Gene Summary

Gene:EFNB2; ephrin B2
Aliases: HTKL, EPLG5, Htk-L, LERK5
Summary:This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have been implicated in mediating developmental events, especially in the nervous system and in erythropoiesis. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. This gene encodes an EFNB class ephrin which binds to the EPHB4 and EPHA3 receptors. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (16)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EFNB2 (cancer-related)

Pierscianek D, Wolf S, Keyvani K, et al.
Study of angiogenic signaling pathways in hemangioblastoma.
Neuropathology. 2017; 37(1):3-11 [PubMed] Related Publications
Hemangioblastoma (HB) is mainly located in the brain and the spinal cord. The tumor is composed of two major components, namely neoplastic stromal cells and abundant microvessels. Thus, hyper-vascularization is the hallmark of this tumor. Despite the identification of germline and/or epigenetic mutations of Von Hippel Lindau (VHL) gene as an important pathogenic mechanism of HB, little is known about the molecular signaling involved in this highly vascularized tumor. The present study investigated the key players of multiple angiogenic signaling pathways including VEGF/VEGFR2, EphB4/EphrinB2, SDF1α/CXCR4 and Notch/Dll4 pathways in surgical specimens of 22 HB. The expression of key angiogenic factors was detected by RT(2) -PCR and Western blot. Immunofluorescent staining revealed the cellular localization of these proteins. We demonstrated a massive upregulation of mRNA levels of VEGF and VEGFR2, CXCR4 and SDF1α, EphB4 and EphrinB2, as well as the main components of Dll4-Notch signaling in HB. An increase in the protein expression of VEGF, CXCR4 and the core-components of Dll4-Notch signaling was associated with an activation of Akt and Erk1/2 and accompanied by an elevated expression of PCNA. Immuofluorescent staining revealed the expression of VEGF and CXCR4 in endothelial cells as well as in tumor cells. Dll4 protein was predominantly found in tumor cells, whereas EphB4 immunoreactivity was exclusively detected in endothelial cells. We conclude that multiple key angiogenic pathways were activated in HB, which may synergistically contribute to the abundant vascularization in this tumor. Identification of these aberrant pathways provides potential targets for a possible future application of anti-angiogenic therapy for this tumor, particularly when a total surgical resection becomes difficult due to the localization or multiplicity of the tumor.

Pierscianek D, Michel A, Hindy NE, et al.
Activation of multiple angiogenic signaling pathways in hemangiopericytoma.
Brain Tumor Pathol. 2016; 33(3):200-8 [PubMed] Related Publications
Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF-VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.

Alam SK, Yadav VK, Bajaj S, et al.
DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53.
Cell Death Differ. 2016; 23(4):707-22 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Mutation in the TP53 gene positively correlates with increased incidence of chemoresistance in different cancers. In this study, we investigated the mechanism of chemoresistance and epithelial-to-mesenchymal transition (EMT) in colorectal cancer involving the gain-of-function (GOF) mutant p53/ephrin-B2 signaling axis. Bioinformatic analysis of the NCI-60 data set and subsequent hub prediction identified EFNB2 as a possible GOF mutant p53 target gene, responsible for chemoresistance. We show that the mutant p53-NF-Y complex transcriptionally upregulates EFNB2 expression in response to DNA damage. Moreover, the acetylated form of mutant p53 protein is recruited on the EFNB2 promoter and positively regulates its expression in conjunction with coactivator p300. In vitro cell line and in vivo nude mice data show that EFNB2 silencing restores chemosensitivity in mutant p53-harboring tumors. In addition, we observed high expression of EFNB2 in patients having neoadjuvant non-responder colorectal carcinoma compared with those having responder version of the disease. In the course of deciphering the drug resistance mechanism, we also show that ephrin-B2 reverse signaling induces ABCG2 expression after drug treatment that involves JNK-c-Jun signaling in mutant p53 cells. Moreover, 5-fluorouracil-induced ephrin-B2 reverse signaling promotes tumorigenesis through the Src-ERK pathway, and drives EMT via the Src-FAK pathway. We thus conclude that targeting ephrin-B2 might enhance the therapeutic potential of DNA-damaging chemotherapeutic agents in mutant p53-bearing human tumors.

