Gene Summary

Gene:AURKB; aurora kinase B
Aliases: AIK2, AIM1, ARK2, AurB, IPL1, STK5, AIM-1, STK12, PPP1R48, aurkb-sv1, aurkb-sv2
Summary:This gene encodes a member of the aurora kinase subfamily of serine/threonine kinases. The genes encoding the other two members of this subfamily are located on chromosomes 19 and 20. These kinases participate in the regulation of alignment and segregation of chromosomes during mitosis and meiosis through association with microtubules. A pseudogene of this gene is located on chromosome 8. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Sep 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:aurora kinase B
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (32)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Thyroid Cancer
  • Zinc Fingers
  • Protein Kinase Inhibitors
  • RB1
  • Tumor Suppressor Proteins
  • Virus Replication
  • fms-Like Tyrosine Kinase 3
  • Rats, Wistar
  • Apoptosis
  • Aurora Kinases
  • Gene Expression Profiling
  • Cell Cycle
  • Mutation
  • cdc25 Phosphatases
  • rho GTP-Binding Proteins
  • Prothrombin Time
  • p53 Protein
  • siRNA
  • Nuclear Proteins
  • Mitosis
  • Cancer Gene Expression Regulation
  • Transfection
  • Western Blotting
  • Protein Binding
  • beta Catenin
  • Xenograft Models
  • Cervical Cancer
  • Quinazolines
  • Small Cell Lung Cancer
  • Cell Proliferation
  • Transcription
  • Ultraviolet Rays
  • Aurora Kinase B
  • Up-Regulation
  • Aurora Kinase A
  • Biomarkers, Tumor
  • Chromosome 17
  • Protein-Serine-Threonine Kinases
  • Phosphorylation
  • Stem Cells
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AURKB (cancer-related)

Murai S, Matuszkiewicz J, Okuzono Y, et al.
Aurora B Inhibitor TAK-901 Synergizes with BCL-xL Inhibition by Inducing Active BAX in Cancer Cells.
Anticancer Res. 2017; 37(2):437-444 [PubMed] Related Publications
BACKGROUND: Aurora B kinase plays an essential role in chromosome segregation and cytokinesis, and is dysregulated in many cancer types, making it an attractive therapeutic target. TAK-901 is a potent aurora B inhibitor that showed efficacy in both in vitro and in vivo oncology models.
MATERIALS AND METHODS: We conducted a synthetic lethal siRNA screening to identify the genes that, when silenced, can potentiate the cell growth-inhibitory effect of TAK-901.
RESULTS: B-cell lymphoma-extra large (BCL-xL) depletion by siRNA or chemical inhibition synergized with TAK-901 in cancer cell lines. As a mechanism of synthetic lethality, active BCL2 associated X, apoptosis regulator (BAX) was induced by TAK-901. BCL-xL protected cells from BAX-dependent apoptosis induction. Therefore, TAK-901 sensitizes cancer cells to BCL-xL inhibition.
CONCLUSION: Polyploid cells induced by TAK-901 are vulnerable to BCL-xL inhibition. Our findings may have an impact on combination strategies with aurora B inhibitors in clinical studies.

Juodzbalys G, Kasradze D, Cicciù M, et al.
Modern molecular biomarkers of head and neck cancer. Part I. Epigenetic diagnostics and prognostics: Systematic review.
Cancer Biomark. 2016; 17(4):487-502 [PubMed] Related Publications
INTRODUCTION: Nearly half of the head and neck cancer cases are diagnosed in late stages. Traditional screening modalities have many disadvantages. The aim of the present article was to review the scientific literature about novel head and neck cancer diagnostics - epigenetic biomarkers.
EVIDENCE ACQUISITION: A comprehensive review of the current literature was conducted according to the PRISMA guidelines by accessing the NCBI PubMed database. Authors conducted the search of articles in English language published from 2004 to 2015.
EVIDENCE SYNTHESIS: A total of thirty three relevant studies were included in the review. Fifteen of them concerned DNA methylation alterations, nine evaluation of abundancies in histone expressions and nine miRNA expression changes in HNC.
CONCLUSIONS: Considerable number of epigenetic biomarkers have been identified in both tumor tissue and salivary samples. Genes with best diagnostic effectiveness rates and further studying prospects were: TIMP3, DCC, DAPK, CDH1, CCNA1, AIM1, MGMT, HIC1, PAX1, PAX5, ZIC4, p16, EDNRB, KIF1A, MINT31, CD44, RARβ , ECAD. Individual histone and miRNA alterations tend to be hnc specific. Prognostic values of separate biomarkers are ambiguous. No established standards for molecular assay of head and neck cancer was found in order to elude the paradoxical results and discrepancies in separate trials.

Jin X, Liu X, Li X, Guan Y
Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma.
Biomed Res Int. 2016; 2016:4369431 [PubMed] Free Access to Full Article Related Publications
Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage. This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R, and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI) network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In the PPI networks, MAD2L1, AURKB, CCNB2, CDC20, and WNT3A had higher degrees, and the first four genes might be involved in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). Conclusions. These key genes might play a role in pathogenesis of LAC.

