NOTCH1

Gene Summary

Gene:NOTCH1; notch 1
Aliases: hN1, AOS5, TAN1, AOVD1
Location:9q34.3
Summary:This gene encodes a member of the NOTCH family of proteins. Members of this Type I transmembrane protein family share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple different domain types. Notch signaling is an evolutionarily conserved intercellular signaling pathway that regulates interactions between physically adjacent cells through binding of Notch family receptors to their cognate ligands. The encoded preproprotein is proteolytically processed in the trans-Golgi network to generate two polypeptide chains that heterodimerize to form the mature cell-surface receptor. This receptor plays a role in the development of numerous cell and tissue types. Mutations in this gene are associated with aortic valve disease, Adams-Oliver syndrome, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and head and neck squamous cell carcinoma. [provided by RefSeq, Jan 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:neurogenic locus notch homolog protein 1
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (104)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (10)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
-NOTCH1 and Precursor T-Cell Lymphoblastic Leukemia-Lymphoma View Publications143
Breast CancerNOTCH1 and Breast Cancer View Publications153
Head and Neck CancersNOTCH1 mutations in Head and Neck Cancers
Agrawal et al (2011) whole-exome sequencing and gene copy number analyses to study 32 primary hesd and neck squamous cell tumors and found that nearly 40% of 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in HNSCC.
View Publications125
Chronic Lymphocytic LeukemiaNOTCH1 and Chronic Lymphocytic Leukemia View Publications129
Childhood CancersNOTCH1 and Childhood T-Cell ALL View Publications80
Acute Lymphocytic Leukemia (ALL), childNOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL)
"T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy of thymocytes affecting preferentially children and adolescents. The disease is heterogeneous and characterized by a large set of chromosomal and genetic alterations that deregulate the growth of maturing thymocytes. The identification of activating point mutations in NOTCH1 in more then 50% of all T-ALL cases highlights the NOTCH1 cascade as a central player of T-ALL pathogenesis." (Koch et al, 2011)
View Publications48
-NOTCH1 / Notch signaling and Drug Resistance
Notch signaling and NOTCH1 expression has been implicated in drug resistance in a number of studies.
View Publications39
Esophageal CancerNOTCH1 and Esophageal Cancer
In a comparative sequencing study of 11 esophageal adenocarcinomas (EAC) and 12 esophageal squamous cell carcinomas (ESCC) Agrawal (2012) found that 21% of ESCCs had inactivating mutations of NOTCH1, and EAC's did not.
View Publications19
Thyroid CancerNOTCH1 and Thyroid Cancer View Publications17
Acute Lymphocytic Leukaemia (ALL)t(7;9)(q34;q34) in T-Cell Acute Lymphoblastic Leukaemia View Publications7

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NOTCH1 (cancer-related)

Yang J, Wang C, Zhang Z, et al.
Curcumin inhibits the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.
APMIS. 2017; 125(2):134-140 [PubMed] Related Publications
Prostate cancer is one of the most common malignancies in men, and it urgently demands precise interventions that target the signaling pathways implicated in its initiation, progression, and metastasis. The Notch-1 signaling pathway is closely associated with the pathophysiology of prostate cancer. This study investigated the antitumor effects and mechanisms of curcumin, which is a well-known natural compound from curcuminoids, in prostate cancer cells. Viability, proliferation, and migration were analyzed in two prostate cancer cell lines, DU145 and PC3, after curcumin treatment. Whether the Notch-1 signaling pathway is involved in the antitumor effects of curcumin was examined. Curcumin inhibited the survival and proliferation of PC3 and DU145 cells in a dose- and time-dependent manner and inhibited DU145 migration. Curcumin did not affect the expression of Notch-1 or its active product NICD, but it did inhibit the expression of MT1-MMP and MMP2 proteins in DU145 cells. We found that curcumin inhibited the DNA-binding ability of NICD in DU145 cells. In conclusion, curcumin inhibited the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.

Mezzomo LC, Pesce FG, Marçal JM, et al.
Decreased TAp63 and ΔNp63 mRNA Levels in Most Human Pituitary Adenomas Are Correlated with Notch3/Jagged1 Relative Expression.
Endocr Pathol. 2017; 28(1):13-21 [PubMed] Related Publications
Despite recent advances in molecular genetics, the pituitary adenoma initiation, development, progress, and the molecular basis of their unique features are still poorly understood. In this sense, it is proposed that stem cell could be involved in pituitary adenoma tumorigenesis. It is suggested that TP63 has important functions in stem cells, and it may have interplay of TP63 and Notch and its ligand Jagged in this process. This study aimed to evaluate the distinct expression of TP63 isoforms (TAp63 and ΔNp63), as well as its correlation with Notch3 receptor and its ligand Jagged1 in human pituitary adenomas at the messenger RNA (mRNA) level. We included 77 pituitary adenoma tumor samples from patients who underwent surgical resection. The expression levels of TP63 isoforms (TAp63 and ΔNp63) and Notch3 and its ligand Jagged1 were evaluated by qRT-PCR using isoform-specific primers. We also evaluated proliferation index immunohistochemically using KI-67 antibody. The expression levels were associated with clinical outcomes, as age, gender, tumor size, and tumor subtype. In summary, we found that mRNA expression of both TP63 isoforms decreased in pituitary adenomas compared with normal pituitary control. On the other hand, there was an increase of relative Notch3 and Jagged1 mRNA expression in the majority of examined samples. The mRNA expression of three genes evaluated was correlated and statistically significantly. There was no significant association between gene expression and the analyzed clinical data. The current study has provided the first time evidence that Tap63 and ΔNp63 isoforms are underexpressed in most pituitary adenomas. These results are correlated with Notch3 and its ligand Jagged1 overexpression, corroborating previous studies pointing its antagonistic interactions.

