DIS3L2

Gene Summary

Gene:DIS3L2; DIS3 like 3'-5' exoribonuclease 2
Aliases: FAM6A, PRLMNS, hDIS3L2
Location:2q37.1
Summary:The protein encoded by this gene is similar in sequence to 3'/5' exonucleolytic subunits of the RNA exosome. The exosome is a large multimeric ribonucleotide complex responsible for degrading various RNA substrates. Several transcript variants, some protein-coding and some not, have been found for this gene. [provided by RefSeq, Mar 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DIS3-like exonuclease 2
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • IGF2
  • Cell Surface Receptors
  • Post-Transcriptional RNA Processing
  • Genetic Predisposition
  • Nerve Tissue Proteins
  • Fetal Macrosomia
  • Survivors
  • Kidney Cancer
  • Homeodomain Proteins
  • Pedigree
  • Childhood Cancer
  • Adolescents
  • DIS3L2
  • Pregnancy
  • Base Sequence
  • Mutation
  • 3'-uridylic acid
  • RNA Stability
  • Neoplastic Cell Transformation
  • Nephrons
  • Substrate Specificity
  • Up-Regulation
  • Wilms Tumour
  • Cell Line
  • Chromosome 2
  • Stem Cells
  • Gene Expression Regulation
  • Messenger RNA
  • Exoribonucleases
  • HEK293 Cells
  • RNA-Binding Proteins
  • Infant
  • Exonucleases
  • RNA
  • Perlman Syndrome
  • Newborns
  • MicroRNAs
  • Missense Mutation
  • RNA, Untranslated
  • Ribonucleases
  • Germ-Line Mutation
  • Molecular Sequence Data
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DIS3L2 (cancer-related)

Luan S, Luo J, Liu H, Li Z
Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2.
RNA Biol. 2019; 16(2):160-165 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
DIS3L2, in which mutations have been linked to Perlman syndrome, is an RNA-binding protein with 3'-5' exoribonuclease activity. It contains two CSD domains and one S1 domain, all of which are RNA-binding domains, and one RNB domain that is responsible for the exoribonuclease activity. The 3' polyuridine of RNA substrates can serve as a degradation signal for DIS3L2. Because DIS3L2 is predominantly localized in the cytoplasm, it can recognize, bind, and mediate the degradation of cytoplasmic uridylated RNA, including pre-microRNA, mature microRNA, mRNA, and some other non-coding RNAs. Therefore, DIS3L2 plays an important role in cytoplasmic RNA surveillance and decay. DIS3L2 is involved in multiple biological and physiological processes such as cell division, proliferation, differentiation, and apoptosis. Nonetheless, the function of DIS3L2, especially its association with cancer, remains largely unknown. We summarize here the RNA substrates degraded by DIS3L2 with its exonucleolytic activity, together with the corresponding biological functions it is implicated in. Furthermore, we discuss whether DIS3L2 can function independently of its 3'-5' exoribonuclease activity, as well as its potential tumor-suppressive or oncogenic roles during cancer progression.

Bharathavikru R, Hastie ND
Overgrowth syndromes and pediatric cancers: how many roads lead to
Genes Dev. 2018; 32(15-16):993-995 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
Overgrowth syndromes such as Perlman syndrome and associated pediatric cancers, including Wilms tumor, arise through genetic and, in certain instances, also epigenetic changes. In the case of the Beckwith-Wiedemann overgrowth syndrome and in Wilms tumor, increased levels of

Hunter RW, Liu Y, Manjunath H, et al.
Loss of
Genes Dev. 2018; 32(13-14):903-908 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of

Soma N, Higashimoto K, Imamura M, et al.
Long term survival of a patient with Perlman syndrome due to novel compound heterozygous missense mutations in RNB domain of DIS3L2.
Am J Med Genet A. 2017; 173(4):1077-1081 [PubMed] Related Publications
Perlman syndrome is a rare overgrowth syndrome characterized by polyhydramnios, macrosomia, distinctive facial appearance, renal dysplasia, and a predisposition to Wilms' tumor. The syndrome is often associated with a high neonatal mortality rate and there are few reports of long-term survivors. We studied a 6-year-old Japanese female patient, who was diagnosed with Perlman syndrome, with novel compound heterozygous mutations in DIS3L2 (c.[367-2A > G];[1328T > A]), who has survived long term. Most reported DIS3L2 mutations have been the homozygous deletion of exon 6 or exon 9, and these mutations would certainly have caused the loss of both RNA binding and degradation activity. We have identified new compound heterozygous mutations in the DIS3L2 of this long-term survivor of Perlman syndrome. The reason our patient has survived long-term would be a missense mutation (c.1328 T > A, p.Met443Lys) having retained RNA binding in both the cold-shock domains and the S1 domain, and through partial RNA degradation. If partial exonuclease functions remain in at least one allele, long-term survival may be possible. Further studies of Perlman syndrome patients with proven DIS3L2 mutations are needed to clarify genotype-phenotype correlation.

Łabno A, Warkocki Z, Kuliński T, et al.
Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs.
Nucleic Acids Res. 2016; 44(21):10437-10453 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here, we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5' UTR. Importantly, DIS3L2 contributes to surveillance of maturing snRNAs during their cytoplasmic processing. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3' RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis.

