EXT2

Gene Summary

Gene:EXT2; exostosin glycosyltransferase 2
Aliases: SOTV, SSMS
Location:11p11.2
Summary:This gene encodes one of two glycosyltransferases involved in the chain elongation step of heparan sulfate biosynthesis. Mutations in this gene cause the type II form of multiple exostoses. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:exostosin-2
Source:NCBIAccessed: 09 March, 2017

Ontology:

What does this gene/protein do?
Show (27)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 09 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Loss of Heterozygosity
  • Genetic Predisposition
  • Genotype
  • Exons
  • Heterozygote
  • Chromosome Mapping
  • Exostoses, Multiple Hereditary
  • Frameshift Mutation
  • DNA Mutational Analysis
  • Chondrosarcoma
  • Gene Deletion
  • Missense Mutation
  • Osteochondroma
  • Introns
  • Childhood Cancer
  • Chromosome 8
  • Genetic Linkage
  • Chromosome 11
  • Mutation
  • Cancer DNA
  • Polymerase Chain Reaction
  • Point Mutation
  • China
  • Single-Stranded Conformational Polymorphism
  • DNA Primers
  • Chromatography, High Pressure Liquid
  • Adolescents
  • Case-Control Studies
  • Base Sequence
  • exostosin-2
  • Tumor Suppressor Gene
  • Heparitin Sulfate
  • Wnt1 Protein
  • Bone Cancer
  • N-Acetylglucosaminyltransferases
  • Amino Acid Sequence
  • Asian Continental Ancestry Group
  • Chondrocytes
  • Radiography
  • Genetic Testing
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Multiple Hereditary ExostosesEXT2 and Multiple Hereditary Exostoses View Publications110
ChondrosarcomaEXT2 mutations in Secondary Chondrosarcoma
Osteochondroma (the most common type of benign bone tumor) is frequently characterised by mutations of EXT1 and EXT2 genes, often sporadic but sometimes germline, as seen in Multiple Hereditary Exostoses. Osteochondromas occasionally undergo neoplastic transformation resulting in secondary chondrosarcoma.
View Publications35

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EXT2 (cancer-related)

Ishimaru D, Gotoh M, Takayama S, et al.
Large-scale mutational analysis in the EXT1 and EXT2 genes for Japanese patients with multiple osteochondromas.
BMC Genet. 2016; 17:52 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple osteochondroma (MO) is an autosomal dominant skeletal disorder characterized by the formation of multiple osteochondromas, and exostosin-1 (EXT1) and exostosin-2 (EXT2) are major causative genes in MO. In this study, we evaluated the genetic backgrounds and mutational patterns in Japanese families with MO.
RESULTS: We evaluated 112 patients in 71 families with MO. Genomic DNA was isolated from peripheral blood leucocytes. The exons and exon/intron junctions of EXT1 and EXT2 were directly sequenced after PCR amplification. Fifty-two mutations in 47 families with MO in either EXT1 or EXT2, and 42.3% (22/52) of mutations were novel mutations. Twenty-nine families (40.8%) had mutations in EXT1, and 15 families (21.1%) had mutations in EXT2. Interestingly, three families (4.2%) had mutations in both EXT1 and EXT2. Twenty-four families (33.8%) did not exhibit mutations in either EXT1 or EXT2. With regard to the types of mutations identified, 59.6% of mutations were inactivating mutations, and 38.5% of mutations were missense mutations.
CONCLUSIONS: We found that the prevalence of EXT1 mutations was greater than that of EXT2 mutations in Japanese MO families. Additionally, we identified 22 novel EXT1 and EXT2 mutations in this Japanese MO cohort. This study represents the variety of genotype in MO.