Srihari S, Kalimutho M, Lal S, et al.
Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach.
Mol Biosyst. 2016; 12(3):963-72 [PubMed] Related Publications
UNLABELLED: Copy number alterations (CNAs) are thought to account for 85% of the variation in gene expression observed among breast tumours. The expression of cis-associated genes is impacted by CNAs occurring at proximal loci of these genes, whereas the expression of trans-associated genes is impacted by CNAs occurring at distal loci. While a majority of these CNA-driven genes responsible for breast tumourigenesis are cis-associated, trans-associated genes are thought to further abet the development of cancer and influence disease outcomes in patients. Here we present a network-based approach that integrates copy-number and expression profiles to identify putative cis- and trans-associated genes in breast cancer pathogenesis. We validate these cis- and trans-associated genes by employing them to subtype a large cohort of breast tumours obtained from the METABRIC consortium, and demonstrate that these genes accurately reconstruct the ten subtypes of breast cancer. We observe that individual breast cancer subtypes are driven by distinct sets of cis- and trans-associated genes. Among the cis-associated genes, we recover several known drivers of breast cancer (e.g. CCND1, ERRB2, MDM2 and ZNF703) and some novel putative drivers (e.g. BRF2 and SF3B3). siRNA-mediated knockdown of BRF2 across a panel of breast cancer cell lines showed significant reduction in cell viability for ER-/HER2+ (MDA-MB-453) cells, but not in normal (MCF10A) cells thereby indicating that BRF2 could be a viable therapeutic target for estrogen receptor-negative/HER2-enriched (ER-/HER2+) cancers. Among the trans-associated genes, we identify modules of immune response (CD2, CD19, CD38 and CD79B), mitotic/cell-cycle kinases (e.g. AURKB, MELK, PLK1 and TTK), and DNA-damage response genes (e.g. RFC4 and FEN1). siRNA-mediated knockdown of RFC4 significantly reduced cell proliferation in ER-negative normal breast and cancer lines, thereby indicating that RFC4 is essential for both normal and cancer cell survival but could be a useful biomarker for aggressive (ER-negative) breast tumours.
AVAILABILITY: under NetStrat.

Cortez BA, Rezende-Teixeira P, Redick S, et al.
Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression.
Oncotarget. 2016; 7(8):8979-92 [PubMed] Free Access to Full Article Related Publications
Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development.

Wang C, Chen J, Cao W, et al.
Aurora-B and HDAC synergistically regulate survival and proliferation of lymphoma cell via AKT, mTOR and Notch pathways.
Eur J Pharmacol. 2016; 779:1-7 [PubMed] Related Publications
Aurora-B is a protein kinase that functions mainly in the attachment of the mitotic spindle to the centromere. Overexpression of Aurora-B causes unequal distribution of genetic information, creating aneuploidy cells, a hallmark of cancer. Histone deacetylases (HDACs) are a class of enzymes that remove acetyl groups from a ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly, thus globally regulating gene transcription. Additionally, these HDACs can also modify non-histone proteins. Inhibition of HDACs is a potent strategy for cancer treatment. Here, we report that inhibition of Aurora-B and HDAC exerts similar tumor suppressive effects in cells. Knockdown of Aurora-B or inhibition of HDAC achieved the same effect on repression of cell proliferation. Furthermore, we found that the tumor suppressive effect of Aurora-B and HDAC inhibition is due to the induction of cell cycle arrest and/or apoptosis. Mechanistically, we demonstrated that Aurora-B and HDAC can cooperatively regulate AKT, mTOR and Notch pathways.

Bogen D, Wei JS, Azorsa DO, et al.
Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma.
Oncotarget. 2015; 6(34):35247-62 [PubMed] Free Access to Full Article Related Publications
Despite advances in multimodal treatment, neuroblastoma (NB) is often fatal for children with high-risk disease and many survivors need to cope with long-term side effects from high-dose chemotherapy and radiation. To identify new therapeutic targets, we performed an siRNA screen of the druggable genome combined with a small molecule screen of 465 compounds targeting 39 different mechanisms of actions in four NB cell lines. We identified 58 genes as targets, including AURKB, in at least one cell line. In the drug screen, aurora kinase inhibitors (nine molecules) and in particular the AURKB-selective compound, barasertib, were the most discriminatory with regard to sensitivity for MYCN-amplified cell lines. In an expanded panel of ten NB cell lines, those with MYCN-amplification and wild-type TP53 were the most sensitive to low nanomolar concentrations of barasertib. Inhibition of the AURKB kinase activity resulted in decreased phosphorylation of the known target, histone H3, and upregulation of TP53 in MYCN-amplified, TP53 wild-type cells. However, both wild-type and TP53 mutant MYCN-amplified cell lines arrested in G2/M phase upon AURKB inhibition. Additionally, barasertib induced endoreduplication and apoptosis. Treatment of MYCN-amplified/TP53 wild-type neuroblastoma xenografts resulted in profound growth inhibition and tumor regression. Therefore, aurora B kinase inhibition is highly effective in aggressive neuroblastoma and warrants further investigation in clinical trials.

