Gene Summary

Gene:EFNB2; ephrin B2
Aliases: HTKL, EPLG5, Htk-L, LERK5
Summary:This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have been implicated in mediating developmental events, especially in the nervous system and in erythropoiesis. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. This gene encodes an EFNB class ephrin which binds to the EPHB4 and EPHA3 receptors. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (16)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EFNB2 (cancer-related)

Yang X, Deng Y, He RQ, et al.
Upregulation of HOXA11 during the progression of lung adenocarcinoma detected via multiple approaches.
Int J Mol Med. 2018; 42(5):2650-2664 [PubMed] Free Access to Full Article Related Publications
The altered expression of homeobox (HOX)A11 has been observed in various malignant tumor types, but it has remained to be determined in human lung adenocarcinoma (LUAD). In the present study, the expression of HOXA11 in LUAD and the potential associated mechanisms were assessed. Data from The Cancer Genome Atlas and Oncomine microarrays were gathered and in‑house polymerase chain reaction data were produced to investigate the altered expression of HOXA11 in LUAD and its association with various clinicopathological characteristics. Genes co‑expressed with HOXA11 were also identified by searching the cBioPortal and Multi Experiment Matrix databases, and performing a bioinformatics analysis, through which the potential molecular mechanisms of HOXA11 in LUAD were explored. The data analyses indicated that HOXA11 was overexpressed in the LUAD samples, and together with its co‑expressed genes, it was indicated to participate in various key signaling pathways, including the focal adhesion, extracellular matrix‑receptor interaction, axon guidance and small cell lung cancer signaling pathways. Furthermore, collagen type III α 1 chain (COL3A1), ephrin B2 (EFNB2), integrin subunit α 8 (ITGA8) and syndecan 2 (SDC2) were confirmed to be differentially expressed in LUAD vs. normal controls at the mRNA and protein level. Of note, LUAD patients with low expression of HOXA11 and ITGB1 had better overall survival rates. The present study indicated that HOXA11 may function as an oncogene in LUAD, and HOXA11 protein probably combines with ITGB1, COL3A1, EFNB2, ITGA8 and SDC2 to have a role in the focal adhesion pathway.

Takada S, Hojo M, Takebe N, et al.
Stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties.
Brain Tumor Pathol. 2018; 35(4):193-201 [PubMed] Related Publications
Hemangioblastoma is composed of neoplastic stromal cells and a prominent capillary network. To date, the identity of stromal cells remains unclear. Mesenchymal stem cells can give rise to committed vascular progenitor cells, and ephrin-B2/EphB4 and Notch signaling have crucial roles in these steps. The aim of our study was to elucidate that stromal cells of central nervous system hemangioblastomas have mesenchymal stem cell-derived vascular progenitor cell properties. Ten hemangioblastomas were investigated immunohistochemically. CD44, a mesenchymal stem cell marker, was detected in stromal cells of all cases, suggesting that stromal cells have mesenchymal stem cell-like properties. Neither CD31 nor α-SMA was expressed in stromal cells, suggesting that stromal cells have not acquired differentiated vascular cell properties. Both ephrin-B2 and EphB4, immature vascular cell markers, were detected in stromal cells of all cases. Jagged1, Notch1, and Hesr2/Hey2, which are known to be detected in both immature endothelial cells and mural cells, were expressed in stromal cells of all cases. Notch3, which is known to be detected in differentiating mural cells, was also expressed in all cases. These results suggest that stromal cells also have vascular progenitor cell properties. In conclusion, stromal cells of hemangioblastomas exhibit mesenchymal stem cell-derived vascular progenitor cell properties.

Takada S, Hojo M, Takebe N, et al.
Role of Endothelial-to-Mesenchymal Transition in the Pathogenesis of Central Nervous System Hemangioblastomas.
World Neurosurg. 2018; 117:e187-e193 [PubMed] Related Publications
OBJECTIVE: Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs.
METHODS: Ten central nervous system HBs were immunohistochemically investigated.
RESULTS: Cluster of differentiation (CD) 31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics.
CONCLUSIONS: To our knowledge, this is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs.

Jarzabek MA, Proctor WR, Vogt J, et al.
Interrogation of transcriptomic changes associated with drug-induced hepatic sinusoidal dilatation in colorectal cancer.
PLoS One. 2018; 13(6):e0198099 [PubMed] Free Access to Full Article Related Publications
Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.