Campregher PV, Petroni RC, Muto NH, et al.
A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia.
Biomed Res Int. 2016; 2016:4247908 [PubMed] Free Access to Full Article Related Publications
Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions.

Li HC, Chen YF, Feng W, et al.
Loss of the Opa interacting protein 5 inhibits breast cancer proliferation through miR-139-5p/NOTCH1 pathway.
Gene. 2017; 603:1-8 [PubMed] Related Publications
Opa interacting protein 5 (OIP5) has been reported to be over-expressed in several kinds of human cancer. However, the biological function and clinical significance of OIP5 in human breast cancer remains unknown. In this study, we found that OIP5 was notably over-expressed in breast cancer tissues compared with their corresponding nontumorous tissues. Statistical analysis showed a significant correlation of OIP5 expression with advanced clinical stage. Ablation OIP5 inhibited the proliferation of breast cancer cells. OIP5 over-expression inhibited hsa-miR-139-5p expression, antagonized its functions and led to the de-repression of its endogenous target NOTCH1, which was a core oncogene in promoting breast cancer progression. Our results suggested that OIP5 is a potential diagnosis biomarker and therapeutic target for breast cancer.

Zhao YC, Zhang L, Feng SS, et al.
Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome.
Int J Nanomedicine. 2016; 11:5485-5496 [PubMed] Free Access to Full Article Related Publications
A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100-200 nm and zeta potentials of 40-50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells.

Ito T, Kudoh S, Ichimura T, et al.
Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1.
Hum Cell. 2017; 30(1):1-10 [PubMed] Related Publications
Small cell lung cancer (SCLC) is one of the most malignant neoplasms in common human cancers. The tumor is composed of small immature-looking cells with a round or fusiform shape, which possesses weak adhesion features among them, suggesting that SCLC shows the morphological characteristics of epithelial to mesenchymal transition (EMT). SCLC is characterized by high metastatic and recurrent rates, sensitivity to the initial chemotherapy, and easy acquirement of chemoresistance afterwards. These characters may be related to the EMT phenotype of SCLC. Notch signaling is an important signaling pathway, and could have roles in regulating neuroendocrine differentiation, proliferation, cell adhesion, EMT, and chemoresistance. Notch1 is usually absent in SCLC in vivo, but could appear after chemotherapy. Notch1 can enhance cell adhesion by induction of E-cadherin in SCLC, which indicates mesenchymal to epithelial transition. On the other hand, achaete-scute complex homologue 1 (ASCL1), negatively regulated by Notch signaling, is a lineage-specific gene of SCLC, and functions to promote neuroendocrine differentiation as well as EMT. ASCL1-transfected adenocarcinoma cell lines induced neuroendocrine phenotypes and lost epithelial cell features. SCLC is characterized by neuroendocrine differentiation and EMT-like features, which could be produced by inactive Notch signaling and ASCL1 expression. In addition, chemical and radiation treatments can activate Notch signaling, which suppress neuroendocrine differentiation and induces chemoradioresistance, accompanied by secession from EMT. Thus, the status of Notch signaling and ASCL1 expression may determine the cell behaviors of SCLC partly through modifying EMT phenotypes.

Qian L, Zhang W, Lei B, et al.
MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.
Oncol Rep. 2016; 36(5):2511-2516 [PubMed] Free Access to Full Article Related Publications
The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

Filip AA, Grenda A, Popek S, et al.
Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL-another piece in the puzzle.
Ann Hematol. 2017; 96(1):33-50 [PubMed] Free Access to Full Article Related Publications
Expression of microRNAs is altered in cancer. Circulating miRNA level assessed in body fluids commonly reflects their expression in tumor cells. In leukemias, however, both leukemic and nonleukemic cells compose circulating miRNA expression profile of peripheral blood. The latter contribution to extracellular miRNA pool may result in specific microenvironmental signaling, which promotes proliferation and survival. In our study, we used qT-PCR to assay peripheral blood serum of 22 chronic lymphocytic leukemia (CLL) patients for the expression of 84 miRNAs associated with activation and differentiation of B and T lymphocytes. Results were analyzed regarding the most important prognostic factors. We have found that the general expression of examined miRNAs in CLL patients was lower as compared to healthy volunteers. Only miR-34a-5p, miR31-5p, miR-155-5p, miR-150-5p, miR-15a-3p, and miR-29a-3p were expressed on a higher level. Alterations of expression observed in CLL patients involved miRNAs associated both with B and T lymphocyte differentiation and activation. The most important discriminating factors for all functional miRNA groups were trisomy 12, CD38 expression, B2M level, WBC, and NOTCH1 gene mutation. Correlation of expression of miRNAs related to T lymphocytes with prognostic factors proves their supportive function in a leukemic microenvironment. Further studies utilizing a larger test group of patients may warrant the identification of circulating miRNAs that are key players in intercellular interactions and should be considered in the design of microenvironment-targeted therapies.

