Gene Summary

Gene:RAC1; ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
Aliases: MIG5, Rac-1, TC-25, p21-Rac1
Summary:The protein encoded by this gene is a GTPase which belongs to the RAS superfamily of small GTP-binding proteins. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ras-related C3 botulinum toxin substrate 1
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (81)
Pathways:What pathways are this gene/protein implicaed in?
Show (35)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAC1 (cancer-related)

Chikara S, Lindsey K, Borowicz P, et al.
Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines.
BMC Complement Altern Med. 2017; 17(1):30 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Systemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway.
METHODS: Non-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting.
RESULTS: Non-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells.
CONCLUSIONS: Our data suggest that EL suppresses lung cancer cell motility and invasion by altering FAK activity and subsequent activation of downstream proteins needed for focal adhesion formation and cytoskeletal rearrangement. Therefore, administration of EL may serve as a safe and complementary approach for inhibiting lung tumor cell motility, invasion, and metastasis.

Sun Z, Zhang B, Wang C, et al.
Forkhead box P3 regulates ARHGAP15 expression and affects migration of glioma cells through the Rac1 signaling pathway.
Cancer Sci. 2017; 108(1):61-72 [PubMed] Free Access to Full Article Related Publications
Forkhead box P3 (FOXP3) plays a crucial role in the development and function of regulatory T cells and was recently identified as a tumor suppressor in different cancer types. Forkhead box P3 is expressed in normal brain tissues, but is strongly downregulated or absent in glioblastomas. In order to understand the FOXP3 adjustment mechanisms in glioma cells, we performed a DNA microarray in U87 cells overexpressing FOXP3 and validated the differences using quantitative real-time PCR, Western blot analysis, and immunohistochemistry in vitro and in vivo. We found that FOXP3 can regulate the expression of ARHGAP15. Expression of FOXP3 was also correlated with ARHGAP15 in glioma samples. Overexpression of FOXP3 inhibited glioma cell migration through ARHGAP15 upregulation and Rac1 inactivation. Silencing of FOXP3 promoted migration through ARHGAP15 downregulation and Rac1 activation. ARHGAP15, a GTPase-activating protein for Rac1, inhibits small GTPase signaling in a dual negative manner. We found that there is a correlation between expression of ARHGAP15 and glioma level. The small GTPase Rac1 plays an important role in cell migration. In addition, we found that FOXP3 regulates expression of epithelial-mesenchymal transition markers E-cadherin and N-cadherin, which is important given that epithelial-mesenchymal transition is critically involved in tumor spreading and dissemination. Thus, FOXP3 or ARHGAP15 may serve as a new molecular target for antimetastatic therapies in treating glioma.

Shen KH, Li CF, Chien LH, et al.
Role of galectin-1 in urinary bladder urothelial carcinoma cell invasion through the JNK pathway.
Cancer Sci. 2016; 107(10):1390-1398 [PubMed] Free Access to Full Article Related Publications
Human galectin-1 is a member of the galectin family, proteins with conserved carbohydrate-recognition domains that bind galactoside. Galectin-1 is highly expressed in various tumors and participates in various oncogenic processes. However, detailed descriptions of the function of galectin-1 in urinary bladder urothelial carcinoma have not been reported. Our previous cohort investigation showed that galectin-1 is associated with tumor invasiveness and is a possible independent prognostic marker of urinary bladder urothelial carcinoma. The present study aimed to clarify the relevance of galectin-1 expression level to tumor progression and invasion. In order to decipher a mechanism for the contribution of galectin-1 to the malignant behavior of urinary bladder urothelial carcinoma, two bladder cancer cell lines (T24 and J82) were established with knockdown of galectin-1 expression by shRNA. Bladder cancer cells with LGALS1 gene silencing showed reduced cell proliferation, lower invasive capability, and lower clonogenicity. Extensive signaling pathway studies indicated that galectin-1 participated in bladder cancer cell invasion by mediating the activity of MMP9 through the Ras-Rac1-MEKK4-JNK-AP1 signaling pathway. Our functional analyses of galectin-1 in urinary bladder urothelial carcinoma provided novel insights into the critical role of galectin-1 in tumor progression and invasion. These results revealed that silencing the galectin-1-mediated MAPK signaling pathway presented a novel strategy for bladder cancer therapy.