Wegert J, Ishaque N, Vardapour R, et al.
Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.
Cancer Cell. 2015; 27(2):298-311 [PubMed] Related Publications
Blastemal histology in chemotherapy-treated pediatric Wilms tumors (nephroblastoma) is associated with adverse prognosis. To uncover the underlying tumor biology and find therapeutic leads for this subgroup, we analyzed 58 blastemal type Wilms tumors by exome and transcriptome sequencing and validated our findings in a large replication cohort. Recurrent mutations included a hotspot mutation (Q177R) in the homeo-domain of SIX1 and SIX2 in tumors with high proliferative potential (18.1% of blastemal cases); mutations in the DROSHA/DGCR8 microprocessor genes (18.2% of blastemal cases); mutations in DICER1 and DIS3L2; and alterations in IGF2, MYCN, and TP53, the latter being strongly associated with dismal outcome. DROSHA and DGCR8 mutations strongly altered miRNA expression patterns in tumors, which was functionally validated in cell lines expressing mutant DROSHA.

Tian F, Yourek G, Shi X, Yang Y
The development of Wilms tumor: from WT1 and microRNA to animal models.
Biochim Biophys Acta. 2014; 1846(1):180-7 [PubMed] Related Publications
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.

Gallouzi IE, Wilusz J
A DIStinctively novel exoribonuclease that really likes U.
EMBO J. 2013; 32(13):1799-801 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
Regulated degradation plays a major role in determining the levels of both non-coding (miRNA) and coding (mRNA) transcripts. Thus, insights into the factors and pathways that influence this process have broad, interdisciplinary implications. New findings by Malecki et al (2013), Lubas et al (2013), and Chang et al (2013) identify the protein Dis3L2 as a major player in the 3′–5′ exonucleolytic decay of transcripts. Furthermore, they demonstrate a strong connection between terminal uridylation of the RNA substrate and enzymatic activity.

Morris MR, Astuti D, Maher ER
Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2.
Am J Med Genet C Semin Med Genet. 2013; 163C(2):106-13 [PubMed] Related Publications
Perlman syndrome is a rare autosomal recessively inherited congenital overgrowth syndrome characterized by polyhydramnios, macrosomia, characteristic facial dysmorphology, renal dysplasia and nephroblastomatosis and multiple congenital anomalies. Perlman syndrome is associated with high neonatal mortality and, survivors have developmental delay and a high risk of Wilms tumor. Recently a Perlman syndrome locus was mapped to chromosome 2q37 and homozygous or compound heterozygous mutations were characterized in DIS3L2. The DIS3L2 gene product has ribonuclease activity and homology to the DIS3 component of the RNA exosome. It has been postulated that the clinical features of Perlman syndrome result from disordered RNA metabolism and, though the precise targets of DIS3L2 have yet to be characterized, in cellular models DIS3L2 knockdown is associated with abnormalities of cell growth and division.

Chang HM, Triboulet R, Thornton JE, Gregory RI
A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway.
Nature. 2013; 497(7448):244-8 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
The pluripotency factor Lin28 blocks the expression of let-7 microRNAs in undifferentiated cells during development, and functions as an oncogene in a subset of cancers. Lin28 binds to let-7 precursor (pre-let-7) RNAs and recruits 3' terminal uridylyl transferases to selectively inhibit let-7 biogenesis. Uridylated pre-let-7 is refractory to processing by Dicer, and is rapidly degraded by an unknown RNase. Here we identify Dis3l2 as the 3'-5' exonuclease responsible for the decay of uridylated pre-let-7 in mouse embryonic stem cells. Biochemical reconstitution assays show that 3' oligouridylation stimulates Dis3l2 activity in vitro, and knockdown of Dis3l2 in mouse embryonic stem cells leads to the stabilization of pre-let-7. Our study establishes 3' oligouridylation as an RNA decay signal for Dis3l2, and identifies the first physiological RNA substrate of this new exonuclease, which is mutated in the Perlman syndrome of fetal overgrowth and causes a predisposition to Wilms' tumour development.

Higashimoto K, Maeda T, Okada J, et al.
Homozygous deletion of DIS3L2 exon 9 due to non-allelic homologous recombination between LINE-1s in a Japanese patient with Perlman syndrome.
Eur J Hum Genet. 2013; 21(11):1316-9 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
Perlman syndrome is a rare, autosomal recessive overgrowth disorder. Recently, the deletion of exon 9 and other mutations of the DIS3L2 gene have been reported in patients; however, the mechanism behind this deletion is still unknown. We report the homozygous deletion of exon 9 of DIS3L2 in a Japanese patient with Perlman syndrome. We identified the deletion junction, and implicate a non-allelic homologous recombination (NAHR) between two LINE-1 (L1) elements as the causative mechanism. Furthermore, the deletion junctions were different between the paternal and maternal mutant alleles, suggesting the occurrence of two independent NAHR events in the ancestors of each parent. The data suggest that the region around exon 9 might be a hot spot of L1-mediated NAHR.

Isidor B, Bourdeaut F, Lafon D, et al.
Wilms' tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas.
Eur J Hum Genet. 2013; 21(7):784-7 [PubMed] Article available free on PMC after 13/01/2020 Related Publications
Nephroblastoma (Wilms' tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith-Wiedemann, Simpson-Golabi-Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.

Astuti D, Morris MR, Cooper WN, et al.
Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility.
Nat Genet. 2012; 44(3):277-84 [PubMed] Related Publications
Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DIS3L2, Cancer Genetics Web: http://www.cancer-genetics.org/DIS3L2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999