Kai K, Kondo K, Wang X, et al.
Antitumor Activity of KW-2450 against Triple-Negative Breast Cancer by Inhibiting Aurora A and B Kinases.
Mol Cancer Ther. 2015; 14(12):2687-99 [PubMed] Free Access to Full Article Related Publications
Currently, no targeted drug is available for triple-negative breast cancer (TNBC), an aggressive breast cancer that does not express estrogen receptor, progesterone receptor, or HER2. TNBC has high mitotic activity, and, because Aurora A and B mitotic kinases drive cell division and are overexpressed in tumors with a high mitotic index, we hypothesized that inhibiting Aurora A and B produces a significant antitumor effect in TNBC. We tested this hypothesis by determining the antitumor effects of KW-2450, a multikinase inhibitor of both Aurora A and B kinases. We observed significant inhibitory activities of KW-2450 on cell viability, apoptosis, colony formation in agar, and mammosphere formation in TNBC cells. The growth of TNBC xenografts was significantly inhibited with KW-2450. In cell-cycle analysis, KW-2450 induced tetraploid accumulation followed by apoptosis or surviving octaploid (8N) cells, depending on dose. These phenotypes resembled those of Aurora B knockdown and complete pharmaceutical inhibition of Aurora A. We demonstrated that 8N cells resulting from KW-2450 treatment depended on the activation of mitogen-activated protein kinase kinase (MEK) for their survival. When treated with the MEK inhibitor selumetinib combined with KW-2450, compared with KW-2450 alone, the 8N cell population was significantly reduced and apoptosis was increased. Indeed, this combination showed synergistic antitumor effect in SUM149 TNBC xenografts. Collectively, Aurora A and B inhibition had a significant antitumor effect against TNBC, and this antitumor effect was maximized by the combination of selumetinib with Aurora A and B inhibition.

Kasap E, Gerceker E, Boyacıoglu SÖ, et al.
The potential role of the NEK6, AURKA, AURKB, and PAK1 genes in adenomatous colorectal polyps and colorectal adenocarcinoma.
Tumour Biol. 2016; 37(3):3071-80 [PubMed] Related Publications
Colorectal adenomatous polyp (CRAP) is a major risk factor for the development of sporadic colorectal cancer (CRC). Histone modifications are one of the epigenetic mechanisms that may have key roles in the carcinogenesis of CRC. The objective of the present study is to investigate the alternations in the defined histone modification gene expression profiles in patients with CRAP and CRC. Histone modification enzyme key gene expressions of the CRC, CRAP, and control groups were evaluated and compared using the reverse transcription PCR (RT-PCR) array method. Gene expression analysis was performed in the CRAP group after dividing the patients into subgroups according to the polyp diameter, pathological results, and morphological parameters which are risk factors for developing CRC in patients with CRAP. PAK1, NEK6, AURKA, AURKB, HDAC1, and HDAC7 were significantly more overexpressed in CRC subjects compared to the controls (p < 0.05). PAK1, NEK6, AURKA, AURKB, and HDAC1 were significantly more overexpressed in the CRAP group compared to the controls (p < 0.005). There were no significant differences between the CRAP and CRC groups with regards to PAK1, NEK6, AURKA, or AURKB gene overexpression. PAK1, NEK6, AURKA, and AURKB were significantly in correlation with the polyp diameter as they were more overexpressed in polyps with larger diameters. In conclusion, overexpressions of NEK6, AURKA, AURKB, and PAK1 genes can be used as predictive markers to decide the colonoscopic surveillance intervals after the polypectomy procedure especially in polyps with larger diameters.

Yang XR, Xiong Y, Duan H, Gong RR
Identification of genes associated with methotrexate resistance in methotrexate-resistant osteosarcoma cell lines.
J Orthop Surg Res. 2015; 10:136 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: This study aimed to better understand the mechanisms underlying methotrexate (MTX)-resistance in osteosarcoma.
METHODS: The raw transcription microarray data GSE16089 collected from three MTX-sensitive osteosarcoma (Saos-2) cell samples and three MTX-resistant osteosarcoma (Saos-2) cell samples were downloaded from Gene Expression Omnibus. After data processing, the differentially expressed genes (DEGs) were identified. Next, DEGs were submitted to DAVID for functional annotation based on the GO (Gene Ontology) database, as well as pathway enrichment analysis based on the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. Transcription factors (TFs) and tumor-associated genes (TAGs) were identified with reference to TRANSFAC and TAG, and TSGene databases, respectively. The protein-protein interaction (PPI) network of the gene-encoded products was constructed, and the subnetwork with the highest score was also detected using Search Tool for the Retrieval of Interacting Genes and BioNet package.
RESULTS: A total of 690 up-regulated genes and down-regulated 626 genes were identified. Up-regulated DEGs (including AARS and PARS2) were associated to transfer RNA (tRNA) aminoacylation while down-regulated DEGs (including AURKA, CCNB1, CCNE2, CDK1, and CENPA) were correlated with mitotic cell cycle. Totally, 13 TFs (including HMGB2), 13 oncogenes (including CCNA2 and AURKA), and 19 tumor suppressor genes (TSGs) (including CDKN2C) were identified from the down-regulated DEGs. Ten DEGs, including nine down-regulated genes (such as AURKA, CDK1, CCNE2, and CENPA) and one up-regulated gene (GADD45A), were involved in the highest score subnetwork.
CONCLUSION: AARS, AURKA, AURKB, CENPA, CCNB1, CCNE2, and CDK may contribute to MTX resistance via aminoacyl-tRNA biosynthesis pathway, cell cycle pathway, or p53 signaling pathway.