Zhou T, Wang CH, Yan H, et al.
Inhibition of the Rac1-WAVE2-Arp2/3 signaling pathway promotes radiosensitivity via downregulation of cofilin-1 in U251 human glioma cells.
Mol Med Rep. 2016; 13(5):4414-20 [PubMed] Related Publications
The Ras-related C3 botulinum toxin substrate 1 (Rac1)-WASP-family verprolin-homologous protein-2 (WAVE2)-actin-related protein 2/3 (Arp2/3) signaling pathway has been identified to be involved in cell migration and invasion in various types of cancer cell. Cofilin‑1 (CFL‑1), which is regulated by the Rac1‑WAVE2‑Arp2/3 signaling pathway, may promote radioresistance in glioma. Therefore, the present study aimed to investigate the potential role of the Rac1‑WAVE2‑Arp2/3 signaling pathway in radioresistance in U251 human glioma cells and elucidate its affect on CFL‑1 expression. Western blot analysis was performed to evaluate the protein expression of CFL‑1. In the present study, Rac1 was inhibited by NSC 23766, WAVE2 was inhibited by transfection with short hairpin (sh)RNA‑WAVE2 using Lipofectamine™ 2000 and Arp2/3 was inhibited by CK‑666. Cell viability was measured using the 3‑(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide assay, the cell migration ability was examined by a wound‑healing assay, and the cell invasion ability was assessed using a Transwell culture chamber system. The results showed that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway using NSC 23766, shRNA‑WAVE2 or CK‑666 reduced the cell viability, migration and invasion abilities in U251 human glioma cells, concordant with a reduced expression of CFL‑1. Furthermore, the expression of CFL‑1 was significantly increased in radioresistant U251 glioma cells when compared with normal U251 human glioma cells. These findings indicate that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway may promote radiosensitivity, which may partially result from the downregulation of CFL‑1 in U251 human glioma cells.

Zhu Y, Tao M, Wu J, et al.
Adenovirus-directed expression of TIPE2 suppresses gastric cancer growth via induction of apoptosis and inhibition of AKT and ERK1/2 signaling.
Cancer Gene Ther. 2016; 23(4):98-106 [PubMed] Related Publications
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TNFAIP8L2/TIPE2) as a novel anti-inflammatory factor plays an important role in maintaining immune homeostasis. Recently, TIPE2 has been shown to inhibit hepatocarcinoma growth and metastasis through targeting Ras and Rac1. However, its effects in human cancers are poorly understood. In the present study, we analyzed TIPE2 mRNA expression in a panel of human gastric cancer cells (AGS, HGC-27 and SGC-7901) and then examined the cell-autonomous effects of adenovirus-mediated human TIPE2 gene transfer (AdVTIPE2) on AGS and HGC-27 human gastric cancer cells. We found that compared with the GES-1 normal human gastric mucous epithelial cells, human TIPE2 was lost in the AGS, HGC-27 and SGC-7901 gastric cancer cells. Adenovirus-mediated human TIPE2 overexpression significantly inhibited AGS and HGC-27 gastric cancer cell growth and induced AGS and HGC-27 tumor cell apoptosis in vitro. Furthermore, AdVTIPE2 treatment obviously suppressed the growth of AGS gastric cancer subcutaneously xenografted tumors implanted in athymic BALB/c nude mice in vivo. Mechanistically, AdVTIPE2 exhibited marked effects on the upregulation of Bax, cleaved Caspase-9, cleaved Caspase-3, cleaved poly ADP ribose polymerase as well as the downregulation of B-cell lymphoma (Bcl)-XL, phosphorylated-protein kinase B (p-PKB/AKT), phosphorylated-extracellular signal-regulated kinase 1/2 (p-ERK1/2) in AGS gastric cancer cells in vitro and in vivo. Collectively, AdVTIPE2 suppressed gastric cancer growth very possibly by the activation of intrinsic apoptotic pathway and the attenuation of AKT and ERK1/2 signaling. Thus, our data indicated that TIPE2 may be a novel potential therapeutic target for human gastric cancer.