Liersch-Löhn B, Slavova N, Buhr HJ, Bennani-Baiti IM
Differential protein expression and oncogenic gene network link tyrosine kinase ephrin B4 receptor to aggressive gastric and gastroesophageal junction cancers.
Int J Cancer. 2016; 138(5):1220-31 [PubMed] Related Publications
Transmembrane tyrosine-kinase Ephrin receptors promote tumor progression and/or metastasis of several malignancies including leukemia, follicular lymphoma, glioma, malignant pleural mesothelioma, papillary thyroid carcinoma, sarcomas and ovarian, breast, bladder and non-small cell lung cancers. They also drive intestinal stem cell proliferation and positioning, control intestinal tissue boundaries and are involved in liver, pancreatic and colorectal cancers, indicating involvement in additional digestive system malignancies. We investigated the role of Ephrin-B4 receptor (EPHB4), and its ligand EFNB2, in gastric and gastroesophageal junction cancers in patient cohorts through computational, mathematical, molecular and immunohistochemical analyses. We show that EPHB4 is upregulated in preneoplastic gastroesophageal lesions and its expression further increased in gastroesophageal cancers in several independent cohorts. The closely related EPHB6 receptor, which also binds EFNB2, was downregulated in all tested cohorts, consistent with its tumor-suppressive properties in other cancers. EFNB2 expression is induced in esophageal cells by acidity, suggesting that gastroesophageal reflux disease (GERD) may constitute an early triggering event in activating EFNB2-EPHB4 signaling. Association of EPHB4 to both Barrett's esophagus and to advanced tumor stages, and its overexpression at the tumor invasion front and vascular endothelial cells intimate the notion that EPHB4 may be associated with multiple steps of gastroesophageal tumorigenesis. Analysis of oncogenomic signatures uncovered the first EPHB4-associated gene network (false discovery rate: 7 × 10(-90) ) composed of a five-transcription factor interconnected gene network that drives proliferation, angiogenesis and invasiveness. The EPHB4 oncogenomic network provides a molecular basis for its role in tumor progression and points to EPHB4 as a potential tumor aggressiveness biomarker and drug target in gastroesophageal cancers.

Liu PF, Jiang WH, Han YT, et al.
Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma.
Genet Mol Res. 2015; 14(3):10288-97 [PubMed] Related Publications
The main aim of this study was to explore the underlying molecular mechanisms and potential target molecules of pancreatic adenocarcinoma. The miRNA (GSE32678) and mRNA (GSE32676) expression profiles of patients with pancreatic ductal adenocarcinoma and healthy controls were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNA and differentially expressed genes were identified by analyzing the microarray algorithm after data preprocessing. Functional analysis was conducted by the Database for Annotation, Visualization and Integrated Analysis. miRNA-mRNA regulation pairs were obtained in TarMir database. The node degree of hsa-miR-200c, hsa-miR-429, and hsa-miR-200b (miRNA), and EFNB2, MYRIP, and PHF17 (mRNA) were extremely high in the miRNA-mRNA network, indicating that these miRNA and mRNA may play a key role in the development of pancreatic cancer. Our study screened out some target miRNAs and mRNAs for pancreatic ductal adenocarcinoma, which may be helpful in its diagnosis and treatment.

Jung S, Sielker S, Purcz N, et al.
Analysis of angiogenic markers in oral squamous cell carcinoma-gene and protein expression.
Head Face Med. 2015; 11:19 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: Therapeutic strategies attacking oral squamous cell carcinoma have not essentially succeeded to improve long-term prognosis and overall survival over the last decades. Therefore, in this study, we aimed to illuminate the molecular regulation of angiogenesis in this tumour entity in order to demask novel markers of prognosis or therapeutic approach.
MATERIALS AND METHODS: A panel of significant transcriptional alterations in angiogenic genes of 83 cancer samples was established by comparison to 30 samples of healthy oral mucosa with microarray technique. Immunohistochemistry (IHC) was performed to trace the signalling cascade from gene to protein level.
RESULTS: A distinctive expression profile of VEGFA, EFNB2, PECAM1/CD31, ANGPT1 and ANGPT2 was revealed: VEGFA, EFNB2, and ANGPT2 were found overexpressed in 84 % to 95 % of tumour samples. In contrast, the expression of CD31 and ANGPT1 was downregulated in 80 % to 95 % of tumour samples. IHC confirmed results of the microarray analysis. Tumours with lymphatic spread showed higher gene expression rates of VEGFA, EFNB2 and ANGPT2 in moderately differentiated tumours and of VEGFA and EFNB2 in small tumours, respectively. The ANGPT1/ ANGPT2 transcription ratio was found decreased in larger tumours and especially in tumours without lymphatic spread.
CONCLUSIONS: A characteristic expression profile of angiogenic markers was established. The specific overexpression of EFNB2 in small tumours with lymphatic spread and the typical decrease of the ANGPT1/ ANGPT2 ratio in larger tumours give weight to EFNB2 and angiopoietins as prognostic factors and potential therapeutic targets.

Farshchian M, Nissinen L, Siljamäki E, et al.
EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.
J Invest Dermatol. 2015; 135(7):1882-92 [PubMed] Related Publications
Keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC), is the most common metastatic skin cancer. We have examined the role of Eph/ephrin signaling in the progression of cSCC. Analysis of the expression of EPH and EFN families in cSCC cells and normal epidermal keratinocytes revealed overexpression of EPHB2 mRNA in cSCC cells and cSCC tumors in vivo. Tumor cell-specific overexpression of EphB2 was detected in human cSCCs and in chemically induced mouse cSCCs with immunohistochemistry, whereas the expression of EphB2 was low in premalignant lesions and normal skin. Knockdown of EphB2 expression in cSCC cells suppressed growth and vascularization of cSCC xenografts in vivo and inhibited proliferation, migration, and invasion of cSCC cells in culture. EphB2 knockdown downregulated expression of genes associated with biofunctions cell viability, migration of tumor cells, and invasion of tumor cells. Among the genes most downregulated by EphB2 knockdown were MMP1 and MMP13. Moreover, activation of EphB2 signaling by ephrin-B2-Fc enhanced production of invasion proteinases matrix metalloproteinase-13 (MMP13) and MMP1, and invasion of cSCC cells. These findings provide mechanistic evidence for the role of EphB2 in the early progression of cSCC to the invasive stage and identify EphB2 as a putative therapeutic target in this invasive skin cancer.