Bigagli E, De Filippo C, Castagnini C, et al.
DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up.
Cell Oncol (Dordr). 2016; 39(6):545-558 [PubMed] Related Publications
BACKGROUND: DNA copy number alterations (CNAs) and gene expression changes have amply been encountered in colorectal cancers (CRCs), but the extent at which CNAs affect gene expression, as well as their relevance for tumor development, are still poorly defined. Here we aimed at assessing the clinical relevance of these parameters in a 10 year follow-up study.
METHODS: Tumors and normal adjacent colon mucosa, obtained at primary surgery from 21 CRC patients, were subjected to (i) high-resolution array CGH (a-CGH) for the detection of CNAs and (ii) microarray-based transcriptome profiling for the detection of gene expression (GE) changes. Correlations between these genomic and transcriptomic changes and their associations with clinical and histopathological parameters were assessed with the aim to identify molecular signatures associated with disease-free survival of the CRC patients during a 10 year follow-up.
RESULTS: DNA copy number gains were frequently detected in chromosomes 7, 8q, 13, 19, 20q and X, whereas DNA copy number losses were frequently detected in chromosomes 1p, 4, 8p, 15, 17p, 18, 19 and 22q. None of these alterations were observed in all samples. In addition, we found that 2,498 genes were up- and that 1,094 genes were down-regulated in the tumor samples compared to their corresponding normal mucosa (p < 0.01). The expression of 65 genes was found to be significantly associated with prognosis (p < 0.01). Specifically, we found that up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, were strongly associated with a poor survival. Subsequent integrated analyses revealed that increased expression levels of the MMP9, BMP7, UBE2C, I-CAM, NOTCH3, NOTCH1, PTGES2, HMGB1 and ERBB3 genes were associated with copy number gains, whereas decreased expression levels of the MUC1, E2F2, HRAS and SIRT3 genes were associated with copy number losses. Pathways related to cell cycle progression, eicosanoid metabolism, and TGF-β and apoptosis signaling, were found to be most significantly affected.
CONCLUSIONS: Our results suggest that CNAs in CRC tumor tissues are associated with concomitant changes in the expression of cancer-related genes. In other genes epigenetic mechanism may be at work. Up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, appear to be associated with a poor survival. These alterations may, in addition to Dukes' staging, be employed as new prognostic biomarkers for the prediction of clinical outcome in CRC patients.

Bi YL, Min M, Shen W, Liu Y
Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity.
Tumour Biol. 2016; 37(11):15145-15155 [PubMed] Related Publications
The present study aims to evaluate whether repression of the Numb/Notch signaling pathway affects the radiosensitivity of human pancreatic cancer cell lines. Different doses of X-rays (0, 2, 3, 4, and 5 Gy) were applied to the PANC-1, SW1990, and MIA PaCa-2 human pancreatic cancer cell lines, and the Numb/Notch pathway inhibitor DAPT was added at different doses (0, 1, 3, and 5 μmol/l). MTT assay, colony formation assay, flow cytometry, scratch assay, and Transwell experiments were performed, and qRT-PCR and Western blot were conducted for the detection of Numb expression. Tumorigenicity assay in nude mice was carried out to verify the influence of blocker of the Numb/Notch signaling pathway on the radiosensitivity of xenograft tumors. The MTT assay, colony formation assay and flow cytometry experiments revealed that proliferation decreased as radiation dose increased. The viability of PANC-1 cells at 5 Gy, SW 1990 cells at 4 Gy and 5 Gy, and MIA PaCa-2 cells at 2-5 Gy was significantly lower than that of non-irradiated cells (all P < 0.05). The migration and invasion assays indicated that the PANC-1 cell line was least radiosensitive, while the MIA PaCa-2 cell line was the most radiosensitive. Numb expression significantly increased with increasing radiation dose, whereas the expression of Hes1, Notch1, and Hes5 significantly decreased compared to non-irradiated cells (P < 0.05). Compared to untreated control cells, DAPT dose dependently increased Numb expression and inhibited Notch1, Hes1, and Hes5 expressions at 2 Gy (P < 0.05). Subcutaneous tumorigenicity assay in nude mice demonstrated that DAPT increased the radiosensitivity of PANC-1, SW 1990, and MIA PaCa-2 cells. These findings suggest that Numb/Notch signaling in pancreatic cancer cells is associated with X-ray radiation and that inhibition of the Numb/Notch signaling pathway can enhance radiosensitivity, suggesting that inhibition of the Numb/Notch signaling pathway may serve as a potential target for clinical improvement of the radiosensitivity of pancreatic cancer.

Yang Q, Cao X, Tao G, et al.
Effects of FOXJ2 on TGF-β1-induced epithelial-mesenchymal transition through Notch signaling pathway in non-small lung cancer.
Cell Biol Int. 2017; 41(1):79-83 [PubMed] Related Publications
As one member of Forkhead box transcription factors, Forkhead box J2 (FOXJ2) has been found to be involved in epithelial-mesenchymal transition (EMT) process. However, the role and mechanism of FOXJ2 in non-small cell lung cancer (NSCLC) and EMT regulation have not been fully revealed. In this paper, it was revealed that the expression of FOXJ2 was lower in NSCLC samples compared with matched peritumoral lung tissue. We demonstrated that FOXJ2 expression was down-regulated by transforming growth factor-β1 (TGF-β1) treated, and overexpression of FOXJ2 inhibited TGF-β1-induced EMT. Mechanistically, knocking out the expression of FOXJ2 promoted EMT by increasing the expression of Notch1 and NICD. This study implicates the potential value of FOXJ2 as a molecular marker for NSCLC.