Golan M, Feinshtein V, Polyak D, et al.
Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes.
Bioconjug Chem. 2016; 27(4):947-60 [PubMed] Related Publications
In recent years, siRNA technology has emerged as a promising strategy for gene silencing in cancer therapy. We have designed novel CD44-targeted polyion complexes (PICs) composed of poly(ethylene glycol)-block-polyethylenimine (PEG-b-PEI) and laminin-derived peptides (mA5G27D or mA5G27F) for in vivo siRNA delivery and gene silencing in tumors. The full-length A5G27 peptide (RLVSYNGIIFFLK), from which mA5G27D and mA5G27F are derived, binds to CD44v3 and CD44v6 and inhibits tumor cell migration, invasion, and angiogenesis. Thus, when attached to the surface of PICs, A5G27-based peptides can serve both as targeting ligands to navigate siRNA molecules directly to CD44-overexpressing tumors, and as anti-migratory agents to inhibit tumor progression. The mA5G27D- or mA5G27F-harboring PEG-b-PEI copolymers strongly condensed siRNA molecules into nanosized PICs presenting positive surface charges, low in vitro cytotoxicity, and high serum stability. mA5G27D- or mA5G27F-bearing PICs demonstrated high efficacy and selectivity in delivering siRAC1 into CD44-overexpressing cells, thereby silencing RAC1 mRNA and protein levels in such cells. These PICs presented substantial anti-migratory features in vitro and accumulated significantly in SK-OV-3 tumor-bearing mice, following 3 sequential intraperitoneal (i.p.) injections. Treatment of mice with 8 or 9 sequential parenteral (intravenous, (i.v.) or i.p.) injections of mA5G27F-PEG-b-PEI/siRNA efficiently inhibited tumor growth in two different CD44-overexpressing tumor mouse models (A549 and SK-OV-3), regardless of the type of siRNA (siPLK1 or siLUC) used. The results thus reveal the potential utility of this system for targeted delivery of siRNA molecules into solid tumors to prolong the survival time of mice, while at the same time reducing potential toxicity.

Goel HL, Pursell B, Shultz LD, et al.
P-Rex1 Promotes Resistance to VEGF/VEGFR-Targeted Therapy in Prostate Cancer.
Cell Rep. 2016; 14(9):2193-208 [PubMed] Free Access to Full Article Related Publications
Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTEN(pc-/-) transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases the sensitivity of prostate tumors to bevacizumab. These data reveal that prostate tumors harbor cells with stem cell properties that are resistant to inhibitors of VEGF/VEGFR signaling. Combining the use of available VEGF/VEGFR-targeted therapies with P-Rex1 or Rac1 inhibition should improve the efficacy of these therapies significantly.

Zhang M, Luo SC
Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.
Genet Mol Res. 2016; 15(1) [PubMed] Related Publications
The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

Wang M, Dong Q, Wang Y
Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.
Tumour Biol. 2016; 37(8):11049-55 [PubMed] Related Publications
Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p < 0.05). Transfection of Rab23 plasmid was performed induced A172 cell proliferation, colony formation, invasion, and migration, while Rab23 depletion with siRNA reduced these abilities of U87 cells. In addition, we found that Rab23 transfection upregulated while its depletion reduced Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

Zhao H, Jiao Y, Zhang Z
Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement.
Int J Clin Exp Pathol. 2015; 8(12):15582-90 [PubMed] Free Access to Full Article Related Publications
Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer.

Lissanu Deribe Y, Shi Y, Rai K, et al.
Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.
Proc Natl Acad Sci U S A. 2016; 113(9):E1296-305 [PubMed] Free Access to Full Article Related Publications
PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

Hollander D, Donyo M, Atias N, et al.
A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1.
Genome Res. 2016; 26(4):541-53 [PubMed] Free Access to Full Article Related Publications
Splicing aberrations are prominent drivers of cancer, yet the regulatory pathways controlling them are mostly unknown. Here we develop a method that integrates physical interaction, gene expression, and alternative splicing data to construct the largest map of transcriptomic and proteomic interactions leading to cancerous splicing aberrations defined to date, and identify driver pathways therein. We apply our method to colon adenocarcinoma and non-small-cell lung carcinoma. By focusing on colon cancer, we reveal a novel tumor-favoring regulatory pathway involving the induction of the transcription factor MYC by the transcription factor ELK1, as well as the subsequent induction of the alternative splicing factor PTBP1 by both. We show that PTBP1 promotes specific RAC1,NUMB, and PKM splicing isoforms that are major triggers of colon tumorigenesis. By testing the pathway's activity in patient tumor samples, we find ELK1,MYC, and PTBP1 to be overexpressed in conjunction with oncogenic KRAS mutations, and show that these mutations increase ELK1 levels via the RAS-MAPK pathway. We thus illuminate, for the first time, a full regulatory pathway connecting prevalent cancerous mutations to functional tumor-inducing splicing aberrations. Our results demonstrate our method is applicable to different cancers to reveal regulatory pathways promoting splicing aberrations.

