 samples (71%), the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20%) consistently scored as CIMP positive. Only four of 31 probes (13%) investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; p<0.005) was demonstrated.
CONCLUSIONS: A statistical significant variation in the frequency of CIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition used.


Szymanowska-Narloch A, Jassem E, Skrzypski M, et al.
Molecular profiles of non-small cell lung cancers in cigarette smoking and never-smoking patients.
Adv Med Sci. 2013; 58(2):196-206 [PubMed] Related Publications
PURPOSE: Molecular features of non-small cell lung cancer (NSCLC) in never-smokers are not well recognized. We assessed the expression of genes potentially related to lung cancer etiology in smoking vs. never-smoking NSCLC patients.
METHODS: We assayed frozen tumor samples from surgically resected 31 never-smoking and 54 clinically pair-matched smoking NSCLC patients, and from corresponding normal lung tissue from 27 and 43 patients, respectively. Expression of 21 genes, including cell membrane kinases, sex hormone receptors, transcription factors, growth factors and others was assessed by reverse transcription - quantitative PCR.
RESULTS: Expression of 5 genes was significantly higher in tumors of non-smokers vs. smokers: CSF1R (p<0.0001), RRAD (p<0.0001), PR (p=0.0004), TGFBR2 (p=0.0027) and EPHB6 (p=0.0033). Expression of AKR1B10 (p<0.0001), CDKN2A (p<0.0001), CHRNA6 (p<0.0001), SOX9 (p<0.0001), survivin (p<0.0001) and ER2 (p=0.002) was significantly higher in tumors compared to normal lung tissue. Expression of AR (p<0.0001), EPHB6 (p<0.0001), PR (p<0.0001), TGFBR2 (p<0.0001), TGFBR3 (p<0.0001), ER1 (p=0.0006) and DLG1 (p=0.0016) was significantly lower in tumors than in normal lung tissue. Expression of IGF2 was higher in tumors than in healthy lung tissue in never-smokers (p=0.003), and expression of AHR (p<0.0001), CSF1R (p<0.0001) and RRAD (p<0.0001) was lower in tumors than in healthy lung tissue in smokers.
CONCLUSION: Expression of several genes in NSCLC is strongly related to smoking history. Lower expression of PR and higher expression of ER2 in tumors suggests a possibility of hormonal therapeutic intervention in selected NSCLC patients. Distinct molecular features of NSCLC in never-smokers, e.g. CHRNA6 upregulation, may prompt new treatment strategies.

Related: Non-Small Cell Lung Cancer Lung Cancer


Malaguarnera R, Sacco A, Morcavallo A, et al.
Metformin inhibits androgen-induced IGF-IR up-regulation in prostate cancer cells by disrupting membrane-initiated androgen signaling.
Endocrinology. 2014; 155(4):1207-21 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR(+) LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy.

Related: Prostate Cancer IGF1R Signal Transduction


Tomblin JK, Salisbury TB
Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells.
Biochem Biophys Res Commun. 2014; 443(3):1092-6 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P<.001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P<.001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P<.001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P<.001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

Related: Breast Cancer BCL1 Gene (CCND1)


Zhu P, Davis M, Blackwelder AJ, et al.
Metformin selectively targets tumor-initiating cells in ErbB2-overexpressing breast cancer models.
Cancer Prev Res (Phila). 2014; 7(2):199-210 [PubMed] Related Publications
Metformin is an oral biguanide used for type II diabetes. Epidemiologic studies suggest a link between metformin use and reduced risk of breast and other types of cancers. ErbB2-expressing breast cancer is a subgroup of tumors with poor prognosis. Previous studies demonstrated that metformin is a potent inhibitor of ErbB2-overexpressing breast cancer cells; metformin treatment extends the life span and impedes mammary tumor development in ErbB2 transgenic mice in vivo. However, the mechanisms of metformin associated antitumor activity, especially in prevention models, remain unclear. We report here for the first time that systemic administration of metformin selectively inhibits CD61(high)/CD49f(high) subpopulation, a group of tumor-initiating cells (TIC) of mouse mammary tumor virus (MMTV)-ErbB2 mammary tumors, in preneoplastic mammary glands. Metformin also inhibited CD61(high)/CD49f(high) subpopulation in MMTV-ErbB2 tumor-derived cells, which was correlated with their compromised tumor initiation/development in a syngeneic tumor graft model. Molecular analysis indicated that metformin induced downregulation of ErbB2 and EGFR expression and inhibited the phosphorylation of ErbB family members, insulin-like growth factor-1R, AKT, mTOR, and STAT3 in vivo. In vitro data indicate that low doses of metformin inhibited the self-renewal/proliferation of cancer stem cells (CSC)/TICs in ErbB2-overexpressing breast cancer cells. We further demonstrated that the expression and activation of ErbB2 were preferentially increased in CSC/TIC-enriched tumorsphere cells, which promoted their self-renewal/proliferation and rendered them more sensitive to metformin. Our results, especially the in vivo data, provide fundamental support for developing metformin-mediated preventive strategies targeting ErbB2-associated carcinogenesis.