Huang D, Wang S, Wang A, et al.
Thymosin beta 4 silencing suppresses proliferation and invasion of non-small cell lung cancer cells by repressing Notch1 activation.
Acta Biochim Biophys Sin (Shanghai). 2016; 48(9):788-94 [PubMed] Related Publications
Thymosin beta 4 (Tβ4), a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes, has been reported to be strongly associated with tumorigenesis. A recent tissue microarray analysis showed that Tβ4 was highly expressed in certain tumor cells, including lung cancer. However, the exact expression pattern and the role of Tβ4 in non-small cell lung cancer (NSCLC) have not to our knowledge been investigated. In the present study, we confirmed that Tβ4 expression was increased in NSCLC tissues and cell lines. Tβ4 gene silencing in A549 and H1299 cells inhibited cell proliferation, migration, and invasion in vitro and decreased tumor growth in vivo Mechanistic investigations revealed a significant decrease in Notch1 activation in Tβ4 gene-silenced cells. Moreover, restoring the Notch1 expression attenuated the function of Tβ4 silencing in NSCLC cells. Taken together, these findings suggest that Tβ4 may play an oncogenic role in NSCLC progression and may be a novel molecular target for anti-NSCLC therapy.

Song SG, Yu HY, Ma YW, et al.
Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.
Tumour Biol. 2016; 37(10):13705-13719 [PubMed] Related Publications
The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P < 0.05); Numb expression was up-regulated, but Notch1 and HES1 expressions were down-regulated in those three groups, and also, the pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P < 0.05); cell apoptosis was promoted in those three groups, and the pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P < 0.05). Repression of the Numb/Notch pathway enhances the effects of radiotherapy on the radiosensitivity of the lung cancer cell line H358, and thus the Numb/Notch pathway may be a new target of radiotherapy for lung cancer.

Nagy N, Hajdu M, Márk Á, et al.
Growth inhibitory effect of rapamycin in Hodgkin-lymphoma cell lines characterized by constitutive NOTCH1 activation.
Tumour Biol. 2016; 37(10):13695-13704 [PubMed] Related Publications
Growing evidence suggests that deregulation of signalling elements of Notch and mammalian target of rapamycin (mTOR) pathways contribute to tumorigenesis. These signals play important roles in cellular functions and malignancies. Their tumorigenic role in T-cell acute lymphoblastic leukaemia (T-ALL) is well known; however, their potential interactions and functions are poorly characterized in Hodgkin lymphoma (HL). The aim of our study was to characterize mTOR and Notch signalling elements in HL cell lines (DEV, L1236, KMH2) and human biopsies and to investigate their cross-talk in the tumorous process. High mTOR activity and constitutive NOTCH1 activation was confirmed in HL cell lines, without any known oncogenic mutations in key elements, including those common to both pathways. The anti-tumour effect of Notch inhibitors are well known from several preclinical models but resistance and side effects occur in many cases. Here, we tested mTOR and Notch inhibitors and their combinations in gamma-secretase inhibitor (GSI) resistant HL cells in vitro and in vivo. mTOR inhibitor alone or in combination was able to reduce tumour growth; furthermore, it was more effective in xenograft models in vivo. Based on these results, we suggest that constitutively activated NOTCH1 may be a potential target in HL therapy; furthermore, mTOR inhibitors may be effective for decreasing tumour growth if resistance to Notch inhibitors develop.

Guo Q, Qian Z, Yan D, et al.
LncRNA-MEG3 inhibits cell proliferation of endometrial carcinoma by repressing Notch signaling.
Biomed Pharmacother. 2016; 82:589-94 [PubMed] Related Publications
BACKGROUND: The long non-coding RNA MEG3 has shown functional role as a tumor suppressor in many cancer types, excluding endometrial carcinoma (EC). Thus, this study tried to reveal the MEG3 dysregulation in EC samples and potential functional mechanism due to its regulation on Notch signaling pathway.
METHODS: The expression profiles of MEG3 and two Notch signaling molecules, Notch1 and Hes1, were detected in both EC tissues and cell lines through real time PCR and western blot analysis. Lentiviral vector carrying whole MEG3 transcript or shRNA targeting MEG3 (shMEG3) was transfected for MEG3 dysfunction studies, and cell proliferation was analyzed through MTT and colony-formation assays. Xenograft models were also established by subcutaneous implantation and tumor growth was compared under MEG3 dysregulation.
RESULTS: Significant downregulation of MEG3 was observed in EC samples compared to control, while the protein levels of Notch1 and Hes1 were both upregulated. Cell proliferation was obviously inhibited by MEG3 overexpression, while opposite improved result was obtained in MEG3 knockout cells. Interestingly, MEG3-induced changes could be reversed by Notch1 regulators. Moreover, MEG3 overexpressing tumors showed strongly repressed growth in vivo, along with Notch signaling inhibition.
CONCLUSION: Downregulated MEG3 exhibited an anti-proliferative role in EC by repressing Notch signaling pathway.