Iankov ID, Kurokawa CB, D'Assoro AB, et al.
Inhibition of the Aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy.
Cancer Gene Ther. 2015; 22(9):438-44 [PubMed] Free Access to Full Article Related Publications
Oncolytic measles virus (MV) strains have demonstrated broad spectrum preclinical anti-tumor efficacy, including breast cancer. Aurora A kinase controls mitotic spindle formation and has a critical role in malignant transformation. We hypothesized that the Aurora A kinase inhibitor MLN8237 (alisertib) can increase MV oncolytic effect and efficacy by causing mitotic arrest. Alisertib enhanced MV oncolysis in vitro and significantly improved outcome in vivo against breast cancer xenografts. In a disseminated MDA-231-lu-P4 lung metastatic model, the MV/alisertib combination treatment markedly increased median survival to 82.5 days with 20% of the animals being long-term survivors versus 48 days median survival for the control animals. Similarly, in a pleural effusion model of advanced breast cancer, the MV/alisertib combination significantly improved outcome with a 74.5 day median survival versus the single agent groups (57 and 40 days, respectively). Increased viral gene expression and IL-24 upregulation were demonstrated, representing possible mechanisms for the observed increase in anti-tumor effect. Inhibiting Aurora A kinase with alisertib represents a novel approach to enhance MV-mediated oncolysis and antitumor effect. Both oncolytic MV strains and alisertib are currently tested in clinical trials, this study therefore provides the basis for translational applications of this combinatorial strategy in the treatment of patients with advanced breast cancer.

Gerçeker E, Boyacıoglu SO, Kasap E, et al.
Never in mitosis gene A-related kinase 6 and aurora kinase A: New gene biomarkers in the conversion from ulcerative colitis to colorectal cancer.
Oncol Rep. 2015; 34(4):1905-14 [PubMed] Related Publications
Ulcerative colitis (UC) is an important risk factor for colorectal cancer (CRC). Histone modifications are one of the epigenetic mechanisms that may have key roles in the carcinogenesis of CRC. At present, there are no studies comparing histone modification patterns of UC and CRC in the literature. Therefore the aim of the present study was to investigate whether genes, particularly those involved in histone modification, have value in patient monitoring with regards to CRC development in UC. Key gene expressions of the histone modification enzyme were assessed and compared in CRC, UC and control groups using the RT-PCR array technique. Patients were divided into subgroups based on the extent and duration of the disease and inflammatory burden, which are considered risk factors for CRC development in UC patients. In UC and CRC groups, a significantly higher overexpression of the NEK6 and AURKA genes compared to the control group was identified. In addition, there was a significantly higher overexpression of HDAC1 and PAK1 genes in the UC group, and of HDAC1, HDAC7, PAK1 and AURKB genes in the CRC group. NEK6, AURKA, HDAC1 and PAK1 were significantly overexpressed in patients with a longer UC duration. Overexpression of AURKA and NEK6 genes was significantly more pronounced in UC patients with more extensive colon involvement. HDAC1, HDAC7, PAK1, NEK6, AURKA and AURKB are important diagnostic and prognostic markers involved in the carcinogenesis of CRC. HDAC1, PAK1, NEK6 and AURKA may be considered as diagnostic markers to be used in CRC screening for UC patients.

Arai E, Gotoh M, Tian Y, et al.
Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.
Int J Cancer. 2015; 137(11):2589-606 [PubMed] Free Access to Full Article Related Publications
CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.

Woo JK, Kang JH, Shin D, et al.
Daurinol Enhances the Efficacy of Radiotherapy in Lung Cancer via Suppression of Aurora Kinase A/B Expression.
Mol Cancer Ther. 2015; 14(7):1693-704 [PubMed] Related Publications
The aurora kinases constitute one family of serine/threonine kinases whose activity is essential for mitotic progression. The aurora kinases are frequently upregulated in human cancers and are associated with sensitivity to chemotherapy in certain ones. In the present study, we investigated whether aurora kinases could be a target to overcome radioresistance or enhance the radiosensitivity of lung cancer. For that purpose, we determined the therapeutic potential of daurinol, an investigational topoisomerase inhibitor, alone and in combination with radiation, by observing its effect on aurora kinases. Daurinol decreased cell viability and proliferation in human colon and lung cancer cells. Gene expression in daurinol-treated human colon cancer cells was evaluated using RNA microarray. The mRNA expression of 18 genes involved in the mitotic spindle check point, including aurora kinase A (AURKA) and aurora kinase B (AURKB), was decreased in daurinol-treated human colon cancer cells as compared with vehicle-treated cells. As expected, radiation increased expression levels of AURKA and AURKB. This increase was effectively attenuated by siRNAs against AURKA and AURKB, which suppressed cell growth and increased apoptosis under radiation. Furthermore, the expression of AURKA and AURKB was suppressed by daurinol in the presence or absence of radiation in colon and lung cancer cells. Daurinol alone or in combination with radiation decreased lung cancer growth in xenograft mouse models. Our data clearly confirm the antitumor and radiosensitizing activity of daurinol in human lung cancer cells through the inhibition of AURKA and AURKB.