Related: ERBB2 (HER2)


Murata A, Baba Y, Watanabe M, et al.
IGF2 DMR0 methylation, loss of imprinting, and patient prognosis in esophageal squamous cell carcinoma.
Ann Surg Oncol. 2014; 21(4):1166-74 [PubMed] Related Publications
BACKGROUND: Insulin like growth factor 2 gene (IGF2) is normally imprinted. Loss of imprinting (LOI) of IGF2 in humans is associated with an increased risk of cancer and is controlled by CpG-rich regions known as differentially methylated regions (DMRs). Specifically, the methylation level at IGF2 DMR0 is correlated with IGF2 LOI and is a suggested surrogate marker for IGF2 LOI. A relationship between IGF2 DMR0 hypomethylation and poor prognosis has been shown in colorectal cancer. However, to our knowledge, no study has examined the relationships among the IGF2 DMR0 methylation level, LOI, and clinical outcome in esophageal squamous cell carcinoma (ESCC).
METHODS: The IGF2 imprinting status was screened using ApaI polymorphism, and IGF2 protein expression was evaluated by immunohistochemistry with 30 ESCC tissue specimens. For survival analysis, IGF2 DMR0 methylation was measured using a bisulfite pyrosequencing assay with 216 ESCC tissue specimens.
RESULTS: Twelve (40 %) of 30 cases were informative (i.e., heterozygous for ApaI), and 5 (42 %) of 12 informative cases displayed IGF2 LOI. IGF2 LOI cases exhibited lower DMR0 methylation levels (mean 23 %) than IGF2 non-LOI cases (37 %). The IGF2 DMR0 methylation level was significantly associated with IGF2 protein expression. Among 202 patients eligible for survival analysis, IGF2 DMR0 hypomethylation was significantly associated with higher cancer-specific mortality.
CONCLUSIONS: The IGF2 DMR0 methylation level in ESCC was associated with IGF2 LOI and IGF2 protein expression. In addition, IGF2 DMR0 hypomethylation was associated with a shorter survival time, suggesting its potential role as a prognostic biomarker.

Related: Cancer of the Esophagus Esophageal Cancer


Liu M, Roth A, Yu M, et al.
The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis.
Genes Dev. 2013; 27(23):2543-8 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
Insulin-like growth factor 2 (IGF2), a developmentally regulated and maternally imprinted gene, is frequently overexpressed in pediatric cancers. Although loss of imprinting (LOI) at fetal promoters contributes to increased IGF2 in tumors, the magnitude of IGF2 expression suggests the involvement of additional regulatory mechanisms. A microRNA (miRNA) screen of primary Wilms' tumors identified specific overexpression of miR-483-5p, which is embedded within the IGF2 gene. Unexpectedly, the IGF2 mRNA itself is transcriptionally up-regulated by miR-483-5p. A nuclear pool of miR-483-5p binds directly to the 5' untranslated region (UTR) of fetal IGF2 mRNA, enhancing the association of the RNA helicase DHX9 to the IGF2 transcript and promoting IGF2 transcription. Ectopic expression of miR-483-5p in IGF2-dependent sarcoma cells is correlated with increased tumorigenesis in vivo. Together, these observations suggest a functional positive feedback loop of an intronic miRNA on transcription of its host gene.