Maeda T, Yuzawa S, Suzuki A, et al.
RhoA mediates the expression of acidic extracellular pH-induced matrix metalloproteinase-9 mRNA through phospholipase D1 in mouse metastatic B16-BL6 melanoma cells.
Int J Oncol. 2016; 48(3):1251-7 [PubMed] Related Publications
Solid tumors are characterized by acidic extracellular pH (pHe). The present study examined the contribution of small GTP-binding proteins to phospholipase D (PLD) activation of acidic pHe-induced matrix metalloproteinase-9 (MMP-9) production. Acidic pHe-induced MMP-9 production was reduced by C3 exoenzyme, which inhibits the Rho family of GTPases; cytochalasin D, which inhibits actin reorganization; and simvastatin, which inhibits geranylgeranylation of Rho. Small interfering RNA (siRNA) against RhoA, but not against Rac1 or Cdc42, significantly inhibited acidic pHe induction of MMP-9. Pull-down assays showed that acidic pHe increased the activated form of RhoA. Forced expression of constitutively active RhoA induced MMP-9 production, even at neutral pHe. RhoA siRNA also reduced acidic pHe induced PLD activity. Specific inhibition of PLD1 and Pld1 gene knockout significantly reduced acidic pHe-induced MMP-9 expression. In contrast, PLD2 inhibition or knockout had no effect on MMP-9 expression. These findings suggested that RhoA-PLD1 signaling is involved in acidic pHe induction of MMP-9.

Zhang C, Liu J, Zhao Y, et al.
Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis.
Elife. 2016; 5:e10727 [PubMed] Free Access to Full Article Related Publications
Glutaminase (GLS) isoenzymes GLS1 and GLS2 are key enzymes for glutamine metabolism. Interestingly, GLS1 and GLS2 display contrasting functions in tumorigenesis with elusive mechanism; GLS1 promotes tumorigenesis, whereas GLS2 exhibits a tumor-suppressive function. In this study, we found that GLS2 but not GLS1 binds to small GTPase Rac1 and inhibits its interaction with Rac1 activators guanine-nucleotide exchange factors, which in turn inhibits Rac1 to suppress cancer metastasis. This function of GLS2 is independent of GLS2 glutaminase activity. Furthermore, decreased GLS2 expression is associated with enhanced metastasis in human cancer. As a p53 target, GLS2 mediates p53's function in metastasis suppression through inhibiting Rac1. In summary, our results reveal that GLS2 is a novel negative regulator of Rac1, and uncover a novel function and mechanism whereby GLS2 suppresses metastasis. Our results also elucidate a novel mechanism that contributes to the contrasting functions of GLS1 and GLS2 in tumorigenesis.

Yang Y, Nguyen TT, Jeong MH, et al.
Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.
PLoS One. 2016; 11(1):e0146575 [PubMed] Free Access to Full Article Related Publications
Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

van de Nes J, Gessi M, Sucker A, et al.
Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system.
J Neurooncol. 2016; 127(3):435-44 [PubMed] Related Publications
Melanocytic tumors originating in the central nervous system (MT-CNS) are rare tumors that generally have a favorable prognosis, however malignant tumors do occur. Pathogenetically MT-CNS are not well characterized. Similar to uveal melanoma and blue nevi, they frequently harbor activating GNAQ or GNA11 mutations. Rare NRAS mutations have also been reported. Other mutations have not yet been described. We analyzed 19 MT-CNS, 7 uveal melanomas and 19 cutaneous melanomas using a targeted next generation sequencing approach analyzing 29 genes known to be frequently mutated in other melanocytic tumors (in particular uveal and cutaneous melanomas). In concordance with previous studies, cutaneous melanoma samples showed frequent NRAS or BRAF mutations, as well as mutations in other genes (e.g. NF1, RAC1, PIK3CA, ARID1A). Metastasized uveal melanomas exhibited mutations in GNAQ, GNA11 and BAP1. In contrast, MT-CNS almost exclusively demonstrated mutations in GNAQ (71 %) or GNA11 (12 %). Interestingly both GNA11 mutations identified were detected in MT-CNS diagnosed as intermediate grade melanocytomas which also recurred. One of these recurrent cases also harbored an inactivating BAP1 mutation and was found to have lost one copy of chromosome 3. Our findings show that while MT-CNS do have GNAQ or GNA11 mutations, they rarely harbor other recurrent mutations found in uveal or cutaneous melanomas. Considering chromosome 3 and BAP1 loss are robust markers of poor prognosis in uveal melanoma, it will prove interesting to determine whether these genomic alterations are also of prognostic significance in MT-CNS.