Carreras J, Yukie Kikuti Y, Miyaoka M, et al.
Genomic Profile and Pathologic Features of Diffuse Large B-Cell Lymphoma Subtype of Methotrexate-associated Lymphoproliferative Disorder in Rheumatoid Arthritis Patients.
Am J Surg Pathol. 2018; 42(7):936-950 [PubMed] Related Publications
Rheumatoid arthritis patients often develop the diffuse large B-cell lymphoma subtype of methotrexate-associated lymphoproliferative disorder (DLBCL). We characterized the genomic profile and pathologic characteristics of 20 biopsies using an integrative approach. DLBCL was associated with extranodal involvement, a high/high-intermediate international prognostic index in 53% of cases, and responded to MTX withdrawal. The phenotype was nongerminal center B-cell in 85% of samples and Epstein-Barr encoding region positive (EBER) in 65%, with a high proliferation index and intermediate MYC expression levels. The immune microenvironment showed high numbers of CD8 cytotoxic T lymphocytes and CD163 M2 macrophages with an (CD163/CD68) M2 ratio of 3.6. Its genomic profile was characterized by 3p12.1-q25.31, 6p25.3, 8q23.1-q24.3, and 12p13.33-q24.33 gains, 6q22.31-q24.1 and 13q21.33-q34 losses, and 1p36.11-p35.3 copy neutral loss-of-heterozygosity. This profile was closer to nongerminal center B-cell DLBCL not-otherwise-specified, but with characteristic 3q, 12q, and 20p gains and lower 9p losses (P<0.05). We successfully verified array results using fluorescent DNA in situ hybridization on PLOD2, MYC, WNT1, and BCL2. Protein immunohistochemistry revealed that DLBCL expressed high IRF4 (6p25.3) and SELPLG (12q24.11) levels, intermediate TNFRSF14 (1p36.32; the exons 1 to 3 were unmutated), BTLA (3q13.2), PLOD2 (3q24), KLHL6 (3q27.1), and MYC (8q24.21) levels, and low AICDA (12p13.31) and EFNB2 (13q33.3) levels. The correlation between the DNA copy number and protein immunohistochemistry was confirmed for BTLA, PLOD2, and EFNB2. The characteristics of EBER versus EBER cases were similar, with the exception of specific changes: EBER cases had higher numbers of CD163 M2 macrophages and FOXP3 regulatory T lymphocytes, high programmed cell death 1 ligand 1 expression levels, slightly fewer genomic changes, and 3q and 4p focal gains. In conclusion, DLBCL has a characteristic genomic profile with 3q and 12 gains, 13q loss, different expression levels of relevant pathogenic biomarkers, and a microenvironment with high numbers of cytotoxic T lymphocytes and M2 macrophages.

Sasabe E, Tomomura A, Tomita R, et al.
Ephrin-B2 reverse signaling regulates progression and lymph node metastasis of oral squamous cell carcinoma.
PLoS One. 2017; 12(11):e0188965 [PubMed] Free Access to Full Article Related Publications
Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the head and neck and frequently metastasizes to cervical lymph nodes. Aggressive local invasion and metastasis of OSCC are significant factors for poor prognosis. In this study, we investigated whether ephrin-B2 expressed in OSCC contributed to tumor progression and lymph node metastasis. Clinical specimens from patients with OSCC had robust ephrin-B2-positive tumor cells and ephrin-B2 protein level was associated with clinical stage, lymph node metastasis, and poor survival outcomes. We also determined that ephrin-B2 protein level was increased in OSCC cell lines compared to normal human oral keratinocytes and that its levels were associated with the migratory and invasive potential of OSCC cell lines. Transfection of an EFNB2-specific small interfering RNA (siRNA) into SAS-L1 cells significantly reduced proliferation, attachment, migration, and invasion through phosphorylation of the epidermal growth factor receptor, FAK, ERK1/2, p38, AKT, and JNK1/2 pathways. Furthermore, knockdown of EFNB2 significantly suppressed adhesion and transmigration of SAS-L1 cells toward human lymphatic endothelial cells. In addition, the growth rate of tumor xenografts and cervical lymph node metastases of OSCC were suppressed by local injection of EFNB2 siRNA. These results suggest that ephrin-B2 overexpression and activation of the ephrin-B2 reverse signaling pathway in tumor microenvironment in OSCC facilitates progression and lymph node metastasis via enhancement of malignant potential and interaction with surrounding cells.

Schultz DJ, Muluhngwi P, Alizadeh-Rad N, et al.
Genome-wide miRNA response to anacardic acid in breast cancer cells.
PLoS One. 2017; 12(9):e0184471 [PubMed] Free Access to Full Article Related Publications
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.