Lisle JE, Mertens-Walker I, Stephens CR, et al.
Murine, but not human, ephrin-B2 can be efficiently cleaved by the serine protease kallikrein-4: implications for xenograft models of human prostate cancer.
Exp Cell Res. 2015; 333(1):136-46 [PubMed] Related Publications
BACKGROUND: Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis.
METHODS: An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing.
RESULTS: At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site.
CONCLUSION: These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.

Zhu H, Yang M, Zhang H, et al.
Genome-wide association pathway analysis to identify candidate single nucleotide polymorphisms and molecular pathways for gastric adenocarcinoma.
Tumour Biol. 2015; 36(7):5635-9 [PubMed] Related Publications
To demonstrate candidate single nucleotide polymorphisms that might affect susceptibility to gastric adenocarcinoma as well as their potential mechanisms and pathway hypotheses, we performed a genome-wide association study dataset of gastric adenocarcinoma. Our study included 472,342 single nucleotide polymorphisms from 2766 cases of gastric cardia adenocarcinoma cases and 11,013 subjects from north central China as control groups. The identify candidate causal SNPs and pathways (ICSNPathway) analysis was employed to identify 13 candidate single nucleotide polymorphisms, nine genes, and 15 pathways. The top three candidate SNPs were rs3765524 (-log10(p) = 8.556), rs2274223 (-log10(p) = 8.633), and rs2076472 (-log10(p) = 3.205). The strongest mechanism involved the modulation of rs4745 and rs12904, thereby affecting their regulatory roles in ephrin receptor binding (p = 0.001; FDR = 0.005). The second strongest hypothetical biological mechanism was that rs932972 and rs1052177 alters the regulatory role of the glycolysis pathway (p < 0.001; FDR = 0.013). The most significant pathway was the regulation of the ephrin receptor binding pathway, which involved EFNA1, TIAM1, EFNA5, EFNB2, and EFNB3.

Villanueva A, Portela A, Sayols S, et al.
DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma.
Hepatology. 2015; 61(6):1945-56 [PubMed] Related Publications
UNLABELLED: Epigenetic deregulation has emerged as a driver in human malignancies. There is no clear understanding of the epigenetic alterations in hepatocellular carcinoma (HCC) and of the potential role of DNA methylation markers as prognostic biomarkers. Analysis of tumor tissue from 304 patients with HCC treated with surgical resection allowed us to generate a methylation-based prognostic signature using a training-validation scheme. Methylome profiling was done with the Illumina HumanMethylation450 array (Illumina, Inc., San Diego, CA), which covers 96% of known cytosine-phosphate-guanine (CpG) islands and 485,000 CpG, and transcriptome profiling was performed with Affymetrix Human Genome U219 Plate (Affymetrix, Inc., Santa Clara, CA) and miRNA Chip 2.0. Random survival forests enabled us to generate a methylation signature based on 36 methylation probes. We computed a risk score of mortality for each individual that accurately discriminated patient survival both in the training (221 patients; 47% hepatitis C-related HCC) and validation sets (n = 83; 47% alcohol-related HCC). This signature correlated with known predictors of poor outcome and retained independent prognostic capacity of survival along with multinodularity and platelet count. The subset of patients identified by this signature was enriched in the molecular subclass of proliferation with progenitor cell features. The study confirmed a high prevalence of genes known to be deregulated by aberrant methylation in HCC (e.g., Ras association [RalGDS/AF-6] domain family member 1, insulin-like growth factor 2, and adenomatous polyposis coli) and other solid tumors (e.g., NOTCH3) and describes potential candidate epidrivers (e.g., septin 9 and ephrin B2).
CONCLUSIONS: A validated signature of 36 DNA methylation markers accurately predicts poor survival in patients with HCC. Patients with this methylation profile harbor messenger RNA-based signatures indicating tumors with progenitor cell features.

Li P, Chen W, Wang Y, et al.
Effects of ephrinB2 gene siRNA on the biological behavior of human colorectal cancer cells.
Oncol Rep. 2015; 33(2):758-66 [PubMed] Related Publications
Colorectal cancer (CRC) is a common gastrointestinal malignancy worldwide and is a lethal and aggressive malignancy with a dismal prognosis. EphrinB2 is a membrane-bound ligand and has an intracellular domain that also possesses an intrinsic signaling capacity called 'reverse signaling'. In the present study, CRC cell lines were screened for high expression of ephrinB2. Small interfering RNA (siRNA) knockdown of ephrinB2 was performed in human SW480 CRC cells. The levels of expression of ephrinB2, VEGF, CD105 and matrix metalloproteinase 9 (MMP9) protein were measured by western blotting, and messenger RNA (mRNA) levels were measured using real-time PCR. Apoptosis and cell cycle distribution were determined using flow cytometry. Cell proliferation was measured by a methyl thiazole tetrazolium (MTT) test and a scratch healing experiment was used to measure the extent of cell migration. A Transwell assay was used to detect the extent of cell invasion. The results showed that RNA interference (RNAi) of ephrinB2 effectively silenced the ephrinB2 gene at both the mRNA and protein levels in SW480 cells and inhibited the proliferation, invasion, migration and angiogenesis and induced apoptosis in SW480 cells. These effects may be attributed to VEGF and MMP9 regulation.