Mayor R, Etienne-Manneville S
The front and rear of collective cell migration.
Nat Rev Mol Cell Biol. 2016; 17(2):97-109 [PubMed] Related Publications
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.

Al Thawadi H, Abu-Kaoud N, Al Farsi H, et al.
VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells.
Oncotarget. 2016; 7(5):5289-305 [PubMed] Free Access to Full Article Related Publications
Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells.

Ponce-Cusi R, Calaf GM
Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation.
Int J Oncol. 2016; 48(2):774-82 [PubMed] Related Publications
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.

Liu Y, Li H, Zhang R, et al.
Overexpression of the BRIP1 ameliorates chemosensitivity to cisplatin by inhibiting Rac1 GTPase activity in cervical carcinoma HeLa cells.
Gene. 2016; 578(1):85-91 [PubMed] Related Publications
BRCA1-interacting protein 1 (BRIP1), a DNA-dependent ATPase and a DNA helicase, is critical for BRCA-associated DNA damage repair functions and may be associated with the tumourigenesis and aggressiveness of various cancers. Here, we constructed a BRIP1 recombinant plasmid, overexpressed it in a cervical cancer cell line (HeLa) and found that ectopic expression of BRIP1 could remarkably enhance the antitumor activity of cisplatin, as demonstrated by decreased cell viability, colony formation and tumour xenografts' weight. Moreover, BRIP1 promoted cisplatin-mediated cell apoptosis and suppressed tumour angiogenesis. We also found that the synergistic inhibition effect of BRIP1 might be partially attributed to attenuation of Rac1 GTPase activation and that Rac1 GTPase re-activation could reverse the sensitizing effect induced by BRIP1. Our study suggested that up-regulation of BRIP1 could enhance chemosensitivity of HeLa cells to cisplatin through inhibiting Rac1 GTPase activation, and it provides a new insight into the essential role of BRIP1 in cervical cancer chemotherapy.

Schwickert A, Weghake E, Brüggemann K, et al.
microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements.
PLoS One. 2015; 10(12):e0143993 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3'-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer.

Guo J, Yu X, Gu J, et al.
Regulation of CXCR4/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer.
Tumour Biol. 2016; 37(5):6371-8 [PubMed] Related Publications
CXC chemokines and their cognate receptors have been implicated wildly in cancer pathogenesis. In the present study, we report a critical cause relationship between CXCR4 expression and tumorigenesis in the setting of human esophageal squamous cell carcinoma (ESCC). In ESCC cells, CXCR4 expression was significantly higher than in human esophageal epithelial cells (HEEC). Reduction of CXCR4 in ESCC cells reduced cell proliferation and invasion in vitro and tumor growth in vivo. Among the potential downstream targets of CXCR4-CXCL12 are RhoA, Rac-1, and Cdc42, which are likely to contribute to the invasiveness of ESCC cells. Finally, we found that CXCR4-CXCL12/AKT axis regulates RhoA, Rac-1, and Cdc42 to modulate cell invasion and tumor metastasis. Together, these results demonstrate a role for CXCR4 in ESCC metastasis and progression and suggest potential targets for therapeutic intervention.

Chang MT, Asthana S, Gao SP, et al.
Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity.
Nat Biotechnol. 2016; 34(2):155-63 [PubMed] Free Access to Full Article Related Publications
Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here, we developed a statistical algorithm to identify recurrently mutated residues in tumor samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 somatic substitution hotspots in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position- and mutant allele-specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications.