Randolph ME, Cleary MM, Bajwa Z, et al.
EphB4/EphrinB2 therapeutics in Rhabdomyosarcoma.
PLoS One. 2017; 12(8):e0183161 [PubMed] Free Access to Full Article Related Publications
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma affecting children and is often diagnosed with concurrent metastases. Unfortunately, few effective therapies have been discovered that improve the long-term survival rate for children with metastatic disease. Here we determined effectiveness of targeting the receptor tyrosine kinase, EphB4, in both alveolar and embryonal RMS either directly through the inhibitory antibody, VasG3, or indirectly by blocking both forward and reverse signaling of EphB4 binding to EphrinB2, cognate ligand of EphB4. Clinically, EphB4 expression in eRMS was correlated with longer survival. Experimentally, inhibition of EphB4 with VasG3 in both aRMS and eRMS orthotopic xenograft and allograft models failed to alter tumor progression. Inhibition of EphB4 forward signaling using soluble EphB4 protein fused with murine serum albumin failed to affect eRMS model tumor progression, but did moderately slow progression in murine aRMS. We conclude that inhibition of EphB4 signaling with these agents is not a viable monotherapy for rhabdomyosarcoma.

Ma W, Zhu M, Yang L, et al.
Synergistic Effect of TPD7 and Berberine against Leukemia Jurkat Cell Growth through Regulating Ephrin-B2 Signaling.
Phytother Res. 2017; 31(9):1392-1399 [PubMed] Related Publications
TPD7, a novel biphenyl urea taspine derivative, and berberine have presented inhibition on VEGFR2 that can be regulated by ephrin-B2 reverse signaling through interactions with the PDZ domain. The purpose of this study is to investigate the inhibitory effect of the combination of TPD7 and berberine (TAB) on T-cell acute lymphoblastic leukemia cell growth. TPD7 and berberine together synergistically inhibited the proliferation of Jurkat cells. Also, the combination of TAB induced G

Takada S, Hojo M, Tanigaki K, Miyamoto S
Contribution of Endothelial-to-Mesenchymal Transition to the Pathogenesis of Human Cerebral and Orbital Cavernous Malformations.
Neurosurgery. 2017; 81(1):176-183 [PubMed] Related Publications
BACKGROUND: The analysis of gene-targeted mouse mutants has demonstrated that endothelial-to-mesenchymal transition (EndMT) is crucial to the onset and progression of cerebral cavernous malformations (CMs). It has also been shown that Notch and ephrin/Eph signaling are involved in EndMT. However, their roles in the pathogenesis of human intracranial CMs remain unclear.
OBJECTIVE: To elucidate the contribution of EndMT, the Notch pathway, and ephrin-B2/EphB4 signaling to the pathogenesis of human intracranial CMs.
METHODS: Eight human intracranial CMs (5 cerebral and 3 orbital CMs) were immunohistochemically investigated.
RESULTS: CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of vascular sinusoids in all cases, suggesting that endothelial cells (ECs) have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT in all cerebral and orbital CMs. EndMT was observed in about 70% and 35% of ECs in cerebral and orbital CMs, respectively. In all cases, Notch3 was expressed in the endothelial layer, indicating that ECs of vascular sinusoids have acquired mesenchymal features. In all cases, both ephrin-B2 and EphB4 were detected in the endothelial layer, suggesting that ECs of vascular sinusoids are immature or malformed cells and have both arterial and venous characteristics.
CONCLUSION: EndMT plays a critical role in the pathogenesis of human cerebral and orbital CMs. Modulating EndMT is expected to be a new therapeutic strategy for cerebral and orbital CMs.

Cao W, Ma E, Zhou L, et al.
Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy.
World J Surg Oncol. 2017; 15(1):66 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant activation of fibroblast growth factor receptor 3 (FGFR3) is frequently observed in bladder cancer, but how it involved in carcinogenesis is not well understood. The current study was aimed to investigate the underlying mechanism on the progression of bladder cancer.
METHODS: The GSE41035 dataset downloaded from Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) between bladder cancer cell line RT112 with or without depletion of FGFR3, and gene ontology enrichment analysis was performed. Then, FGFR3-centered protein-protein interaction (PPI) and regulatory networks were constructed. Combined with the data retrieved from GSE31684, prognostic makers for bladder cancer were predicted.
RESULTS: We identified a total of 2855 DEGs, and most of them were associated with blood vessel morphogenesis and cell division. In addition, KIAA1377, POLA2, FGFR3, and EPHA4 were the hub genes with high degree in the FGFR3-centered PPI network. Besides, 17 microRNAs (miRNAs) and 6 transcriptional factors (TFs) were predicted to be the regulators of the nodes in PPI network. Moreover, CSTF2, POLA1, HMOX2, and EFNB2 may be associated with the prognosis of bladder cancer patient.
CONCLUSIONS: The current study may provide some insights into the molecular mechanism of FGFR3 as a mediator in bladder cancer.