Pai HC, Kumar S, Shen CC, et al.
MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27.
PLoS One. 2015; 10(4):e0123819 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines.
METHODS: To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay.
RESULTS: MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo.
CONCLUSION: These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer.

He JY, Xi WH, Zhu LB, et al.
Knockdown of Aurora-B alters osteosarcoma cell malignant phenotype via decreasing phosphorylation of VCP and NF-κB signaling.
Tumour Biol. 2015; 36(5):3895-902 [PubMed] Related Publications
The aim of this study is to investigate the effects of inhibiting Aurora-B on osteosarcoma (OS) cell malignant phenotype, phosphorylation of valosin-containing protein (VCP), and the activity of NF-κB signaling in vitro. The expressions of Aurora-B and p-VCP proteins were detected by immunohistochemistry in 24 OS tissues, and the relationship between Aurora-B and p-VCP was investigated. The results showed that there was a positive correlation between Aurora-B and p-VCP proteins. The expression of Aurora-B in human OS cell lines U2-OS and HOS cells was inhibited by specific short hairpin RNA (shRNA) lentivirus (AURKB-shRNA lentivirus, Lv-shAURKB) which targeted Aurora-B. The results showed that the phosphorylation of VCP, the activity of NF-κB signaling pathway and the malignant phenotype of OS cells were all suppressed by knockdown of Aurora-B. It indicated that the inhibition of Aurora-B alters OS cells malignant phenotype by downregulating phosphorylation of VCP and activating of the NF-κB signaling pathway in vitro.

Hsu WH, Chang CC, Huang KW, et al.
Evaluation of the medicinal herb Graptopetalum paraguayense as a treatment for liver cancer.
PLoS One. 2015; 10(4):e0121298 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third most common cause of cancer-related death worldwide. Sorafenib is the only drug for patients with advanced-stage hepatocellular carcinoma (HCC) that has been shown to confer a survival benefit to patients with HCC; however, it has many side effects. Thus, alternate therapeutic strategies with improved safety and therapeutic efficacy for the management of HCC should be developed.
METHODS AND FINDINGS: We demonstrate that an extract of Graptopetalum paraguayense (GP) down-regulated the expression levels of several onco-proteins, including AURKA, AURKB, and FLJ10540, in HCC cells. To isolate the active components in the GP extracts, we prepared extracts fractions and assessed their effects on the expression of onco-proteins in HCC cells. The fraction designated HH-F3 was enriched in active ingredients, exhibited cytotoxic effects, and suppressed the expression of the onco-proteins in HCC cells. The structure of the main active compound in HH-F3 was found to be similar to that of the proanthocyanidin compounds derived from Rhodiola rosea. In addition, a distinct new compound rich in 3, 4, 5-trihydroxy benzylic moieties was identified in the HH-F3 preparations. Mechanistic studies indicated that HH-F3 induced apoptosis in HCC cells by promoting the loss of mitochondrial membrane potential and the production of reactive oxygen species. HH-F3 also enhanced PTEN expression and decreased AKT phosphorylation at Ser473 in a concentration-dependent manner in HCC cells. Moreover combination of GP or HH-F3 and sorafenib synergistically inhibits the proliferation of Huh7 cells. The treatment of a rat model with diethylnitrosamine (DEN)-induced liver cancer with extracts of GP and HH-F3 decreased hepatic collagen contents and inhibited tumor growth.
CONCLUSIONS: These results indicate that GP extracts and HH-F3 can protect the liver by suppressing tumor growth; consequently, these compounds could be considered for the treatment of HCC.

Zekri A, Ghaffari SH, Yaghmaie M, et al.
Inhibitor of Aurora Kinase B Induces Differentially Cell Death and Polyploidy via DNA Damage Response Pathways in Neurological Malignancy: Shedding New Light on the Challenge of Resistance to AZD1152-HQPA.
Mol Neurobiol. 2016; 53(3):1808-23 [PubMed] Related Publications
Aurora kinase B (AURKB), a crucial regulator of malignant mitosis, is involved in chromosome segregation and cytokinesis. AZD1152-HQPA is a selective inhibitor for AURKB activity and currently bears clinical assessment for several malignancies. However, the effect of this drug still needs to be elucidated in neurological malignancies. In this study, we investigated the restrictive potentials of AZD1152-HQPA in U87MG and SK-N-MC. AZD1152-HQPA treatment resulted in growth arrest, modification of cell cycle, and inhibition of colony formation in both cell lines. Furthermore, lower concentrations of AZD1152-HQPA profoundly induced apoptosis in U87GM (p53/p73 wild type) cells in parallel with an upregulation of p53 and its target genes BAX, BAD, APAF1, and PUMA. But remarkably, SK-N-MC (p53/p73 double null) responded to AZD1152-HQPA at much higher concentrations with an upregulation of genes involved in cell cycle progression, induction of excessive endoreduplication, and polyploidy rather than apoptosis. Although SK-N-MC was resistant to AZD1152-HQPA, we did not find a mutation in the coding sequence of Aurora B gene or overexpressions of ABCG2 and ABCB1 as reported previously to be resistance mechanisms. However, our results suggest that p53/p73 status could be an important mechanism for the type of response and resistance of the tumor cells to AZD1152-HQPA. Collectively, inhibition of Aurora kinase B differentially induced cell death and polyploidy via DNA damage response pathways, depending on the status of p53/p73. We suggest p53/p73 could be a key regulator of sensitivity to AZD1152-HQPA and their status should be explored in clinical response to this ongoing drug in clinical trials.