McKinney N, Yuan L, Zhang H, et al.
EphrinB1 expression is dysregulated and promotes oncogenic signaling in medulloblastoma.
J Neurooncol. 2015; 121(1):109-18 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Eph receptors and ephrin ligands are master regulators of oncogenic signaling required for proliferation, migration, and metastasis. Yet, Eph/ephrin expression and activity in medulloblastoma (MB), the most common malignant brain tumor of childhood, remains poorly defined. We hypothesized that Eph/ephrins are differentially expressed by sonic hedgehog (SHH) and non-SHH MB and that specific members contribute to the aggressive phenotype. Affymetrix gene expression profiling of 29 childhood MB, separated into SHH (N = 11) and non-SHH (N = 18), was performed followed by protein validation of selected Eph/ephrins in another 60 MB and two MB cell lines (DAOY, D556). Functional assays were performed using MB cells overexpressing or deleted for selected ephrins. We found EPHB4 and EFNA4 almost exclusively expressed by SHH MB, whereas EPHA2, EPHA8, EFNA1 and EFNA3 are predominantly expressed by non-SHH MB. The remaining family members, except EFNB1, are ubiquitously expressed by over 70-90 % MB, irrespective of subgroup. EFNB1 is the only member differentially expressed by 28 % of SHH and non-SHH MB. Corresponding protein expression for EphB/ephrinB1 and B2 was validated in MB. Only ephrinB2 was also detected in fetal cerebellum, indicating that EphB/ephrinB1 expression is MB-specific. EphrinB1 immunopositivity localizes to tumor cells within MB with the highest proliferative index. EphrinB1 overexpression promotes EphB activation, alters F-actin distribution and morphology, decreases adhesion, and significantly promotes proliferation. Either silencing or overexpression of ephrinB1 impairs migration. These results indicate that EphrinB1 is uniquely dysregulated in MB and promotes oncogenic responses in MB cells, implicating ephrinB1 as a potential target.

Maeno A, Terada N, Uegaki M, et al.
Up-regulation of miR-582-5p regulates cellular proliferation of prostate cancer cells under androgen-deprived conditions.
Prostate. 2014; 74(16):1604-12 [PubMed] Related Publications
BACKGROUND: MicroRNAs are noncoding small RNA that negatively regulate target gene expression by binding to the 3'-UTR of mRNA. Previous studies have shown that several microRNAs play a pivotal role in prostate cancer by acting as oncogenes or tumor suppressors. This study was aimed at identifying microRNAs that contribute to the progression to castration resistant prostate cancer.
METHODS: MicroRNAs expression profiles of a xenograft model and cell lines were examined by microarray analysis and real-time PCR. Functional analysis of miR-582-5p in cellular proliferation was examined by cell counting. Furthermore, in order to investigate a candidate target of miR-582-5p, microarray analysis and analysis in silico were utilized.
RESULTS: MiR-582-5p was identified to be up-regulated at the castration resistant stage of a xenograft model, KUCaP2 and in castration resistant cell line, AILNCaP#1. Overexpression of miR-582-5p increased the number and the percentage of S phase of LNCaP cells under androgen deprived condition. Moreover, suppression of miR-582-5p decreased the number and the percentage of S phase of AILNCaP#1 cells. Furthermore, we identified that miR-582-5p down-regulates EFNB2 expression, which is down-regulated at the castration resistant stage of a xenograft model, KUCaP2 and in castration resistant cell line, AILNCaP#1.
CONCLUSIONS: Our results suggest that up-regulation of miR-582-5p contributes to an increase in the proliferation of prostate cancer cells under androgen deprived conditions.

Khansaard W, Techasen A, Namwat N, et al.
Increased EphB2 expression predicts cholangiocarcinoma metastasis.
Tumour Biol. 2014; 35(10):10031-41 [PubMed] Related Publications
The activation of Ephrin (Eph) receptors, the largest tyrosine kinase families of cell surface receptor, has recently been addressed in human cholangiocarcinoma (CCA). Therefore, the present study aimed to investigate the role of Eph receptors and its ligands in CCA. Of all 50 cases of human CCA tested, immunohistochemical staining demonstrated that EphB2, EphB4, ephrinB1, and ephrinB2 were 100 % positive in CCA tissues with overexpressions of the above proteins as 56, 56, 70, and 48 % of cases, respectively. High expression of EphB2 was significantly correlated with the metastatic status of patients (P = 0.027). We also found that the high co-expression level of EphB2/ephrinB1 or EphB2/ephrinB2 were significantly correlated with the metastatic status of the patients (P = 0.034 and P = 0.024). Furthermore, we showed that the high co-expression level of EphB4/MVD and ephrinB1/MVD were significantly correlated with the metastasis status of CCA patients (P = 0.012 and P = 0.029). We further demonstrated that the EphB2 suppression using siRNA significantly reduced CCA cell migration by decreasing the phosphorylation of focal adhesion kinase (FAK) and paxillin. In conclusion, the upregulation of EphB2 receptors and its specific ligands (ephrinB1 and ephrinB2) leads to CCA metastasis. Suppression of EphB2 expression as well as inhibition of its downstream signaling proteins might serve as possible therapeutic strategies in human CCA.