Nguewa P, Manrique I, Díaz R, et al.
Id-1B, an alternatively spliced isoform of the inhibitor of differentiation-1, impairs cancer cell malignancy through inhibition of proliferation and angiogenesis.
Curr Mol Med. 2014; 14(1):151-62 [PubMed] Related Publications
Id-1 is a member of the helix-loop-helix family of proteins that regulates the activity of transcription factors to suppress cellular differentiation and to promote cell growth. Overexpression of Id-1 in tumor cells correlates with increased malignancy and resistance to chemotherapy and radiotherapy. Id-1B is an isoform generated by alternative splicing that differs from the classical Id-1 in the 13-C-terminal amino acids, whose function is at present unknown. We have studied the role of Id-1B in cancer and its expression in healthy/malignant lung tissues. Overexpression of Id-1B in A549 lung and PC3 prostate cancer cells reduced anchorage-dependent and independent proliferation and clonogenic potential. Moreover, it increased the proportion of cells in the G0/G1 phase of the cell cycle and p27 levels, while reduced phospho-Erk and cyclin A levels. Through microarray analysis, we identified genes involved in cell growth and proliferation that are specifically deregulated as a consequence of Id-1B overexpression, including IGF2, BMP4, Id2, GATA3, EREG and AREG. Id-1B overexpressing cells that were treated with 4Gy irradiation dose were significantly less resistant to cell death. In vivo assays demonstrated that tumors with high Id-1B levels exhibited less growth (p<0.01), metabolic activity (glucose uptake) and angiogenesis (p<0.05) compared to tumors with low Id-1B expression; mice survival was significantly extended (p<0.05). Quantification by qRT-PCR revealed that expression of Id-1B was significantly lower (p<0.01) in human lung tumors compared to their matched nonmalignant counterparts. In conclusion, our results demonstrate that Id-1B decreases the malignancy of lung and prostate cancer cells, sensitizes them to radiotherapy-induced cell death, and counteracts the protumorigenic role of the classical form of Id-1.

Related: Apoptosis Cancer Prevention and Risk Reduction Angiogenesis and Cancer TP53


Huang YF, Cheng WF, Wu YP, et al.
Circulating IGF system and treatment outcome in epithelial ovarian cancer.
Endocr Relat Cancer. 2014; 21(2):217-29 [PubMed] Related Publications
Aggressive epithelial ovarian cancers (EOCs) frequently progress and become fatal, even when cytoreduction surgery plus platinum-based chemotherapy are performed. Thus, the early detection of high-risk subgroups is important in order to provide opportunities for better treatment outcomes, using alternative therapeutic strategies. This study aimed to explore the expression of circulating IGF system components and their relationship with treatment outcome in EOC. We included 228 patients with a median follow-up time of 44 months at two tertiary centers. There were 68 cancer deaths and 108 cases of cancer progression in the cohort. Preoperative serum levels of total IGF1, IGF2, IGF-binding protein 2 (IGFBP2), and IGFBP3 were analyzed using an ELISA and were then converted into an IGF1:IGFBP3 molar ratio. The risks of mortality and progression were estimated using Cox regression models in univariate and multivariate analyses. Our results showed that high IGF1, IGF2, and IGFBP3 levels were significantly associated with an early cancer stage, non-serous histology, and optimal cytoreduction. High IGFBP2 levels were associated with an advanced stage and serous histology. Overall and progression-free survival durations were significantly better among patients with high IGF1 (P=0.003 and P=0.001), IGF2 (P=0.003 and P=0.02), or IGFBP3 levels (P=0.02 and P=0.008). In multivariate analysis, serum IGFBP2 levels were significantly associated with increased risk of mortality (hazard ratio=1.84, 95% CI: 1.07-3.18, P=0.03), indicating that IGFBP2 could be used as an early predictor of EOC-related mortality. The combination of elevated IGFBP2 and reduced IGF1 levels at diagnosis could further facilitate the identification of a patient subgroup with the worst prognosis.