Ma W, Zhu M, Zhang D, et al.
Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2.
Phytomedicine. 2017; 25:45-51 [PubMed] Related Publications
BACKGROUND: Berberine, a plant-derived compound isolated from Coptis chinensis used in traditional Chinese medicine, has been shown to possess anti-cancer properties. However, no study has shown that berberine could target ephrin-B2, which plays a critical role in cell proliferation and migration.
PURPOSE: The aim of this study is to investigate the effect of berberine on cancer cell growth and migration, through the regulation of ephrin-B2 and downstream signaling molecules.
METHODS: In this study, a high ephrin-B2-expressing cell membrane chromatography method was developed to investigate 48 crude extracts from traditional Chinese medicine that could act on ephrin-B2. Cell proliferative and wound-healing assays were used to study the effect of berberine on cancer cell growth and migration. The mechanism of berberine was investigated using western blot.
RESULTS: Berberine was isolated from C. chinensis extracts and showed activity on the HEK293/ephrin-B2 cell membrane chromatography column. Berberine showed a greater inhibitory effect in high-expressing ephrin-B2 cells (HEK293/ephrin-B2 cells) than in normal HEK293 cells, and decreased the expression of ephrin-B2 and its PDZ binding proteins, which indicates that ephrin-B2 is a target of berberine. Furthermore, berberine downregulates the phosphorylation of VEGFR2 and downstream signaling members (AKT and Erk1/2), which in turn downregulates the expression of MMP2 and MMP9.
CONCLUSION: The above data confirm the inhibitory effects of berberine on ZR-75-30 cell proliferation and cell migration. Overall, our studies demonstrate that berberine inhibits cell growth and migration by targeting ephrin-B2.

Dong L, Yuan Y, Opansky C, et al.
Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling.
Oncotarget. 2017; 8(14):22550-22562 [PubMed] Free Access to Full Article Related Publications
Obesity increases cancer risk including breast cancer (BC). However, the direct regulatory mechanisms by which obesity promotes BC progression remain largely unknown. We show that lysophosphatidic acid/protein kinase D1 (LPA/PKD-1)-CD36 signaling is a bona fide breast cancer promoter via stimulating microvascular remodeling in chronic diet-induced obesity (DIO). We observed that the growth of an estrogen receptor (ER) positive breast cancer was markedly increased when compared to the lean control, and specifically accompanied by increased microvascular remodeling in a syngeneic BC model in female DIO mice. The tumor neovessels in DIO mice demonstrated elevated levels of alpha smooth muscle actin (α-SMA), vascular endothelial growth factor receptor 2 (VEGFR 2) and endothelial differentiation gene 2/LPA receptor1 (Edg2/LPA1), enhanced PKD-1 phosphorylation, and reduced CD36 expression. Tumor associated endothelial cells (TAECs) exposed to LPA demonstrated sustained nuclear PKD-1 phosphorylation, and elevated mRNA levels of ephrin B2, and reduced mRNA expression of CD36. TAEC proliferation also increased in response to LPA/PKD-1 signaling. These studies suggest that the LPA/PKD-1-CD36 signaling axis links DIO to malignant progression of BC via stimulation of de novo tumor arteriogenesis through arteriolar remodeling of microvasculature in the tumor microenvironment. Targeting this signaling axis could provide an additional novel therapeutic strategy.

Hu DG, McKinnon RA, Hulin JA, et al.
Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2-8) in Normal and Cancerous Breast and Prostate Cells.
Int J Mol Sci. 2016; 18(1) [PubMed] Free Access to Full Article Related Publications
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (

Li JJ, Sun ZJ, Yuan YM, et al.
EphB3 Stimulates Cell Migration and Metastasis in a Kinase-dependent Manner through Vav2-Rho GTPase Axis in Papillary Thyroid Cancer.
J Biol Chem. 2017; 292(3):1112-1121 [PubMed] Free Access to Full Article Related Publications
Eph receptors, the largest subfamily of transmembrane tyrosine kinase receptors, have been increasingly implicated in various physiologic and pathologic processes, and the roles of the Eph family members during tumorigenesis have recently attracted growing attentions. In the present study, we explored the function of EphB3, one member of Eph family, in papillary thyroid cancer (PTC). We found that the expression of EphB3 was significantly elevated in PTC. Either overexpression of EphB3 or activation of EphB3 by EfnB1-Fc/EfnB2-Fc stimulated in vitro migration of PTC cells. In contrast, siRNA-mediated knockdown of EphB3 or EphB3-Fc treatment, which only blocked EphB3-mediated forward signaling, inhibited migration and metastasis of PTC cells. A mechanism study revealed that EphB3 knockdown led to suppressed activity of Rac1 and enhanced activity of RhoA. Moreover, we found that Vav2, an important regulator of Rho family GTPases, was activated by EphB3 in a kinase-dependent manner. Altogether, our work suggested that EphB3 acted as a tumor promoter in PTC by increasing the in vitro migration as well as the in vivo metastasis of PTC cells through regulating the activities of Vav2 and Rho GTPases in a kinase-dependent manner.

Bhatia S, Hirsch K, Sharma J, et al.
Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas.
Sci Rep. 2016; 6:38792 [PubMed] Free Access to Full Article Related Publications
Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas.

Rupp T, Langlois B, Koczorowska MM, et al.
Tenascin-C Orchestrates Glioblastoma Angiogenesis by Modulation of Pro- and Anti-angiogenic Signaling.
Cell Rep. 2016; 17(10):2607-2619 [PubMed] Related Publications
High expression of the extracellular matrix component tenascin-C in the tumor microenvironment correlates with decreased patient survival. Tenascin-C promotes cancer progression and a disrupted tumor vasculature through an unclear mechanism. Here, we examine the angiomodulatory role of tenascin-C. We find that direct contact of endothelial cells with tenascin-C disrupts actin polymerization, resulting in cytoplasmic retention of the transcriptional coactivator YAP. Tenascin-C also downregulates YAP pro-angiogenic target genes, thus reducing endothelial cell survival, proliferation, and tubulogenesis. Glioblastoma cells exposed to tenascin-C secrete pro-angiogenic factors that promote endothelial cell survival and tubulogenesis. Proteomic analysis of their secretome reveals a signature, including ephrin-B2, that predicts decreased survival of glioma patients. We find that ephrin-B2 is an important pro-angiogenic tenascin-C effector. Thus, we demonstrate dual activities for tenascin-C in glioblastoma angiogenesis and uncover potential targeting and prediction opportunities.

Oweida A, Bhatia S, Hirsch K, et al.
Ephrin-B2 overexpression predicts for poor prognosis and response to therapy in solid tumors.
Mol Carcinog. 2017; 56(3):1189-1196 [PubMed] Free Access to Full Article Related Publications
Ephrin B2 is variably expressed on tumor cells and its blockade has been shown to inhibit angiogenesis in animal models of pancreatic, colorectal, lung and head, and neck squamous cell carcinomas. However, the implications of ephrinB2 expression in cancer patients have remained elusive. In this study, we analyzed the cancer genome atlas (TCGA) for ephrinB2 expression. We report significant correlations between EFNB2 expression, overall survival and disease-free survival in head and neck squamous cell carcinoma (HNSCC, n = 519), pancreatic adenocarcinoma (n = 186), and bladder urothelial carcinoma (n = 410). In HNSCC patients, high-EFNB2 mRNA expression was associated with tumor HPV negativity, oral cavity location, alcohol intake, higher TP53 mutation, and EGFR amplification. EphrinB2 overexpression also correlated with worse response to chemotherapy and radiotherapy. The therapeutic potential of blocking ephrinB2 was validated in HNSCC patient-derived tumor xenografts and showed significant improvement in survival and tumor growth delay. Our data shows that ephrinB2 overexpression can serve as a critical biomarker for patient prognosis and response to therapy. These results should guide design of future clinical trials exploring EphrinB2 inhibition in cancer patients. © 2016 Wiley Periodicals, Inc.

Depner C, Zum Buttel H, Böğürcü N, et al.
EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance.
Nat Commun. 2016; 7:12329 [PubMed] Free Access to Full Article Related Publications
Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible factor (HIF)-1α induces the EMT repressor ZEB2, which directly downregulates ephrinB2 through promoter binding to enhance tumour invasiveness. This mechanism is activated following anti-angiogenic treatment of gliomas and is efficiently blocked by disrupting ZEB2 activity. Taken together, our results identify ZEB2 as an attractive therapeutic target to inhibit tumour invasion and counteract tumour resistance mechanisms induced by anti-angiogenic treatment strategies.