Li X, Yang L, Shuai T, et al.
MiR-433 inhibits retinoblastoma malignancy by suppressing Notch1 and PAX6 expression.
Biomed Pharmacother. 2016; 82:247-55 [PubMed] Related Publications
Retinoblastoma (RB) is the most frequent primary intraocular cancer. It has been demonstrated by previous studies that retinoblastoma is initiated primarily by the inactivation of the retinoblastoma Rb1 gene in retinal cells. However, additional genetic alterations than Rb1 mutation could play important roles in the process of transforming benign retinal cells into retinoblastoma tumor cells. In this study, we identified that microRNA miR-433 is one of such genetic factors. We found that the expression levels of miR-433 were downregulated in RB tissues. We also determined that miR-433 negatively regulated RB cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis of RB cells. We used bioinformatics method to predict and confirmed that Notch1 and PAX6 were miR-433 target genes in RB cells. Importantly, we demonstrated that restoration of Notch1 and PAX6 expression partially rescued the inhibition of cell proliferation and metastasis induced by miR-433 overexpression, suggesting that miR-433 regulates RB cell proliferation and metastasis through suppressing the expression of Notch1 and PAX6.

Long LM, Zhan JK, Wang HQ, et al.
The Clinical Significance of miR-34a in Pancreatic Ductal Carcinoma and Associated Molecular and Cellular Mechanisms.
Pathobiology. 2017; 84(1):38-48 [PubMed] Related Publications
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) exhibits poor prognosis and resistance to chemotherapy. This study was to identify the biomarkers associated with the progression, poor prognosis and chemoresistance of PDAC.
METHODS: miR-34a and miR-150 levels in the plasma and tissues from PDAC patients were measured by real-time PCR. Xenograft PDAC tumor models were established in mice by inoculation of CD133+ stem cells isolated from PDAC tumors. Protein expression was measured by Western blot.
RESULTS: The plasma miR-34a and miR-150 levels were significantly lower in PDAC patients than in patients with benign pancreatic lesions and in healthy subjects. The miR-34a and miR-150 levels in the tumor tissues were significantly lower than in pancreatic tissues with benign lesions. The protein levels of CD133, Notch1, Notch2 and Notch4 receptors in PDAC tumor tissues were significantly higher than in pancreatic tissues with benign lesions. miR-34a injection significantly inhibited the tumor growth of PDAC tumors and sensitized the anticancer effects of 5-fluorouracil (5-FU). miR-34a significantly inhibited Notch1, Notch2 and Notch4 expression in xenograft tumor tissues in vivo and BxPC-3 cells in vitro. miR-34a and miR-150 significantly induced apoptosis and inhibited proliferation, invasion and migration in BxPC-3 cells. miR-34a, but not miR-150, significantly sensitized the anticancer effect of 5-FU in BxPC-3 cells in vitro.
CONCLUSION: A loss of expression of miR-34a, but not of miR-150, is associated with disease progression and poor prognosis in PDAC patients, and may be involved in the chemoresistance of PDAC cells.

Huang WH, Liao WR, Sun RX
Astragalus polysaccharide induces the apoptosis of human hepatocellular carcinoma cells by decreasing the expression of Notch1.
Int J Mol Med. 2016; 38(2):551-7 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer death worldwide. Astragalus polysaccharide (APS), the primary active component extracted from a traditional Chinese medicinal herb Astragalus membranaceus, has been proved to exert a marked inhibitory effect on a number of types of human solid tumors. In the present study, we aimed to examine the effects of APS on the survival of the HCC cell line H22 and to elucidate the underlying regulatory mechanisms responsible for these effects. Our results revealed that the mRNA and protein expression of Notch1 was significantly upregulated in the HCC tissues compared with that in the normal tissues. APS decreased cell viability and induced the apoptosis of HCC cells in a concentration-dependent manner, which were evaluated using a cell counting kit-8 (CCK-8) assay and flow cytometric analysis, respectively. Furthermore, APS regulated the expression of apoptosis-related genes (Bcl-2 and BAX) and proteases (caspase-3 and -8). Mechanically, Notch1 expression was found to be suppressed in HCC cells, and further analysis indicated that Notch1 knockdown by siRNA significantly reduced cell viability, suppressed the metastatic capacity and enhanced the apoptosis of HCC cells. Taken together, these findings suggest that Notch1 may be a potential therapeutic target for the treatment of HCC.

Yeh CH, Bellon M, Pancewicz-Wojtkiewicz J, Nicot C
Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients.
Proc Natl Acad Sci U S A. 2016; 113(24):6731-6 [PubMed] Free Access to Full Article Related Publications
Human T-cell leukemia virus type 1 (HTLV-I) is associated with adult T-cell leukemia (ATL), an aggressive lymphoproliferative disease with a dismal prognosis. We have previously described the presence of Notch1 activating mutations and constitutive Notch1 signaling in patients with acute ATL. In this study, we report a high frequency of F-box and WD repeat domain containing 7 (FBXW7)/hCDC4 mutations within the WD40 substrate-binding domain in 8 of 32 acute ATL patients (25%). Functionally, ATL FBXW7 mutants lost their ability to interact with intracellular Notch (NICD), resulting in increased protein stability and constitutive Notch1 signaling. Consistent with the loss-of-function found in ATL patients, expression of WT FBXW7 in several patient-derived ATL lines demonstrated strong tumor-suppressor activity characterized by reduced proliferation of ATL cells. Remarkably, two FBXW7 mutants, D510E and D527G, demonstrated oncogenic activity when expressed in the presence of HTLV-I Tax, mutated p53 R276H, or c-Myc F138C found in human cancers. Transforming activity was further demonstrated by the ability of the FBXW7 D510E mutant to provide IL-2-independent growth of Tax-immortalized human T cells and increase the tumor formation in a xenograft mouse model of ATL. This study suggests that FBXW7, normally a tumor suppressor, can act as an oncogene when mutated and may play an important role in the pathogenesis of ATL.