Zheng L, Zhang Y, Lin S, et al.
Down-regualtion of miR-106b induces epithelial-mesenchymal transition but suppresses metastatic colonization by targeting Prrx1 in colorectal cancer.
Int J Clin Exp Pathol. 2015; 8(9):10534-44 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence identified that epithelial-mesenchymal transition (EMT) is acquired during progression to metastatic, but whether it is an absolute requirement is still controversial. MiR-106b has been confirmed to promote cancer cell proliferation; however few studies are available on its functions in EMT and metastasis in colorectal cancer (CRC). In this study, we found that knocking down miR-106b induced EMT conferring migratory and invasive properties. MiR-106b knockdown induced cytoskeletal reorganization through staining intracellular F-actin. The expression of Rho GTPases (Rac1 and Cdc42) and Tiam1 was significantly enforced after miR-106b down-regulation. However, miR-106b knocking down could suppress metastatic colonization in vivo. Correspondingly, over expression of miR-106b obtained an opposite effect. We identified Prrx1 was a direct target of miR-106b through using target prediction algorithms and dual-Luciferase reporter assay. Moreover, Moreover, we also found TGF-β1 could down-regulate miR-106b, and simultaneously miR-106b also influences the expression of TGF-β1, establishing a negative feedback loop to regulate the expression of Prrx1 together. Taken together, these findings demonstrated that miR-106b knockdown could induce EMT which conferring cells migratory and invasive properties but could not accomplish distant metastatic colonization efficiently.

Romick-Rosendale LE, Hoskins EE, Privette Vinnedge LM, et al.
Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling.
Clin Cancer Res. 2016; 22(8):2062-73 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
PURPOSE: Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells.
EXPERIMENTAL DESIGN: Using sporadic HNSCC cell lines with and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors.
RESULTS: We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity.
CONCLUSIONS: These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes.

Dhruv HD, Roos A, Tomboc PJ, et al.
Propentofylline inhibits glioblastoma cell invasion and survival by targeting the TROY signaling pathway.
J Neurooncol. 2016; 126(3):397-404 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Glioblastoma (GBM) is the most common primary tumor of the CNS and carries a dismal prognosis. The aggressive invasion of GBM cells into the surrounding normal brain makes complete resection impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to 8 months for patients with recurrent GBM. New therapeutic strategies that target the molecular drivers of invasion are required for improved clinical outcome. We have demonstrated that TROY (TNFRSF19), a member of the TNFR super-family, plays an important role in GBM invasion and resistance. Knockdown of TROY expression inhibits GBM cell invasion, increases sensitivity to temozolomide, and prolongs survival in an intracranial xenograft model. Propentofylline (PPF), an atypical synthetic methylxanthine compound, has been extensively studied in Phase II and Phase III clinical trials for Alzheimer's disease and vascular dementia where it has demonstrated blood-brain permeability and minimal adverse side effects. Here we showed that PPF decreased GBM cell expression of TROY, inhibited glioma cell invasion, and sensitized GBM cells to TMZ. Mechanistically, PPF decreased glioma cell invasion by modulating TROY expression and downstream signaling, including AKT, NF-κB, and Rac1 activation. Thus, PPF may provide a pharmacologic approach to target TROY, inhibit cell invasion, and reduce therapeutic resistance in GBM.

Wu J, Zhang H, Xu C, et al.
TIPE2 functions as a metastasis suppressor via negatively regulating β-catenin through activating GSK3β in gastric cancer.
Int J Oncol. 2016; 48(1):199-206 [PubMed] Related Publications
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TNFAIP8L2, TIPE2) is a novel anti-inflammatory factor involved in maintaining immune homeostasis. Accumulating evidence has also shown that TIPE2 displays tumor-suppressive effects in several tumor types. Previous studies revealed that TIPE2 inhibits hepatocellular carcinoma metastasis by repressing Ral and Rac1 GTPases. However, its antimetastatic activity and underlying mechanism in other human cancers is largely unknown. We investigated TIPE2 in AGS, HGC-27 and SGC-7901 human gastric cancer cells compared with GES-1 normal human gastric mucous epithelial cells. We demonstrated that TIPE2 was expressed in GES-1 gastric mucous epithelial cells but lost in all three types of gastric cancer cells. We then performed a gain-of-function study by adenovirus-mediated TIPE2 overexpression (AdVTIPE2) and investigated the effects of TIPE2 on migration and invasion of AGS human gastric cancer cells. Wound healing and Transwell invasion assays showed that forced expression of TIPE2 markedly suppressed the gastric cancer cell migration and invasion in vitro. Mechanistically, TIPE2 remarkably reduced the total levels of pAKT, pGSK3β and β-catenin as well as the nuclear level of β-catenin in gastric cancer cells. The TIPE2-elicited antimetastatic effect in gastric cancer was closely associated with the inhibition of AKT signaling and enhancement of GSK3β activity followed by the degradation and decreased translocation to nucleus of β-catenin. These results provide the first compelling evidence that TIPE2 suppresses gastric cancer metastasis via downregulating β-catenin signaling through inhibiting AKT and activating GSK3β, indicating that TIPE2 is a promising therapeutic target for human gastric cancer metastasis.