Planagumà J, Haselmann H, Mannara F, et al.
Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity.
Ann Neurol. 2016; 80(3):388-400 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity.
METHODS: One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus.
RESULTS: Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity.
INTERPRETATION: Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.

Pierscianek D, Wolf S, Keyvani K, et al.
Study of angiogenic signaling pathways in hemangioblastoma.
Neuropathology. 2017; 37(1):3-11 [PubMed] Related Publications
Hemangioblastoma (HB) is mainly located in the brain and the spinal cord. The tumor is composed of two major components, namely neoplastic stromal cells and abundant microvessels. Thus, hyper-vascularization is the hallmark of this tumor. Despite the identification of germline and/or epigenetic mutations of Von Hippel Lindau (VHL) gene as an important pathogenic mechanism of HB, little is known about the molecular signaling involved in this highly vascularized tumor. The present study investigated the key players of multiple angiogenic signaling pathways including VEGF/VEGFR2, EphB4/EphrinB2, SDF1α/CXCR4 and Notch/Dll4 pathways in surgical specimens of 22 HB. The expression of key angiogenic factors was detected by RT

Krusche B, Ottone C, Clements MP, et al.
EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells.
Elife. 2016; 5 [PubMed] Free Access to Full Article Related Publications
Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM.

Li L, Xu N, Zhang JF, et al.
EphB4/ephrinB2 Contributes to Imatinib Resistance in Chronic Myeloid Leukemia Involved in Cytoskeletal Proteins.
Int J Med Sci. 2016; 13(5):365-73 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The mechanism of EphB4/ephrinB2 in the resistance of chronic myelogenous leukemia to imatinib keeps unknown.
METHODS: The imatinib resistant chronic myelogenous leukemia cell line-K562-R, was established. EphB4 receptor expression was detected in patients and resistant cells. Cell migration and drug sensitivity were tested in the EphB4 knockdown cells and mouse models.
RESULTS: The EphB4 receptor was over-expressed in blast crisis patients compared to chronic phase patients. The level of EphB4 receptor expression was associated with a complete cytogenetic response within 12 months. Enhanced expression of the EphB4 receptor was detected in the K562-R cells. EphB4 knockdown inhibited cell migration ability and restored sensitivity to imatinib in vitro and in vivo. Restored sensitivity to imatinib was observed in K562-R cells, along with increased levels of phospho-EphB4 and decreased phosphorylation levels of RhoA, Rac1, and Cdc42.
CONCLUSION: Our study illustrates that aberrant activation of EphB4/ephrinB2 may mediate chronic myeloid leukemia resistance involved in cytoskeletal proteins.

Ren B, Best B, Ramakrishnan DP, et al.
LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming.
Arterioscler Thromb Vasc Biol. 2016; 36(6):1197-208 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: CD36 is a scavenger and antiangiogenic receptor that is important in atherothrombotic diseases, diabetes mellitus, cancer, and obesity. Lysophosphatidic acid, a phospholipid signaling mediator, abolishes endothelial cell responses to antiangiogenic proteins containing thrombospondin type 1 homology domains by downregulating endothelial CD36 transcription via protein kinase D1 (PKD-1) signaling. We aimed to understand mechanisms by which lysophosphatidic acid-mediated angiogenic signaling is integrated to regulate CD36 transcription and endothelial cell function via a nuclear transcriptional complex.
APPROACH AND RESULTS: Microvascular endothelial cells expressing CD36 were used for studying angiogenic signaling and CD36 transcription. Gene transfection and transduction, RT-qPCR, avidin-biotin-conjugated DNA-binding assay, chromatin immunoprecipitation assay, co-immunoprecipitation, proximal ligation assay, and immunofluorescence microscopy showed that lysophosphatidic acid-mediated CD36 transcriptional repression involved PKD-1 signaling mediated formation of forkhead box protein O1-histone deacetylase 7 complex in the nucleus. Unexpectedly, turning off CD36 transcription initiated reprogramming microvascular endothelial cells to express ephrin B2, a critical molecular signature involved in angiogenesis and arteriogenesis. Spheroid-based angiogenesis and in vivo Matrigel angiogenesis assays indicated that angiogenic branching morphogenesis and in vivo angiogenesis were dependent on PKD-1 signaling. A mouse tumor angiogenesis model revealed enhanced PKD-1 signaling and expression of ephrin B2 and smooth muscle actin in neovessels of Lewis Lung Carcinomas, along with low-CD36 expression or CD36 deficiency.
CONCLUSIONS: Lysophosphatidic acid/PKD-1 signaling leads to nuclear accumulation of histone deacetylase 7, where it interacts with forkhead box protein O1 to suppress endothelial CD36 transcription and mediates silencing of antiangiogenic switch, resulting in proangiogenic and proarteriogenic reprogramming. Targeting this signaling cascade could be a novel approach for ischemic cardiovascular disease and cancer.