Diaz RJ, Golbourn B, Faria C, et al.
Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma.
Oncotarget. 2015; 6(5):3359-74 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC- overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma.

Mäki-Jouppila JH, Pruikkonen S, Tambe MB, et al.
MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase.
Mol Oncol. 2015; 9(6):1056-70 [PubMed] Related Publications
The let-7 microRNA (miRNA) family has been implicated in the regulation of diverse cellular processes and disease pathogenesis. In cancer, loss-of-function of let-7 miRNAs has been linked to tumorigenesis via increased expression of target oncogenes. Excessive proliferation rate of tumor cells is often associated with deregulation of mitotic proteins. Here, we show that let-7b contributes to the maintenance of genomic balance via targeting Aurora B kinase, a key regulator of the spindle assembly checkpoint (SAC). Our results indicate that let-7b binds to Aurora B kinase 3'UTR reducing mRNA and protein expression of the kinase. In cells, excess let-7b induced mitotic defects characteristic to Aurora B perturbation including increased rate of polyploidy and multipolarity, and premature SAC inactivation that leads to forced exit from chemically induced mitotic arrest. Moreover, the frequency of aneuploid HCT-116 cells was significantly increased upon let-7b overexpression compared to controls. Interestingly, together with a chemical Aurora B inhibitor, let-7b had an additive effect on polyploidy induction in HeLa cells. In breast cancer patients, reduced let-7b expression was found to be associated with increased Aurora B expression in grade 3 tumors. Furthermore, let-7b was found downregulated in the most aggressive forms of breast cancer determined by clinicopathological parameters. Together, our findings suggest that let-7b contributes to the fidelity of cell division via regulation of Aurora B. Moreover, the loss of let-7b in aggressive tumors may drive tumorigenesis by up-regulation of Aurora B and other targets of the miRNA, which further supports the role of let-7b in tumor suppression.

Sijare F, Geißler AL, Fichter CD, et al.
Aurora B expression and histone variant H1.4S27 phosphorylation are no longer coordinated during metaphase in aneuploid colorectal carcinomas.
Virchows Arch. 2015; 466(5):503-15 [PubMed] Related Publications
Experimental model systems identified phosphorylation of linker histone variant H1.4 at Ser 27 (H1.4S27p) as a novel mitotic mark set by Aurora B kinase. Here, we examined expression of Aurora B and H1.4S27p in colorectal carcinoma (CRC) cell lines (HCT116, DLD1, Caco-2, HT29) and tissue specimens (n = 36), in relation to microsatellite instability (MSI) status and ploidy. In vitro, Aurora B (pro-/meta-/anaphase) and H1.4S27p (pro-/metaphase) were localized in mitotic figures. The proportion of labeled mitoses was significantly different between cell lines for Aurora B (p = 0.019) but not for H1.4S27p (p = 0.879). For Aurora B, these differences were not associated with an altered Aurora B gene copy number (FISH) or messenger RNA (mRNA) expression level (qRT-PCR). Moreover, Aurora B expression and H1.4S27 phosphorylation were no longer coordinated during metaphase in aneuploid HT29 cells (p = 0.039). In CRCs, immunoreactivity for Aurora B or H1.4S27p did not correlate with T- or N-stage, grade, or MSI status. However, metaphase labeling of H1.4S27p was significantly higher in diploid than in aneuploid CRCs (p = 0.011). Aurora B was significantly correlated with H1.4S27p-positive metaphases in MSI (p = 0.010) or diploid (p = 0.003) CRCs. Finally, combined classification of MSI status and ploidy revealed a significant positive correlation of Aurora B with H1.4S27p in metaphases of diploid/MSI (p = 0.010) and diploid/microsatellite-stable (MSS; p = 0.031) but not of aneuploid/MSS (p = 0.458) CRCs. The present study underlines the functional link of Aurora B expression and H1.4S27p during specific phases of mitosis in diploid and/or MSI-positive CRCs in vitro and in situ. Importantly, the study shows that the coordination between Aurora B expression and phosphorylation of H1.4 at Ser 27 is lost in cycling aneuploid CRC cells.