Abe A, Yamamoto Y, Iba S, et al.
NUP214-RAC1 and RAC1-COL12A1 Fusion in Complex Variant Translocations Involving Chromosomes 6, 7 and 9 in an Acute Myeloid Leukemia Case with DEK-NUP214.
Cytogenet Genome Res. 2015; 146(4):279-84 [PubMed] Related Publications
DEK-NUP214 gene fusion in acute myeloid leukemia (AML) is associated with poor prognosis. It is most often a sole translocation and more rarely observed as complex chromosomal forms. We describe an AML case with complex karyotype abnormalities involving chromosome bands 6p23, 6q13, 7p22, and 9q34. RNA sequencing analysis revealed that exon 17 of NUP214 (9q34) was fused to exon 2 of RAC1 (7p22). We also detected that the 5'-end of intron 1 of RAC1 was fused with the antisense strand of intron 5 of COL12A1 (6q13). RT-PCR analysis confirmed the expression of DEK-NUP214, NUP214-RAC1, RAC1-COL12A1, NUP214, and RAC1. These results suggest that the 5'- and 3'-ends of NUP214 from the breakpoint in the same locus were fused to RAC1 and DEK, respectively, and the 5'-end of RAC1 was fused to COL12A1. The reading frame of NUP214 was not matched with RAC1; however, high expression of the RAC1 protein was detected by Western blotting. This study identifies the variant complex fusion genesNUP214-RAC1 and RAC1- COL12A1 in a case of AML.

Kumar S, Lu B, Dixit U, et al.
Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma.
Oncotarget. 2015; 6(35):37792-807 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM.

Tsai CH, Chiu JH, Yang CW, et al.
Molecular characteristics of recurrent triple-negative breast cancer.
Mol Med Rep. 2015; 12(5):7326-34 [PubMed] Article available free on PMC after 15/04/2017 Related Publications
Due to the fact that the treatment of breast cancer depends significantly on the molecular markers present in the cancer, including estrogen receptor (+), progesterone receptor (+) or erbB2 receptor (+), further investigation targeting triple‑negative breast cancer (TNBC) subtypes may assist in elucidating the mechanisms of recurrence of TNBC and enable the identification of novel therapeutic strategies for patients with TNBC. The aim of the present study was to compare the gene expression profiles between TNBC samples that were identified as having recurrent and non‑recurrent statuses. Between June 2011 and May 2012, a total of 30 patients with TNBC were examined using a follow-up period of at least 5 years. Their clinicopathological information was retrospectively reviewed and they were classified with a status either of recurrence [n=15 stage II (9), IIIA (2), IIIC (4)] or non‑recurrence [n=15 stage II (6), IIIA (1), IIIC (8)]. The total RNA from tissue samples obtained from the recurrent and non‑recurrent TNBC patients were used to performed oligonucleotide microarray analysis. The dataset was analyzed using GeneSpring software and validated using reverse transcription-quantitative polymerase chain reaction. Principal component analysis demonstrated that there was a marked difference in the gene expression distribution between the stage IIIc recurrent samples and early stage (stages IIa, IIb and IIIa) recurrent samples. In early stage recurrence, the significant pathway‑associated upregulated genes were matrix metalloproteinases (MMPs) and genes associated with cancer cell migration (CDH2) and cell adhesion/motility (KRAS, CDC42, RAC1, ICAM and SRGAP2). By contrast, during stage IIIc recurrence, the significant pathway‑associated upregulated genes in the recurrent samples were WNT signaling genes, including WNT 4 and WNT 16. It was concluded that there were markedly different distributions and gene expression profiles between stage IIIc recurrent TNBC tumors and early stage (IIa, IIb, IIIa) recurrent TNBC tumors, which provides important information for the development of effective treatment strategies for TNBC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAC1, Cancer Genetics Web: http://www.cancer-genetics.org/RAC1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999