Pierscianek D, Michel A, Hindy NE, et al.
Activation of multiple angiogenic signaling pathways in hemangiopericytoma.
Brain Tumor Pathol. 2016; 33(3):200-8 [PubMed] Related Publications
Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF-VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.

Husa AM, Magić Ž, Larsson M, et al.
EPH/ephrin profile and EPHB2 expression predicts patient survival in breast cancer.
Oncotarget. 2016; 7(16):21362-80 [PubMed] Free Access to Full Article Related Publications
The EPH and ephrins function as both receptor and ligands and the output on their complex signaling is currently investigated in cancer. Previous work shows that some EPH family members have clinical value in breast cancer, suggesting that this family could be a source of novel clinical targets. Here we quantified the mRNA expression levels of EPH receptors and their ligands, ephrins, in 65 node positive breast cancer samples by RT-PCR with TaqMan® Micro Fluidics Cards Microarray. Upon hierarchical clustering of the mRNA expression levels, we identified a subgroup of patients with high expression, and poor clinical outcome. EPHA2, EPHA4, EFNB1, EFNB2, EPHB2 and EPHB6 were significantly correlated with the cluster groups and particularly EPHB2 was an independent prognostic factor in multivariate analysis and in four public databases. The EPHB2 protein expression was also analyzed by immunohistochemistry in paraffin embedded material (cohort 2). EPHB2 was detected in the membrane and cytoplasmic cell compartments and there was an inverse correlation between membranous and cytoplasmic EPHB2. Membranous EPHB2 predicted longer breast cancer survival in both univariate and multivariate analysis while cytoplasmic EPHB2 indicated shorter breast cancer survival in univariate analysis. Concluding: the EPH/EFN cluster analysis revealed that high EPH/EFN mRNA expression is an independent prognostic factor for poor survival. Especially EPHB2 predicted poor breast cancer survival in several materials and EPHB2 protein expression has also prognostic value depending on cell localization.

Alam SK, Yadav VK, Bajaj S, et al.
DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53.
Cell Death Differ. 2016; 23(4):707-22 [PubMed] Free Access to Full Article Related Publications
Mutation in the TP53 gene positively correlates with increased incidence of chemoresistance in different cancers. In this study, we investigated the mechanism of chemoresistance and epithelial-to-mesenchymal transition (EMT) in colorectal cancer involving the gain-of-function (GOF) mutant p53/ephrin-B2 signaling axis. Bioinformatic analysis of the NCI-60 data set and subsequent hub prediction identified EFNB2 as a possible GOF mutant p53 target gene, responsible for chemoresistance. We show that the mutant p53-NF-Y complex transcriptionally upregulates EFNB2 expression in response to DNA damage. Moreover, the acetylated form of mutant p53 protein is recruited on the EFNB2 promoter and positively regulates its expression in conjunction with coactivator p300. In vitro cell line and in vivo nude mice data show that EFNB2 silencing restores chemosensitivity in mutant p53-harboring tumors. In addition, we observed high expression of EFNB2 in patients having neoadjuvant non-responder colorectal carcinoma compared with those having responder version of the disease. In the course of deciphering the drug resistance mechanism, we also show that ephrin-B2 reverse signaling induces ABCG2 expression after drug treatment that involves JNK-c-Jun signaling in mutant p53 cells. Moreover, 5-fluorouracil-induced ephrin-B2 reverse signaling promotes tumorigenesis through the Src-ERK pathway, and drives EMT via the Src-FAK pathway. We thus conclude that targeting ephrin-B2 might enhance the therapeutic potential of DNA-damaging chemotherapeutic agents in mutant p53-bearing human tumors.