Takahashi Y, Itoh M, Nara N, Tohda S
Effect of EPH-ephrin signaling on the growth of human leukemia cells.
Anticancer Res. 2014; 34(6):2913-8 [PubMed] Related Publications
BACKGROUND: Signaling induced by binding of erythropoietin-producing hepatoma-amplified sequence (EPH) receptors to their cell-surface ephrin ligands is implicated in hematopoiesis and growth of various cancer cells. However, the roles of EPH-ephrin signaling in leukemia have not been elucidated. We investigated the effects of EPHB4 and ephrin B2 on the growth of leukemia cells.
MATERIALS AND METHODS: Seven human leukemia cell lines were used to examine the effects of recombinant ephrin B2 and EPHB4 on cell proliferation by colorimetric WST-1 assay and colony assays; on protein tyrosine phosphorylation; and on mRNA expression by reverse transcription-polymerase chain reaction and microarray analysis.
RESULTS: In an erythroid leukemia-derived cell line AA, exogenous ephrin B2 induced proliferation and colony formation; in addition, it up-regulated protein tyrosine phosphorylation and the expression of growth-related genes such as FBJ murine osteosarcoma viral oncogene homolog B and v-src avian sarcoma viral oncogene homolog.
CONCLUSION: Growth-promoting effects of ephrin B2 were observed in an erythroid leukemia cell line, suggesting that the EPH-ephrin signaling may be involved in the pathology of leukemia.

Hu F, Tao Z, Shen Z, et al.
Down-regulation of EphB4 phosphorylation is necessary for esophageal squamous cell carcinoma tumorigenecity.
Tumour Biol. 2014; 35(7):7225-32 [PubMed] Related Publications
Eph/ephrin signaling system plays a very important role in the tumorigenesis and the formation of blood vessel. However, the function of EphB4 and its ligand ephrin B2 in the carcinogenesis of esophageal squamous cell carcinoma (ESCC) is not fully understood. Here, it was found that the expression of EphB4 was up-regulated in ESCC tissues compared with the paired normal tissues, while ephrin B2 was down-regulated in ESCC samples. Phosphorylation of EphB4 induced by its ligand ephrin B2-Fc inhibited the growth, migration and colony formation of ESCC cells. Moreover, over-expression of EphB4 or EphB4 kinase dead mutant (EphB4 KD) in ESCC cells promoted cell growth and migration, suggesting EphB4 promoted cell growth and migration independent of its kinase activity. Furthermore, we found that EphB4 interacted with the adaptor protein RACK1 and RACK1 decreased the phosphorylation level of EphB4. Taken together, our study revealed the important function and regulation of EphB4 in the progression of ESCC and suggested EphB4 as a novel target for the treatment of ESCC.

Aslam MI, Abraham J, Mansoor A, et al.
PDGFRβ reverses EphB4 signaling in alveolar rhabdomyosarcoma.
Proc Natl Acad Sci U S A. 2014; 111(17):6383-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Alveolar rhabdomyosarcoma (aRMS) is an aggressive myogenic childhood malignancy, not infrequently presenting as incurable metastatic disease. To identify therapeutic targets, we performed an unbiased tyrosine kinome RNA interference screen in primary cell cultures from a genetically engineered, conditional mouse model of aRMS. We identified ephrin receptor B4 (EphB4) as a target that is widely expressed in human aRMS and that portends a poor clinical outcome in an expression level-dependent manner. We also uncovered cross-talk of this ephrin receptor with another receptor tyrosine kinase, PDGFRβ, which facilitates PDGF ligand-dependent, ephrin ligand-independent activation of EphB4 converging on the Akt and Erk1/2 pathways. Conversely, EphB4 activation by its cognate ligand, EphrinB2, did not stimulate PDGFRβ; instead, apoptosis was paradoxically induced. Finally, we showed that small-molecule inhibition of both PDGFRβ and EphB4 by dasatinib resulted in a significant decrease in tumor cell viability in vitro, as well as decreased tumor growth rate and significantly prolonged survival in vivo. To our knowledge, these results are the first to identify EphB4 and its cross-talk with PDGFRβ as unexpected vital determinants of tumor cell survival in aRMS, with EphB4 at the crux of a bivalent signaling node that is either mitogenic or proapoptotic.