Related: IGF1 Ovarian Cancer


Ellis BC, Graham LD, Molloy PL
CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism.
Biochim Biophys Acta. 2014; 1843(2):372-86 [PubMed] Related Publications
Colorectal neoplasia differentially expressed (CRNDE) is a novel gene that is activated early in colorectal cancer but whose regulation and functions are unknown. CRNDE transcripts are recognized as long non-coding RNAs (lncRNAs), which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Complex alternative splicing results in numerous transcripts from this gene, and we have identified novel transcripts containing a highly-conserved sequence within intron 4 ("gVC-In4"). In colorectal cancer cells, we demonstrate that treatment with insulin and insulin-like growth factors (IGF) repressed CRNDE nuclear transcripts, including those encompassing gVC-In4. These repressive effects were negated by use of inhibitors against either the PI3K/Akt/mTOR pathway or Raf/MAPK pathway, suggesting CRNDE is a downstream target of both signaling cascades. Expression array analyses revealed that siRNA-mediated knockdown of gVC-In4 transcripts affected the expression of many genes, which showed correlation with insulin/IGF signaling pathway components and responses, including glucose and lipid metabolism. Some of the genes are identical to those affected by insulin treatment in the same cell line. The results suggest that CRNDE expression promotes the metabolic changes by which cancer cells switch to aerobic glycolysis (Warburg effect). This is the first report of a lncRNA regulated by insulin/IGFs, and our findings indicate a role for CRNDE nuclear transcripts in regulating cellular metabolism which may correlate with their upregulation in colorectal cancer.

Related: Colorectal (Bowel) Cancer IGF1 AKT1 Signal Transduction


He Y, Meng XM, Huang C, et al.
Long noncoding RNAs: Novel insights into hepatocelluar carcinoma.
Cancer Lett. 2014; 344(1):20-7 [PubMed] Related Publications
Recent advances in non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack of coding protein function, termed long noncoding RNAs (lncRNAs). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNAs world. Moreover, accumulating studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma(HCC) and closely related with tumorigenesis, metastasis, prognosis or diagnosis. In this review, we will briefly discuss the regulation and functional role of lncRNAs in HCC, therefore evaluating the potential of lncRNAs as prospective novel therapeutic targets in HCC.

Related: Liver Cancer


Schneider G, Bowser MJ, Shin DM, et al.
The paternally imprinted DLK1-GTL2 locus is differentially methylated in embryonal and alveolar rhabdomyosarcomas.
Int J Oncol. 2014; 44(1):295-300 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
Parental imprinting of differentially methylated regions (DMRs) contributes to appropriate expression of several developmentally important genes from paternally or maternally derived chromosomes. Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children and is associated with altered expression of certain parentally imprinted genes. As previously reported, RMS cells display loss of imprinting (LOI) of the DMR at the IGF2-H19 locus, resulting in insulin-like growth factor 2 (IGF2) transcription from both paternally and maternally inherited chromosomes, and overall IGF2 overexpression. As the DLK1-GTL2 locus is structurally similar to the IGF2-H19 locus, the status of parental imprinting of the DLK1-GTL2 locus was studied in RMS. We observed that while both embryonal and alveolar rhabdomyosarcomas (ERMS and ARMS, respectively) show LOI of the DMR at the IGF2-H19 locus, imprinting of the DMR at the DLK1-GTL2 locus varies in association with the histological subtype of RMS. We found that, while ERMS tumors consistently show LOI of the DMR at the DLK1-GTL2 locus, ARMS tumors have erasure of imprinting (EOI) at this locus. These changes in imprinting status of the DLK1-GTL2 locus result in a higher GTL2/DLK1 mRNA ratio in ARMS as compared to ERMS. This difference in imprinting elucidates a novel genetic difference between these two RMS subtypes and may provide a potential diagnostic tool to distinguish between these subtypes.


Barcellos-Hoff MH, Kleinberg DL
Breast cancer risk in BRCA1 mutation carriers: insight from mouse models.
Ann Oncol. 2013; 24 Suppl 8:viii8-viii12 [PubMed] Related Publications
Since its identification 20 years ago, the biological basis for the high breast cancer risk in women who have germline BRCA1 mutations has been an area of intense study for three reasons. First, BRCA1 was the first gene shown to associate with breast cancer risk, and therefore serves as model for understanding genetic susceptibility. Second, the type of breast cancer that occurs in these women has specific features that have engendered new hypotheses about the cancer biology. Third, it is hoped that understanding the origins of this disease may provide the means to prevent disease. Resolving this question has proven extremely challenging because the biology controlled by BRCA1 is complex. Our working model is that the high frequency of basal-like breast cancer in BRCA1 mutation carriers is the result of a self-perpetuating triad of cellular phenotypes consisting of: (i) intrinsic defects in DNA repair and centrosome regulation that lead to genomic instability and increases spontaneous transformation; (ii) aberrant lineage commitment; and (iii) increased proliferation due to in large part to increased IGF-1 activity. We propose that the last is key and is a potential entree for preventing breast cancer in BRCA1 mutation carriers.