Hole S, Pedersen AM, Lykkesfeldt AE, Yde CW
Aurora kinase A and B as new treatment targets in aromatase inhibitor-resistant breast cancer cells.
Breast Cancer Res Treat. 2015; 149(3):715-26 [PubMed] Related Publications
Aromatase inhibitors (AIs) are used for treatment of estrogen receptor α (ER)-positive breast cancer; however, resistance is a major obstacle for optimal outcome. This preclinical study aimed at identifying potential new treatment targets in AI-resistant breast cancer cells. Parental MCF-7 breast cancer cells and four newly established cell lines, resistant to the AIs exemestane or letrozole, were used for a functional kinase inhibitor screen. A library comprising 195 different compounds was tested for preferential growth inhibition of AI-resistant cell lines. Selected targets were validated by analysis of cell growth, cell cycle phase distribution, protein expression, and subcellular localization. We identified 24 compounds, including several inhibitors of Aurora kinases e.g., JNJ-7706621 and barasertib. Protein expression of Aurora kinase A and B was found upregulated in AI-resistant cells compared with MCF-7, and knockdown studies showed that Aurora kinase A was essential for AI-resistant cell growth. In AI-resistant cell lines, the clinically relevant Aurora kinase inhibitors alisertib and danusertib blocked cell cycle progression at the G2/M phase, interfered with chromosome alignment and spindle pole formation, and resulted in preferential growth inhibition compared with parental MCF-7 cells. Even further growth inhibition was obtained when combining the Aurora kinase inhibitors with the antiestrogen fulvestrant. Our study is the first to demonstrate that Aurora kinase A and B may be treatment targets in AI-resistant cells, and our data suggest that therapy targeting both ER and Aurora kinases may be a potent treatment strategy for overcoming AI resistance in breast cancer.

Kabisch M, Lorenzo Bermejo J, Dünnebier T, et al.
Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer.
Carcinogenesis. 2015; 36(2):256-71 [PubMed] Free Access to Full Article Related Publications
The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated.

Graves CA, Jones A, Reynolds J, et al.
Neuroendocrine Merkel cell carcinoma is associated with mutations in key DNA repair, epigenetic and apoptosis pathways: a case-based study using targeted massively parallel sequencing.
Neuroendocrinology. 2015; 101(2):112-9 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Merkel cell carcinoma (MCC) is a rare neuroendocrine carcinoma with a poorly understood molecular etiology. We implemented a comprehensive deep sequencing approach to identify mutations in the tumor DNA from a cohort of patients treated at our institution over the past 15 years. Our results indicate mutations that may constitute therapeutic targets in MCC.
METHODS: Five patients were treated for MCC within the study interval. Patients with adequate tissue (n = 4), positive neuroendocrine differentiation (chromogranin, synaptophysin, and cytokeratin 20), and histopathological confirmation of MCC were included in the study. DNA was extracted from archival tumor tissue samples and analyzed by massively parallel sequencing using a targeted, multiplex PCR approach followed by semiconductor sequencing.
RESULTS: We demonstrate high-penetrance nonsense mutations in PDE4DIP (n = 4) as well as various missense mutations in the DNA damage response (PRKDC, AURKB, ERCC5, ATR, and ATRX) and epigenetic modulating enzymes (MLL3).
CONCLUSION: We describe several mutations in potential disease-relevant genes and pathways. These targets should be evaluated in a larger cohort to determine their role in the molecular pathogenesis of MCC.

Jiang Y, Wang Y, Wang T, et al.
PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells.
Nat Commun. 2014; 5:5566 [PubMed] Free Access to Full Article Related Publications
Pyruvate kinase M2 (PKM2) is expressed at high levels during embryonic development and tumour progression and is important for cell growth. However, it is not known whether it directly controls cell division. Here, we found that Aurora B phosphorylates PKM2, but not PKM1, at T45; this phosphorylation is required for PKM2's localization and interaction with myosin light chain 2 (MLC2) in the contractile ring region of mitotic cells during cytokinesis. PKM2 phosphorylates MLC2 at Y118, which primes the binding of ROCK2 to MLC2 and subsequent ROCK2-dependent MLC2 S15 phosphorylation. PKM2-regulated MLC2 phosphorylation, which is greatly enhanced by EGF stimulation or EGFRvIII, K-Ras G12V and B-Raf V600E mutant expression, plays a pivotal role in cytokinesis, cell proliferation and brain tumour development. These findings underscore the instrumental function of PKM2 in oncogenic EGFR-, K-Ras- and B-Raf-regulated cytokinesis and tumorigenesis.

Ma Y, Cao H, Lou S, et al.
Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc.
J Mol Med (Berl). 2015; 93(4):427-38 [PubMed] Related Publications
UNLABELLED: Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.
KEY MESSAGE: Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.

Wan L, Tan HL, Thomas-Ahner JM, et al.
Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis.
Cancer Prev Res (Phila). 2014; 7(12):1228-39 [PubMed] Free Access to Full Article Related Publications
Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild-type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4 to 10 weeks of age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone repletion (2.5 mg/kg/d initiated 1 week after castration). Ten-week-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia. Of the 200 prostate cancer-related genes measured by quantitative NanoString, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P < 0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared with WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P < 0.0001) compared with intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways is reduced by lycopene feeding (Srd5a1) and by tomato feeding (Srd5a2, Pxn, and Srebf1). In addition, tomato feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, whereas lycopene feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk.