Liu ZY, Wu T, Li Q, et al.
Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma.
Medicine (Baltimore). 2016; 95(20):e3715 [PubMed] Free Access to Full Article Related Publications
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.

Lee J, Katzenmaier EM, Kopitz J, Gebert J
Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1.
Cell Signal. 2016; 28(8):1105-13 [PubMed] Related Publications
Transforming growth factor-β (TGF-β) signaling plays a key role in regulating normal cell growth and differentiation, and mutations affecting members of this pathway contribute to cancer development and metastasis. In DNA mismatch repair (MMR)-deficient colorectal cancers that exhibit the microsatellite instability (MSI) phenotype, biallelic frameshift mutations in the transforming growth factor β receptor type 2 (TGFBR2) gene occur at high frequency that lead to altered signal transduction and downstream target gene expression. Although recent evidence suggests that altered TGF-β signaling can modulate protein glycosylation patterns in MSI-high colorectal tumor cells, affected genes have not been identified. Here, we investigated in a more systematic approach, expression changes of TGFBR2-regulated genes, involved in glycosylation using a TGFBR2-reconstituted colorectal cancer cell line (HCT116-TGFBR2) and Glyco-Gene Chip analysis. Based on this oligonucleotide array of about 1000 human glycosylation-related genes, several candidates including HES1, PDGFB, JUNB and LFNG were found to be upregulated in a TGFBR2-dependent manner and subsequently validated by real-time RT-PCR analyses. Focusing on the glycosyltransferase LFNG and its target signaling protein Notch1, dual labeling with [3H]-N-acetyl-d-glucosamine ([3H]-GlcNAc) and [35S]-l-methionine revealed a significant increase in N-acetyl-d-glucosamine incorporation into immunoprecipitated Notch1 receptor upon TGFBR2 expression whereas the protein level remained unaffected. These data suggest that TGFBR2 signaling can affect Notch1 glycosylation via regulation of glycosyltransferase LFNG expression and provide a first mechanistic example for altered glycosylation in MSI colorectal tumor cells.

Jia H, Yang Q, Wang T, et al.
Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents.
Biochim Biophys Acta. 2016; 1860(7):1417-30 [PubMed] Related Publications
BACKGROUND: The rapid development of multi-drug resistance (MDR) process has hindered the effectiveness of advanced hepatocellular carcinoma (HCC) treatments. Notch-1 pathway, which mediates the stress-response, promotes cell survival, EMT (epithelial-mesenchymal transition) process and induces anti-apoptosis in cancer cells, would be a potential target for overcoming MDR process. This study investigated the potential application of rhamnetin, a specific inhibitor of Notch-1 pathway, in anti-tumor drug sensitization of HCC treatment.
METHODS: The expression of miR-34a, proteins belonging to Notch-1 signaling pathway or MDR-related proteins was detected by quantitative polymerase chain reaction (qPCR) and western blot assay. To identify whether rhamnetin induces the chemotherapeutic sensitization in HCC cells, the MTT-assays, flow cytometry, soft agar, trans-well and nude mice assays were performed.
RESULTS: The endogenous expression of miR-34a was significantly increased and the expression of Notch-1 and Survivin was downregulated after rhamnetin treatment. Treatment of rhamnetin also reduced the expression of MDR related proteins P-GP (P-glycoprotein) and BCRP (breast cancer resistance protein). Rhamnetin increased the susceptibility of HCC cells and especially HepG2/ADR, a MDR HCC cell line, to a small molecular kinase inhibitor sorafenib or chemotherapeutic drugs etoposide and paclitaxel. The IC(50) value of those drugs correspondingly decreased.
CONCLUSIONS: Together, our findings suggest that rhamnetin treatment may attenuate the MDR process in HCC cells. These findings may contribute to more effective strategies for HCC therapy.
GENERAL SIGNIFICANCE: Rhamnetin acts as a promising sensitizer to chemotherapy and may be a novel approach to overcome the MDR process of HCC.