Related: Breast Cancer IGF1


Yeh TS, Wang F, Chen TC, et al.
Expression profile of microRNA-200 family in hepatocellular carcinoma with bile duct tumor thrombus.
Ann Surg. 2014; 259(2):346-54 [PubMed] Related Publications
OBJECTIVE: The aim of this study was to assess the role of the miR-200 family in the pathogenesis of hepatocellular carcinoma with bile duct tumor thrombus (HCC-BDTT).
BACKGROUND: Hepatocellular carcinoma with bile duct tumor thrombus is a challenging condition because of its rarity and dismal prognosis. Epithelial-to-mesenchymal transition (EMT) is considered a critical step in the progression and metastasis of HCC and is regulated by the microRNA-200 (miR-200) family.
METHODS: Thirty patients with HCC-BDTT were enrolled and 1240 patients with conventional HCC (cHCC) served as clinicopathologic controls. Sixty age- and sex-matched cHCC patients were selected to compare the miR-200 family expression profile and immunohistochemical characteristics. Gain- and loss-of-function studies of the miR-200 family were conducted using the hepatoma cell lines.
RESULTS: Although the mean size of HCC-BDTT was smaller than that of cHCC, the former had a higher incidence of vascular invasion and a poorer long-term survival. The expressions of miR-200c and miR-141 were downregulated in HCC-BDTT (4.5- and 4.8-fold decrease, respectively). Downregulation of both miR-200c and miR-141 independently predicted disease-free survival. The HCC-BDTT, but not cHCC, exhibited overexpression of ZEB1, Twist, transforming growth factor-β receptor type II, and vimentin, and aberrant E-cadherin expression, indicating EMT. The HCC-BDTT demonstrated increased expression in IL-6 and stemness factor Bmi1, but reduced level of metastasis-suppressive protein, insulin-like growth factor-binding protein 4. The invasive ability of the highly aggressive Mahlavu cell was attenuated by pre-miR-200c+141, whereas the invasive ability of the less aggressive Huh7 cell was enhanced by anti-miR-200c+141.
CONCLUSIONS: Simultaneous silencing of miR-200c and miR-141 was likely to be responsible for the development of HCC-BDTT via ZEB1-directed EMT activation and Sec23a-mediated secretome.

Related: Extra-Hepatic Bile duct cancer (cholangiocarcinoma) Liver Cancer


Beadling C, Patterson J, Justusson E, et al.
Gene expression of the IGF pathway family distinguishes subsets of gastrointestinal stromal tumors wild type for KIT and PDGFRA.
Cancer Med. 2013; 2(1):21-31 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
Gastrointestinal stromal tumors (GISTs) arise from the interstitial cells of Cajal (ICCs) and are the most common mesenchymal neoplasm of the gastrointestinal tract. While the majority of GISTs harbor activating mutations in either the v-kit Hardy-Zuckerman feline sarcoma viral oncogene homolog (KIT) or platelet-derived growth factor receptor alpha (PDGFRA) tyrosine kinases, approximately 10-15% of adult GISTs and 85% of pediatric GISTs lack such mutations. These "wild-type" GISTs have been reported to express high levels of the insulin-like growth factor 1 receptor (IGF1R), and IGF1R-targeted therapy of wild-type GISTs is being evaluated in clinical trials. However, it is not clear that all wild-type GISTs express IGF1R, because studies to date have predominantly focused on a particular subtype of gastric wild-type GIST that is deficient in the mitochondrial succinate dehydrogenase (SDH) complex. This study of a series of 136 GISTs, including 72 wild-type specimens, was therefore undertaken to further characterize wild-type GIST subtypes based on the relative expression of transcripts encoding IGF1R. Additional transcripts relevant to GIST biology were also evaluated, including members of the IGF-signaling pathway (IGF1, IGF2, and insulin receptor [INSR]), neural markers (CDH2[CDH: Cadherin], neurofilament, light polypeptide, LHX2 [LHX: LIM homeobox], and KIRREL3 [KIRREL: kin of IRRE like]), KIT, PDGFRA, CD34, and HIF1A. Succinate dehydrogenase complex, subunit B protein expression was also assessed as a measure of SDH complex integrity. In addition to the previously described SDH-deficient, IGF1R(high) wild-type GISTs, other SDH-intact wild-type subpopulations were defined by high relative expression of IGF1R, neural markers, IGF1 and INSR, or low IGF1R coupled with high IGF2. These results underscore the complexity and heterogeneity of wild-type GISTs that will need to be factored into molecularly-targeted therapeutic strategies.