Sharma GK, Dhillon VK, Masood R, Maceri DR
Overexpression of EphB4, EphrinB2, and epidermal growth factor receptor in papillary thyroid carcinoma: A pilot study.
Head Neck. 2015; 37(7):964-9 [PubMed] Related Publications
BACKGROUND: The purpose of this study was to examine the differential expression of EphB4, EphrinB2, and epidermal growth factor receptor (EGFR) genes in papillary thyroid carcinoma (PTC) and evaluate their association with lymph node metastasis.
METHODS: EphB4, EphrinB2, and EGFR expression in 21 matched tumors and surrounding normal thyroid tissues were evaluated by complementary DNA (cDNA) microarray, Western blot, and immunohistochemistry (IHC).
RESULTS: We noted a statistically significant overexpression of EphB4, EphrinB2, and EGFR in tumor versus normal tissue based on cDNA microarray, Western blot, and IHC analysis. EphB4 and EphrinB2 overexpression were significantly associated with the presence of lymph node disease.
CONCLUSION: Overexpression of EphB4, EphrinB2, and EGFR are associated with PTC, whereas EphB4 and EphrinB2 overexpression are associated with lymph node metastases. These genes may be potential biomarkers for identification of subclinical lymph node involvement in PTC and potential small-molecule targets for pharmacotherapy research.

Liu H, Devraj K, Möller K, et al.
EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells.
Thromb Haemost. 2014; 112(1):151-63 [PubMed] Related Publications
The EphB/ephrinB receptor-ligand system is pivotal for the development of the embryonic vasculature and for angiogenesis in the adult organism. We observed that (i) the expression of ephrinB2 and ephrinB1 is up-regulated in capillaries during inflammation, that (ii) these ligands are localised on the luminal endothelial surface, and that (iii) they interact with the ephrinB-receptor EphB2 on monocyte/macrophages. This study delineates the impact of ephrinB-mediated reverse signalling on the integrity and proinflammatory differentiation of the endothelium. To this end, in vitro analyses with human cultured endothelial cells reveal that knockdown of ephrinB2 or ephrinB1 impairs monocyte transmigration through the endothelium. While ephrinB2 but not ephrinB1 interacts with PECAM-1 (CD31) in this context, reverse signalling by ephrinB1 but not ephrinB2 elicits a c-Jun N-terminal kinase (JNK)-dependent up-regulation of E-selectin expression. Furthermore, treatment of endothelial cells with soluble EphB2 receptor bodies or EphB2-overexpressing mouse myeloma cells links ephrinB2 to PECAM-1 and induces its Src-dependent phosphorylation while diminishing Src homology phosphotyrosyl phosphatase-2 (SHP-2) activity and increasing endothelial cell permeability. We conclude that extravasation of EphB2 positive leukocyte populations is facilitated by lowering the integrity of endothelial cell junctions and enhancing the pro-inflammatory phenotype of the endothelium through activation of ephrinB ligands.

Barneh F, Moshayedi M, Mirmohammadsadeghi H, et al.
EphB4 tyrosine kinase stimulation inhibits growth of MDA-MB-231 breast cancer cells in a dose and time dependent manner.
Dis Markers. 2013; 35(6):933-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc.
METHODS: Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence.
RESULTS: Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel.
CONCLUSION: This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.

Liu J, Jethva R, Del Vecchio MT, et al.
Tetrasomy 13q32.2qter due to an apparent inverted duplicated neocentric marker chromosome in an infant with hemangiomas, failure to thrive, laryngomalacia, and tethered cord.
Birth Defects Res A Clin Mol Teratol. 2013; 97(12):812-5 [PubMed] Related Publications
BACKGROUND: Approximately 100 small supernumerary marker chromosomes (sSMCs) with a non-α-satellite neocentromere structure have been reported in the literature. Of the few derived from chromosome 13, five have consisted of inverted duplicated segment 13q32qter.
CASE REPORT: We herein describe the sixth case, characterized by genome wide SNP array, conventional cytogenetics and FISH studies. The de novo occurrence of the marker, the poor prognosis and the presence of hemangiomas are consistent with previous cases.
CONCLUSION: We hereby expand the clinical spectrum of this rare cytogenetic disorder and suggest a possible mechanism for the pathogenesis of associated congenital vascular malformations.

Teng L, Nakada M, Furuyama N, et al.
Ligand-dependent EphB1 signaling suppresses glioma invasion and correlates with patient survival.
Neuro Oncol. 2013; 15(12):1710-20 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Extensive evidence implicates the Eph receptor family of tyrosine kinases and its ligand, ephrin, in glioma invasion, but it remains incompletely understood how these receptors affect chemotactic behavior of glioma. We sought to identify the Eph family members that correlate with patients' survival and to reveal the function of Eph in glioma invasion.
METHODS: Clinical relevance of EphB genes was confirmed in a clinically annotated expression data set of 195 brain biopsy specimens. The function of EphB was analyzed in vitro and in vivo.
RESULTS: Levels of mRNA of certain EphB members were significantly different in histological grades of glioma. According to Kaplan-Meier analysis, only the EphB1 level among 5 members of EphB emerged to be a powerful predictor of favorable survival in malignant glioma (n = 97, P = .0048), although the levels of EphB1 expression did not vary across the tumor grades. Immunoprecipitation showed that tyrosine phosphorylated EphB1 was not detected in all glioma cells tested. Forced overexpression and autophosphorylation of EphB1 in low expressor cell lines (U251, U87) did not affect cell migration or invasion in vitro, whereas EphB1 phosphorylation induced by ephrin-B2/Fc significantly decreased migration and invasion. Cells expressing ephrin-B2 showed noteworthy morphological changes consistent with migration induction; this alteration was negated by EphB1 overexpression. Concomitantly, overexpression of EphB1 abrogated the increased migration and invasion induced by ephrin-B2 in vitro and in vivo.
CONCLUSIONS: These data suggest that ligand-dependent EphB1 signaling negatively regulates glioma cell invasion, identifying EphB1 as a favorable prognostic factor in malignant glioma.