Murray MJ, Nicholson JC, Coleman N
Biology of childhood germ cell tumours, focussing on the significance of microRNAs.
Andrology. 2015; 3(1):129-39 [PubMed] Free Access to Full Article Related Publications
Genomic and protein-coding transcriptomic data have suggested that germ cell tumours (GCTs) of childhood are biologically distinct from those of adulthood. Global messenger RNA profiles segregate malignant GCTs primarily by histology, but then also by age, with numerous transcripts showing age-related differential expression. Such differences are likely to account for the heterogeneous clinico-pathological behaviour of paediatric and adult malignant GCTs. In contrast, as global microRNA signatures of human tumours reflect their developmental lineage, we hypothesized that microRNA profiles would identify common biological abnormalities in all malignant GCTs owing to their presumed shared origin from primordial germ cells. MicroRNAs are short, non-protein-coding RNAs that regulate gene expression via translational repression and/or mRNA degradation. We showed that all malignant GCTs over-express the miR-371-373 and miR-302/367 clusters, regardless of patient age, histological subtype or anatomical tumour site. Furthermore, bioinformatic approaches and subsequent Gene Ontology analysis revealed that these two over-expressed microRNAs clusters co-ordinately down-regulated genes involved in biologically significant pathways in malignant GCTs. The translational potential of this finding has been demonstrated with the detection of elevated serum levels of miR-371-373 and miR-302/367 microRNAs at the time of malignant GCT diagnosis, with levels falling after treatment. The tumour-suppressor let-7 microRNA family has also been shown to be universally down-regulated in malignant GCTs, because of abundant expression of the regulatory gene LIN28. Low let-7 levels resulted in up-regulation of oncogenes including MYCN, AURKB and LIN28 itself, the latter through a direct feedback mechanism. Targeting LIN28, or restoring let-7 levels, both led to effective inhibition of this pathway. In summary, paediatric malignant GCTs show biological differences from their adult counterparts at a genomic and protein-coding transcriptome level, whereas they both display very similar microRNA expression profiles. These similarities and differences may be exploited for diagnostic and/or therapeutic purposes.

Groeneweg JW, Hernandez SF, Byron VF, et al.
Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.
Clin Cancer Res. 2014; 20(24):6517-28 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that commonly harbors HER2 gene amplification. We investigated the effectiveness of HER2 inhibition using lapatinib and trastuzumab in vitro and in xenografts derived from USC cell lines and USC patient-derived xenografts.
EXPERIMENTAL DESIGN: Immunohistochemistry and FISH were performed to assess HER2 expression in 42 primary USC specimens. ARK1, ARK2, and SPEC2 cell lines were treated with trastuzumab or lapatinib. Cohorts of mice harboring xenografts derived from ARK2 and SPEC2 cell lines and EnCa1 and EnCa2 primary human USC samples were treated with either vehicle, trastuzumab, lapatinib, or the combination of trastuzumab and lapatinib. Acute and chronic posttreatment tumor samples were assessed for downstream signaling alterations and examined for apoptosis and proliferation.
RESULTS: HER2 gene amplification (24%) correlated significantly with HER2 protein overexpression (55%). All models were impervious to single-agent trastuzumab treatment. Lapatinib decreased in vitro proliferation of all cell lines and in vivo growth of HER2-amplified xenografts (ARK2, EnCa1). In addition, dual therapy with trastuzumab and lapatinib resulted in significant antitumor activity only in ARK2 and EnCa1 tumors. Dual HER2 therapy induced on target alteration of downstream MAPK and PI3K pathway mediators only in HER2-amplified models, and was associated with increased apoptosis and decreased proliferation.
CONCLUSIONS: Although trastuzumab alone did not impact USC growth, dual anti-HER2 therapy with lapatinib led to improved inhibition of tumor growth in HER2-amplified USC and may be a promising avenue for future investigation.

Zekri A, Ghaffari SH, Ghanizadeh-Vesali S, et al.
AZD1152-HQPA induces growth arrest and apoptosis in androgen-dependent prostate cancer cell line (LNCaP) via producing aneugenic micronuclei and polyploidy.
Tumour Biol. 2015; 36(2):623-32 [PubMed] Related Publications
Prostate cancer is the frequent non-cutaneous tumor with high mortality in men. Prostate tumors contain cells with different status of androgen receptor. Androgen receptor plays important roles in progression and treatment of prostate cancer. Aurora B kinase, with oncogenic potential, is involved in chromosome segregation and cytokinesis, and its inhibition is a promising anti-cancer therapy. In the present study, we aimed to investigate the effects of Aurora B inhibitor, AZD1152-HQPA, on survival and proliferation of androgen receptor (AR)-positive prostate cancer cells. LNCaP was used as androgen-dependent prostate cancer cell line. We explored the effects of AZD1152-HQPA on cell viability, DNA content, micronuclei formation, and expression of genes involved in apoptosis and cell cycle. Moreover, the expression of Aurora B and AR were investigated in 23 benign prostatic hyperplasia and 38 prostate cancer specimens. AZD1152-HQPA treatment induced defective cell survival, polyploidy, and cell death in LNCaP cell line. Centromeric labeling with fluorescence in situ hybridization (FISH) showed that the loss of whole chromosomes is the origin of micronuclei, indicating on aneugenic action of AZD1152-HQPA. Treatment of AZD1152-HQPA decreased expression of AR. Moreover, we found weak positive correlations between the expression of Aurora B and AR in both benign prostatic hyperplasia and prostate cancer specimens (r = 0.25, r = 0.41). This is the first time to show that AZD1152-HQPA can be a useful therapeutic strategy for the treatment of androgen-dependent prostate cancer cell line. AZD1152-HQPA induces aneugenic mechanism of micronuclei production. Taken together, this study provides new insight into the direction to overcome the therapeutic impediments against prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AURKB, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999