Related: Gastrointestinal System Cancers Gastrointestinal Stromal Tumors HIF1A IGF1R PDGFRA gene Signal Transduction


Zhang M, Drummen GP, Luo S
Anti-insulin-like growth factor-IIP3 DNAzymes inhibit cell proliferation and induce caspase-dependent apoptosis in human hepatocarcinoma cell lines.
Drug Des Devel Ther. 2013; 7:1089-102 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
BACKGROUND: Insulin-like growth factor II (IGF-II) is a fetal growth protein and an important proangiogenic factor controlled by four promoters (P), of which P2-P4 are inactive in the adult liver. Reactivation and dysregulation of IGF-IIP3 in particular is associated with the attenuation of apoptosis and increased proliferation in a number of liver cancer cell types. Its involvement in experimental liver carcinogenesis makes it a potential target for cancer gene therapy. We designed two IGF-IIP3 specific DNAzymes (DRz1 and DRz2) that target IGF-IIP3 messenger RNA (mRNA) with the aim of reducing IGF-II expression through promoter 3.
METHODS: IGF-IIP3 mRNA and protein expression levels were assessed using real-time polymerase chain reaction and gel electrophoresis/western blotting after transfection with Lipofectamine® in SMMC-7721, Huh7, and HepG2 cell lines. Cell proliferation was determined via MTT assay; apoptosis was evaluated by fluorescence microscopy and with flow cytometry; procaspase-3 and -9 expression were detected via western blotting; and caspase activity was assayed colorimetrically. Standard procedures were used to calculate means and standard deviations, and P-values below 0.05 were considered to indicate significant differences.
RESULTS: DRzs were transfected into hepatocellular carcinoma cells and the results showed that DRz1, in particular, could decrease the expression of IGF-IIP3 by nearly 50%. Furthermore, DRz1 significantly inhibited cell proliferation and induced apoptosis. In addition, the down-regulation of IGF-IIP3 expression was associated with increased caspase-3 and -9 activity in SMMC-7721 cells after 24 hours of transfection. In all experiments, the efficacy of DRz2 to influence IGF-IIP3 levels and associated effects remained second to DRz1.
CONCLUSION: Overall, these results suggest that DRz1-based targeting of IGF-IIP3 mRNA might have antitumorigenic activity and may potentially provide the basis for a novel therapeutic intervention in liver cancer treatment, although further development is required.

Related: Apoptosis Liver Cancer


Zhang ZF, Pei BX, Wang AL, et al.
Expressions of CLDN1 and insulin-like growth factor 2 are associated with poor prognosis in stage N2 non-small cell lung cancer.
Chin Med J (Engl). 2013; 126(19):3668-74 [PubMed] Related Publications
BACKGROUND: Patients with single station mediastinal lymph node (N2) non-small cell lung cancer (NSCLC) have a better prognosis than those with multilevel N2. The molecular factors which are involved in disease progression remain largely unknown. The purpose of this study was to investigate gene expression differences between single station and multilevel N2 NSCLC and to identify the crucial molecular factors which are associated with progress and prognosis of stage N2 NSCLC.
METHODS: Gene expression analysis was performed using Agilent 4×44K Whole Human Genome Oligo Microarray on 10 freshfrozen lymph node tissue samples from single station N2 and paired multilevel N2 NSCLC patients. Real-time reverse transcription (RT)-PCR was used to validate the differential expression of 14 genes selected by cDNA microarray of which four were confirmed. Immunohistochemical staining for these validated genes was performed on formalin-fixed, paraffinembedded tissue samples from 130 cases of stage N2 NSCLC arranged in a high-density tissue microarray.
RESULTS: We identified a 14 gene expression signature by comparative analysis of gene expression. Expression of these genes strongly differed between single station and multilevel N2 NSCLC. Four genes (ADAM28, MUC4, CLDN1, and IGF2) correlated with the results of microarray and real-time RT-PCR analysis for the gene-expression data in samples from 56 NSCLC patients. Immunohistochemical staining for these genes in samples from 130 cases of stage N2 NSCLC demonstrated the expression of IGF2 and CLDN1 was negatively correlated with overall survival of stage N2 NSCLC.
CONCLUSIONS: Our results suggest that the expression of CLDN1 and IGF2 indicate a poor prognosis in stage N2 NSCLC. Further, CLDN1 and IGF2 may provide potential targeting opportunities in future therapies.