Georgiou GK, Igglezou M, Sainis I, et al.
Impact of breast cancer surgery on angiogenesis circulating biomarkers: a prospective longitudinal study.
World J Surg Oncol. 2013; 11:213 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Debate about the potential effects that surgery might have on cancer cells dormancy and angiogenesis prompted us to investigate the impact of breast surgery on circulating angiogenesis modulating gene transcripts and proteins.
METHODS: Blood samples from 10 female patients diagnosed with breast cancer and 6 with fibroadenoma were collected before surgery and post-operatively on days 3 and 7 (breast cancer patients only). A set of 84 angiogenesis-associated transcripts were assessed using quantitative PCR arrays, and circulating protein levels (vascular endothelial growth factor A (VEGFA), IL8 and fibroblast growth factor 2 (FGF2) were measured using ELISA in the same samples. The results were investigated against clinicopathological data and patient outcome.
RESULTS: Plasma levels of VEGFA and IL8 after surgery were significantly elevated in the breast cancer group compared to the control group (P = 0.038 and P = 0.021, respectively). In the cohort of breast cancer patients, VEGFA increased on day 3 (P = 0.038) and declined on day 7 (P= 0.017), while IL8 did not change on day 3 but showed a significant decline on day 7 (P = 0.02). FGF2 levels did not change significantly over time. Regarding gene transcripts, we detected upregulation of a significant number of angiogenesis-specific genes in patients with breast cancer versus controls: sphingosine kinase 1(SPHK1), epidermal growth factor (EGF), vascular endothelial growth factor C (VEGFC), neuropilin 1 (NRP1), fibroblast growth factor (FGF1), laminin alpha 5 (LAMA5), collagen type IV alpha 3 (COL4A3), IL8, ephrin B2 (EFNB2), ephrin A3 (EFNA3), tyrosine endothelial kinase (TEK), integrin beta 3 (ITGB3), AKT1, thrombospondin 1 (THBS1), chemokine (C-C motif) ligand 11 (CCL11) and TIMP metallopeptidase inhibitor 3 (TIMP3). Surgery induced an altered expression in several keygenes in breast cancer patients. We identified an upregulation of COL4A3 and downregulation of chemokine (C-X-C motif) ligand 9 (CXCL9), EGF, FGF1, Kinase insert domain receptor (KDR), Placental growth factor (PGF), TIMP3 and VEGFC.
CONCLUSION: Breast cancer patients have a different expression profile of circulating angiogenesis biomarkers compared to patients with fibroadenoma. Moreover, mastectomy promotes a transient increase of VEGFA and a shift in the expression patterns of a broad panel of angiogenesis-related circulating gene transcripts.

Goparaju C, Donington JS, Hsu T, et al.
Overexpression of EPH receptor B2 in malignant mesothelioma correlates with oncogenic behavior.
J Thorac Oncol. 2013; 8(9):1203-11 [PubMed] Related Publications
INTRODUCTION: Malignant pleural mesothelioma (MM) is an aggressive asbestos-associated malignancy with limited therapeutic options. This study describes the overexpression of Ephrin B2 receptor (EPHB2) in MM cell lines and tumors, and the effect of its manipulation on proliferative and invasive qualities of the disease.
METHODS: Using expression arrays, we investigated EPHB2 in MM tumors compared with normal mesothelium. EPHB2 and downstream target expression were evaluated using reverse-transcriptase polymerase chain reaction and immunoblotting methods. The biological significance of EPHB2 in MM was evaluated using in vitro functional assays with and without targeting by EPHB2-short hairpin RNA or blocking peptide in two mesothelioma cell lines, HP-1 and H2595.
RESULTS: EPHB2 is overexpressed in all MM cell lines, but not in benign mesothelial cells, and is significantly elevated in MM tumor tissue compared with matched normal peritoneum. Targeted knockdown of EPHB2 in HP-1 and H2595 cell lines reduced its expression and that of EPHB2 downstream targets such as matrix metalloproteinase (MMP-2) and vascular endothelial growth factor, whereas caspase 2 and caspase 8 had increased expression. Inhibition of EPHB2 resulted in a significant decrease in scratch closure (1.25-fold-1.8-fold), proliferation (1.5-fold), and invasion (1.7-fold-1.8-fold) compared with the controls. Most notably, however, EPHB2 silencing resulted in a significant increase in apoptotic proteins and activity.
CONCLUSION: EPHB2 seems to play an important role in MM pathogenesis and these findings indicate that EPHB2 could serve as a potential novel therapeutic target for treatment of the disease.

Thomas MG, Saldanha M, Mistry RJ, et al.
Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling.
Cell Death Dis. 2013; 4:e669 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Nicotinamide N-methyltransferase (NNMT, E.C. N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.