Panaccione A, Chang MT, Carbone BE, et al.
NOTCH1 and SOX10 are Essential for Proliferation and Radiation Resistance of Cancer Stem-Like Cells in Adenoid Cystic Carcinoma.
Clin Cancer Res. 2016; 22(8):2083-95 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
PURPOSE: Although the existence of cancer stem cells (CSC) in adenoid cystic carcinoma (ACC) has been proposed, lack of assays for their propagation and uncertainty about molecular markers prevented their characterization. Our objective was to isolate CSC from ACC and provide insight into signaling pathways that support their propagation.
EXPERIMENTAL DESIGN: To isolate CSC from ACC and characterize them, we used ROCK inhibitor-supplemented cell culture, immunomagnetic cell sorting, andin vitro/in vivoassays for CSC viability and tumorigenicity.
RESULTS: We identified in ACC CD133-positive CSC that expressed NOTCH1 and SOX10, formed spheroids, and initiated tumors in nude mice. CD133(+)ACC cells produced activated NOTCH1 (N1ICD) and generated CD133(-)cells that expressed JAG1 as well as neural differentiation factors NR2F1, NR2F2, and p27Kip1. Knockdowns ofNOTCH1, SOX10, and their common effectorFABP7had negative effects on each other, inhibited spheroidogenesis, and induced cell death pointing at their essential roles in CSC maintenance. Downstream effects ofFABP7knockdown included suppression of a broad spectrum of genes involved in proliferation, ribosome biogenesis, and metabolism. Among proliferation-linked NOTCH1/FABP7 targets, we identified SKP2 and its substrate p27Kip1. A γ-secretase inhibitor, DAPT, selectively depleted CD133(+)cells, suppressed N1ICD and SKP2, induced p27Kip1, inhibited ACC growthin vivo, and sensitized CD133(+)cells to radiation.
CONCLUSIONS: These results establish in the majority of ACC the presence of a previously uncharacterized population of CD133(+)cells with neural stem properties, which are driven by SOX10, NOTCH1, and FABP7. Sensitivity of these cells to Notch inhibition and their dependence on SKP2 offer new opportunities for targeted ACC therapies.

Zhou J, Jain S, Azad AK, et al.
Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells.
Cell Signal. 2016; 28(8):838-49 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) plays a critical role in the progression of epithelial ovarian cancer (EOC). However, the mechanisms that regulate EMT in EOC are not fully understood. Here, we report that activation of Notch1 induces EMT in EOC cells as evidenced by downregulation of E-cadherin and cytokeratins, upregulation of Slug and Snail, as well as morphological changes. Interestingly, activation of Notch1 increases TGFβ/Smad signaling by upregulating the expression of TGFβ and TGFβ type 1 receptor. Time course experiments demonstrate that inhibition of Notch by DAPT (a γ-secretase inhibitor) decreases TGFβ-induced phosphorylation of receptor Smads at late, but not at early, timepoints. These results suggest that Notch activation plays a role in sustaining TGFβ/Smad signaling in EOC cells. Furthermore, inhibition of Notch by DAPT decreases TGFβ induction of Slug and repression of E-cadherin and knockdown of Notch1 decreases TGFβ-induced repression of E-cadherin, indicating that Notch is required, at least in part, for TGFβ-induced EMT in EOC cells. On the other hand, TGFβ treatment increases the expression of Notch ligand Jagged1 and Notch target gene HES1 in EOC cells. Functionally, the combination of Notch1 activation and TGFβ treatment is more potent in promoting motility and migration of EOC cells than either stimulation alone. Taken together, our results indicate that Notch and TGFβ form a reciprocal positive regulatory loop and cooperatively regulate EMT and promote EOC cell motility and migration.

Amin NA, Malek SN
Gene mutations in chronic lymphocytic leukemia.
Semin Oncol. 2016; 43(2):215-21 [PubMed] Related Publications
The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses.

Jurcevic S, Klinga-Levan K, Olsson B, Ejeskär K
Verification of microRNA expression in human endometrial adenocarcinoma.
BMC Cancer. 2016; 16:261 [PubMed] Related Publications
BACKGROUND: MicroRNAs are small non-coding RNAs that have been implicated in tumor initiation and progression. In a previous study we identified 138 miRNAs as differentially expressed in endometrial adenocarcinoma compared to normal tissues. One of these miRNAs was miRNA-34a, which regulates several genes involved in the Notch pathway, which is frequently altered in endometrial cancer. The aims of this study were to verify the differential expression of a subset of miRNAs and to scrutinize the regulatory role of mir-34a on the target genes NOTCH1 and DLL1.
METHODS: Twenty-five miRNAs that were previously identified as differentially expressed were subjected to further analysis using qPCR. To investigate the regulation of NOTCH1 and DLL1 by mir-34a, we designed gain- and loss-of-function experiments in Ishikawa and HEK293 cell lines by transfection with a synthetic mir-34a mimic and a mir-34a inhibitor.
RESULTS: Of the 25 validated miRNAs, seven were down-regulated and 18 were up-regulated compared to normal endometrium, which was fully consistent with our previous findings. In addition, the up-regulation of mir-34a led to a significant decrease in mRNA levels of NOTCH1 and DLL1, while down-regulation led to a significant increase in mRNA levels of these two genes.
CONCLUSIONS: We verified both up-regulated and down-regulated miRNAs in the tumor samples, indicating various roles of microRNAs during tumor development. Mir-34a functions as a regulator by decreasing the expression of NOTCH1 and DLL1. Our study is the first to identify a correlation between mir-34a and its target genes NOTCH1 and DLL1 in endometrial adenocarcinoma.