Related: Non-Small Cell Lung Cancer Lung Cancer


Hanks J, Ayed I, Kukreja N, et al.
The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia.
Am J Clin Nutr. 2013; 98(6):1564-74 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
BACKGROUND: Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation.
OBJECTIVE: We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon.
DESIGN: We conducted a cross-sectional study of 336 men and women (age 19-92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O(6)-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively.
RESULTS: Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001).
CONCLUSION: MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia.

Related: Colorectal (Bowel) Cancer MTHFR


Klajic J, Fleischer T, Dejeux E, et al.
Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors.
BMC Cancer. 2013; 13:456 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
BACKGROUND: Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression.
METHODS: Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV.
RESULTS: Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival.
CONCLUSIONS: In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.

Related: Breast Cancer TP53


Livingstone C
IGF2 and cancer.
Endocr Relat Cancer. 2013; 20(6):R321-39 [PubMed] Related Publications
Insulin-like growth factor 2 (IGF2) is a 7.5  kDa mitogenic peptide hormone expressed by liver and many other tissues. It is three times more abundant in serum than IGF1, but our understanding of its physiological and pathological roles has lagged behind that of IGF1. Expression of the IGF2 gene is strictly regulated. Over-expression occurs in many cancers and is associated with a poor prognosis. Elevated serum IGF2 is also associated with increased risk of developing various cancers including colorectal, breast, prostate and lung. There is established clinical utility for IGF2 measurement in the diagnosis of non-islet cell tumour hypoglycaemia, a condition characterised by a molar IGF2:IGF1 ratio >10. Recent advances in understanding of the pathophysiology of IGF2 in cancer have suggested much novel clinical utility for its measurement. Measurement of IGF2 in blood and genetic and epigenetic tests of the IGF2 gene may help assess cancer risk and prognosis. Further studies will determine whether these tests enter clinical practice. New therapeutic approaches are being developed to target IGF2 action. This review provides a clinical perspective on IGF2 and an update on recent research findings.

Related: Cancer Prevention and Risk Reduction


Ronchi CL, Sbiera S, Leich E, et al.
Single nucleotide polymorphism array profiling of adrenocortical tumors--evidence for an adenoma carcinoma sequence?
PLoS One. 2013; 8(9):e73959 [PubMed] Article available free on PMC after 17/01/2015 Related Publications
Adrenocortical tumors consist of benign adenomas and highly malignant carcinomas with a still incompletely understood pathogenesis. A total of 46 adrenocortical tumors (24 adenomas and 22 carcinomas) were investigated aiming to identify novel genes involved in adrenocortical tumorigenesis. High-resolution single nucleotide polymorphism arrays (Affymetrix) were used to detect copy number alterations (CNAs) and copy neutral losses of heterozygosity (cnLOH). Genomic clustering showed good separation between adenomas and carcinomas, with best partition including only chromosome 5, which was highly amplified in 17/22 malignant tumors. The malignant tumors had more relevant genomic aberrations than benign tumors, such as a higher median number of recurrent CNA (2631 vs 94), CNAs >100 Kb (62.5 vs 7) and CN losses (72.5 vs 5.5), and a higher percentage of samples with cnLOH (91% vs 29%). Within the carcinoma cohort, a precise genetic pattern (i.e. large gains at chr 5, 7, 12, and 19, and losses at chr 1, 2, 13, 17, and 22) was associated with a better prognosis (overall survival: 72.2 vs 35.4 months, P=0.063). Interestingly, >70% of gains frequent in benign were also present in malignant tumors. Notch signaling was the most frequently involved pathway in both tumor entities. Finally, a CN gain at imprinted "IGF2" locus chr 11p15.5 appeared to be an early alteration in a multi-step tumor progression, followed by the loss of one or two alleles, associated with increased IGF2 expression, only in carcinomas. Our study serves as database for the identification of genes and pathways, such as Notch signaling, which could be involved in the pathogenesis of adrenocortical tumors. Using these data, we postulate an adenoma-carcinoma sequence for these tumors.

Related: Adrenocortical Cancer Adrenocortical Carcinoma - Molecular Biology FISH


Contents

Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IGF2, Cancer Genetics Web: http://www.cancerindex.org/geneweb/IGF2.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999