Liu R, Ferguson BD, Zhou Y, et al.
EphB4 as a therapeutic target in mesothelioma.
BMC Cancer. 2013; 13:269 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis.
METHODS: We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied.
RESULTS: EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression.
CONCLUSION: EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted.

Ji H, Greening DW, Barnes TW, et al.
Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components.
Proteomics. 2013; 13(10-11):1672-86 [PubMed] Related Publications
Exosomes are small extracellular 40-100 nm diameter membrane vesicles of late endosomal origin that can mediate intercellular transfer of RNAs and proteins to assist premetastatic niche formation. Using primary (SW480) and metastatic (SW620) human isogenic colorectal cancer cell lines we compared exosome protein profiles to yield valuable insights into metastatic factors and signaling molecules fundamental to tumor progression. Exosomes purified using OptiPrep™ density gradient fractionation were 40-100 nm in diameter, were of a buoyant density ~1.09 g/mL, and displayed stereotypic exosomal markers TSG101, Alix, and CD63. A major finding was the selective enrichment of metastatic factors (MET, S100A8, S100A9, TNC), signal transduction molecules (EFNB2, JAG1, SRC, TNIK), and lipid raft and lipid raft-associated components (CAV1, FLOT1, FLOT2, PROM1) in exosomes derived from metastatic SW620 cells. Additionally, using cryo-electron microscopy, ultrastructural components in exosomes were identified. A key finding of this study was the detection and colocalization of protein complexes EPCAM-CLDN7 and TNIK-RAP2A in colorectal cancer cell exosomes. The selective enrichment of metastatic factors and signaling pathway components in metastatic colon cancer cell-derived exosomes contributes to our understanding of the cross-talk between tumor and stromal cells in the tumor microenvironment.

Guijarro-Muñoz I, Sánchez A, Martínez-Martínez E, et al.
Gene expression profiling identifies EPHB4 as a potential predictive biomarker in colorectal cancer patients treated with bevacizumab.
Med Oncol. 2013; 30(2):572 [PubMed] Related Publications
The anti-VEGF monoclonal antibody bevacizumab was approved in 2004 as a first-line treatment for metastatic colorectal cancer (CRC) in combination with chemotherapy and provided proof of principle for antiangiogenic therapy. However, there is no biomarker that can help to select patients who may benefit from bevacizumab in order to improve cost-effectiveness and therapeutic outcomes. The aim of this study was to compare gene expression profiles in CRC patients treated with bevacizumab who responded to the treatment with those that did not respond, in an effort to identify potential predictive biomarkers. RNA isolated from formalin-fixed paraffin-embedded tumor specimens of patients treated with bevacizumab was subjected to gene expression analysis with quantitative RT-PCR arrays profiling 84 genes implicated in the angiogenic process. Data were validated at the protein level using immunohistochemistry. We identified a gene, EPHB4, whose expression was significantly increased in nonresponders (p = 0.048, Mann-Whitney test). Furthermore, high EPHB4 tumor levels were associated with decreased median overall survival (16 months vs 48, Log-rank p = 0.012). This was not observed in a control group of CRC patients treated only with chemotherapy, suggesting that EPHB4 constitutes a potential predictive biomarker and not a mere prognostic one. These data support the notion of a potential synergy between EPHB4-EFNB2 and VEGF-VEGFR pathways, making patients with high EPHB4 expression more resistant to VEGF blocking. Therefore, determination of EPHB4 levels in CRC samples could be useful for the prediction of response to bevacizumab.

Reissenweber B, Mosch B, Pietzsch J
Experimental hypoxia does not influence gene expression and protein synthesis of Eph receptors and ephrin ligands in human melanoma cells in vitro.
Melanoma Res. 2013; 23(2):85-95 [PubMed] Related Publications
Eph receptor tyrosine kinases and their ephrin ligands are considered to play important roles in melanoma progression and metastasis. Moreover, hypoxia is known to contribute to melanoma metastasis. In this study, the influence of experimental hypoxia on the expression and synthesis of EphA2 and EphB4, and their corresponding ligands ephrinA1, ephrinA5, and ephrinB2 was studied systematically in four human melanoma cell lines in vitro. Melanoma cell monolayer and spheroid cultures were used as both extrinsic and intrinsic hypoxia models. Hypoxic conditions were confirmed by analyzing hypoxia-inducible factors 1α or 2α expression, vascular endothelial growth factor expression, and cellular uptake of [F]fluoromisonidazole. In normoxia, EphA2, EphB4, ephrinA1, ephrinA5, and ephrinB2 expression was detectable in all cell lines to varying extents. Considerable protein synthesis of EphA2 was detected in all cell lines. However, no effect of experimental hypoxia on both Eph/ephrin expression and protein synthesis was observed. This contributes critically to the debate on the hypothesis that hypoxia regulates the Eph/ephrin system in melanoma.

Chen W, Sin SH, Wen KW, et al.
Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins.
PLoS Pathog. 2012; 8(11):e1003048 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC(50) in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EFNB2, Cancer Genetics Web: http://www.cancer-genetics.org/EFNB2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999