Penson RT, Sales E, Sullivan L, et al.
A SNaPshot of potentially personalized care: Molecular diagnostics in gynecologic cancer.
Gynecol Oncol. 2016; 141(1):108-12 [PubMed] Related Publications
BACKGROUND: Genetic abnormalities underlie the development and progression of cancer, and represent potential opportunities for personalized cancer therapy in Gyn malignancies.
METHODS: We identified Gyn oncology patients at the MGH Cancer Center with tumors genotyped for a panel of mutations by SNaPshot, a CLIA approved assay, validated in lung cancer, that uses SNP genotyping in degraded DNA from FFPE tissue to identify 160 described mutations across 15 cancer genes (AKT1, APC, BRAF, CTNNB1, EGFR, ERBB2, IDH1, KIT, KRAS, MAP2KI, NOTCH1, NRAS, PIK3CA, PTEN, TP53).
RESULTS: Between 5/17/10 and 8/8/13, 249 pts consented to SNaPshot analysis. Median age 60 (29-84) yrs. Tumors were ovarian 123 (49%), uterine 74(30%), cervical 14(6%), fallopian 9(4%), primary peritoneal 13(5%), or rare 16(6%) with the incidence of testing high grade serous ovarian cancer (HGSOC) halving over time. SNaPshot was positive in 75 (30%), with 18 of these (24%) having 2 or 3 (n=5) mutations identified. TP53 mutations are most common in high-grade serous cancers yet a low detection rate (17%) was likely related to the assay. However, 4 of the 7 purely endometrioid ovarian tumors (57%) harbored a p53 mutation. Of the 38 endometrioid uterine tumors, 18 mutations (47%) in the PI3Kinase pathway were identified. Only 9 of 122 purely serous (7%) tumors across all tumor types harbored a 'drugable' mutation, compared with 20 of 45 (44%) of endometrioid tumors (p<0.0001). 17 pts subsequently enrolled on a clinical trial; all but 4 of whom had PIK3CA pathway mutations. Eight of 14 (47%) cervical tumors harbored a 'drugable' mutation.
CONCLUSION: Although SNaPshot can identify potentially important therapeutic targets, the incidence of 'drugable' targets in ovarian cancer is low. In this cohort, only 7% of subjects eventually were treated on a relevant clinical trial. Geneotyping should be used judiciously and reflect histologic subtype and available platform.

Li L, Grausam KB, Wang J, et al.
Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells.
Nat Cell Biol. 2016; 18(4):418-30 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.

Wu K, Hu L, Hou J
Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38 pathway.
Oncol Rep. 2016; 35(5):2795-800 [PubMed] Related Publications
The present study was performed to explore the effects of Notch1 inhibition selectively by siRNA on the proliferation and cell cycle of renal carcinoma cells. Human renal carcinoma cell lines, 786-0 and Caki-1, were treated with Si-Notch1 or negative control (NC). RT-PCR and western blotting were used to confirm the efficiency of siRNA on Notch1 expression. MTT, cell cycle analysis, colony formation as well as migration and invasion assays were performed. The expression levels of p38 and SAPK/JNK were measured by western blotting. For both cell lines, as compared with the NC group, the cell growth was markedly reduced, and colony formation was restricted in the Si-Notch1‑treated group. After incubated with Si-Notch1 or NC for 48 h, Si-Notch1-treated cells arrested the cell cycle at G1/S phase. The Si-Notch1 group also had a reduced rate of migration as well as invasion. Moreover, we observed a reduction in p-SAPK/JNK and p-p38 in Si-Notch1 transfected cells. The present study indicated that Notch signaling is important in the tumorigenesis of renal cell carcinoma. Notch1 may be a potential therapeutic regimen towards renal cell carcinoma, and JNK/p38 may serve as an important molecular mechanism for Notch1-mediated carcinogenesis.

Ferrarotto R, Heymach JV, Glisson BS
MYB-fusions and other potential actionable targets in adenoid cystic carcinoma.
Curr Opin Oncol. 2016; 28(3):195-200 [PubMed] Related Publications
PURPOSE OF REVIEW: Adenoid cystic carcinoma (ACC) is a rare cancer of the secretory glands, typically originating in the salivary glands of the head and neck. The impact of chemotherapy on survival is unclear and there are no standard-of-care treatments for patients with recurrent or metastatic disease. This article reviews recently completed and ongoing clinical trials for patients with ACC and describes recently identified potentially targetable genomic alterations in this orphan disease.
RECENT FINDINGS: In spite of an overall low mutational burden, genotyping of ACC samples has shed some light about the disease biology. In addition to the frequent translocations involving MYB or MYBL, recurrent alterations in genes involved in chromatin deregulation, FGF, PI3K, NOTCH1, and DNA damage repair pathways have been identified. Many of these genomic alterations are targetable and drug screening is ongoing in genotyped ACC patient-derived murine xenografts.
SUMMARY: Clinical studies with targeted agents in unselected ACC patients have not been promising thus far. The identification of potential driver oncogenes suggests that targeted therapy might be effective in molecularly-defined patient subgroups and merits investigation in future clinical studies.

Koch U, Radtke F
Notch in T-ALL: new players in a complex disease.
Trends Immunol. 2011; 32(9):434-42 [PubMed] Related Publications
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy of thymocytes affecting preferentially children and adolescents. The disease is heterogeneous and characterized by a large set of chromosomal and genetic alterations that deregulate the growth of maturing thymocytes. The identification of activating point mutations in NOTCH1 in more then 50% of all T-ALL cases highlights the NOTCH1 cascade as a central player of T-ALL pathogenesis. In this review, we summarize and update more recent findings on the molecular mechanisms of T-ALL with a particular emphasis on the oncogenic properties of aberrant NOTCH1 signaling.

Agrawal N, Frederick MJ, Pickering CR, et al.
Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.
Science. 2011; 333(6046):1154-7 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NOTCH1, Cancer Genetics Web: http://www.cancer-genetics.org/NOTCH1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999