Liersch-Löhn B, Slavova N, Buhr HJ, Bennani-Baiti IM
Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers.
Int J Cancer. 2016; 138(5):1220-31 [PubMed] Related Publications
Transmembrane tyrosine-kinase Ephrin receptors promote tumor progression and/or metastasis of several malignancies including leukemia, follicular lymphoma, glioma, malignant pleural mesothelioma, papillary thyroid carcinoma, sarcomas and ovarian, breast, bladder and non-small cell lung cancers. They also drive intestinal stem cell proliferation and positioning, control intestinal tissue boundaries and are involved in liver, pancreatic and colorectal cancers, indicating involvement in additional digestive system malignancies. We investigated the role of Ephrin-B4 receptor (EPHB4), and its ligand EFNB2, in gastric and gastroesophageal junction cancers in patient cohorts through computational, mathematical, molecular and immunohistochemical analyses. We show that EPHB4 is upregulated in preneoplastic gastroesophageal lesions and its expression further increased in gastroesophageal cancers in several independent cohorts. The closely related EPHB6 receptor, which also binds EFNB2, was downregulated in all tested cohorts, consistent with its tumor-suppressive properties in other cancers. EFNB2 expression is induced in esophageal cells by acidity, suggesting that gastroesophageal reflux disease (GERD) may constitute an early triggering event in activating EFNB2-EPHB4 signaling. Association of EPHB4 to both Barrett's esophagus and to advanced tumor stages, and its overexpression at the tumor invasion front and vascular endothelial cells intimate the notion that EPHB4 may be associated with multiple steps of gastroesophageal tumorigenesis. Analysis of oncogenomic signatures uncovered the first EPHB4-associated gene network (false discovery rate: 7 × 10(-90) ) composed of a five-transcription factor interconnected gene network that drives proliferation, angiogenesis and invasiveness. The EPHB4 oncogenomic network provides a molecular basis for its role in tumor progression and points to EPHB4 as a potential tumor aggressiveness biomarker and drug target in gastroesophageal cancers.

Liu PF, Jiang WH, Han YT, et al.
Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma.
Genet Mol Res. 2015; 14(3):10288-97 [PubMed] Related Publications
The main aim of this study was to explore the underlying molecular mechanisms and potential target molecules of pancreatic adenocarcinoma. The miRNA (GSE32678) and mRNA (GSE32676) expression profiles of patients with pancreatic ductal adenocarcinoma and healthy controls were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNA and differentially expressed genes were identified by analyzing the microarray algorithm after data preprocessing. Functional analysis was conducted by the Database for Annotation, Visualization and Integrated Analysis. miRNA-mRNA regulation pairs were obtained in TarMir database. The node degree of hsa-miR-200c, hsa-miR-429, and hsa-miR-200b (miRNA), and EFNB2, MYRIP, and PHF17 (mRNA) were extremely high in the miRNA-mRNA network, indicating that these miRNA and mRNA may play a key role in the development of pancreatic cancer. Our study screened out some target miRNAs and mRNAs for pancreatic ductal adenocarcinoma, which may be helpful in its diagnosis and treatment.

Jung S, Sielker S, Purcz N, et al.
Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression.
Head Face Med. 2015; 11:19 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Therapeutic strategies attacking oral squamous cell carcinoma have not essentially succeeded to improve long-term prognosis and overall survival over the last decades. Therefore, in this study, we aimed to illuminate the molecular regulation of angiogenesis in this tumour entity in order to demask novel markers of prognosis or therapeutic approach.
MATERIALS AND METHODS: A panel of significant transcriptional alterations in angiogenic genes of 83 cancer samples was established by comparison to 30 samples of healthy oral mucosa with microarray technique. Immunohistochemistry (IHC) was performed to trace the signalling cascade from gene to protein level.
RESULTS: A distinctive expression profile of VEGFA, EFNB2, PECAM1/CD31, ANGPT1 and ANGPT2 was revealed: VEGFA, EFNB2, and ANGPT2 were found overexpressed in 84 % to 95 % of tumour samples. In contrast, the expression of CD31 and ANGPT1 was downregulated in 80 % to 95 % of tumour samples. IHC confirmed results of the microarray analysis. Tumours with lymphatic spread showed higher gene expression rates of VEGFA, EFNB2 and ANGPT2 in moderately differentiated tumours and of VEGFA and EFNB2 in small tumours, respectively. The ANGPT1/ ANGPT2 transcription ratio was found decreased in larger tumours and especially in tumours without lymphatic spread.
CONCLUSIONS: A characteristic expression profile of angiogenic markers was established. The specific overexpression of EFNB2 in small tumours with lymphatic spread and the typical decrease of the ANGPT1/ ANGPT2 ratio in larger tumours give weight to EFNB2 and angiopoietins as prognostic factors and potential therapeutic targets.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EFNB2, Cancer Genetics Web: http://www.cancer-genetics.org/EFNB2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999