Labonne JD, Vogt J, Reali L, et al.
A microdeletion encompassing PHF21A in an individual with global developmental delay and craniofacial anomalies.
Am J Med Genet A. 2015; 167A(12):3011-8 [PubMed] Related Publications
In Potocki-Shaffer syndrome (PSS), the full phenotypic spectrum is manifested when deletions are at least 2.1 Mb in size at 11p11.2. The PSS-associated genes EXT2 and ALX4, together with PHF21A, all map to this region flanked by markers D11S1393 and D11S1319. Being proximal to EXT2 and ALX4, a 1.1 Mb region containing 12 annotated genes had been identified by deletion mapping to explain PSS phenotypes except multiple exostoses and parietal foramina. Here, we report a male patient with partial PSS phenotypes including global developmental delay, craniofacial anomalies, minor limb anomalies, and micropenis. Using microarray, qPCR, RT-qPCR, and Western blot analyses, we refined the candidate gene region, which harbors five genes, by excluding two genes, SLC35C1 and CRY2, which resulted in a corroborating role of PHF21A in developmental delay and craniofacial anomalies. This microdeletion contains the least number of genes at 11p11.2 reported to date. Additionally, we also discuss the phenotypes observed in our patient with respect to those of published cases of microdeletions across the Potocki-Shaffer interval.

Huegel J, Enomoto-Iwamoto M, Sgariglia F, et al.
Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses.
Am J Pathol. 2015; 185(6):1676-85 [PubMed] Free Access to Full Article Related Publications
Hereditary multiple exostoses is a pediatric skeletal disorder characterized by benign cartilaginous tumors called exostoses that form next to growing skeletal elements. Hereditary multiple exostoses patients carry heterozygous mutations in the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2, but studies suggest that EXT haploinsufficiency and ensuing partial HS deficiency are insufficient for exostosis formation. Searching for additional pathways, we analyzed presence and distribution of heparanase in human exostoses. Heparanase was readily detectable in most chondrocytes, particularly in cell clusters. In control growth plates from unaffected persons, however, heparanase was detectable only in hypertrophic zone. Treatment of mouse embryo limb mesenchymal micromass cultures with exogenous heparanase greatly stimulated chondrogenesis and bone morphogenetic protein signaling as revealed by Smad1/5/8 phosphorylation. It also stimulated cell migration and proliferation. Interfering with HS function both with the chemical antagonist Surfen or treatment with bacterial heparitinase up-regulated endogenous heparanase gene expression, suggesting a counterintuitive feedback mechanism that would result in further HS reduction and increased signaling. Thus, we tested a potent heparanase inhibitor (SST0001), which strongly inhibited chondrogenesis. Our data clearly indicate that heparanase is able to stimulate chondrogenesis, bone morphogenetic protein signaling, cell migration, and cell proliferation in chondrogenic cells. These properties may allow heparanase to play a role in exostosis genesis and pathogenesis, thus making it a conceivable therapeutic target in hereditary multiple exostoses.

Musso N, Caronia FP, Castorina S, et al.
Somatic loss of an EXT2 gene mutation during malignant progression in a patient with hereditary multiple osteochondromas.
Cancer Genet. 2015; 208(3):62-7 [PubMed] Related Publications
Multiple osteochondromas (MO) is an autosomal-dominant skeletal disorder caused by mutations in the exostosin-1 (EXT1) or exostosin-2 (EXT2) genes. In this study, we report the analysis of the mutational status of the EXT2 gene in tumor samples derived from a patient affected by hereditary MO, documenting the somatic loss of the germline mutation in a giant chondrosarcoma and in a rapidly growing osteochondroma. The sequencing of all exons and exon-intron junctions of the EXT1 and EXT2 genes from blood DNA of the proband did not reveal any mutation in the EXT1 gene but did demonstrate the presence of the transition point mutation c.67C > T in the EXT2 gene, determining the introduction of a stop codon in the coding sequence (p.Arg23*). A mutational analysis of other members of the family and the presence of osteochondromas in the metaphysis of long bones confirmed the diagnosis of hereditary multiple osteochondromas. Direct sequencing from DNA extracted from different sites of two tumor samples (a small rapidly growing osteochondroma and a giant peripheral secondary chondrosarcoma, each located at different chondrocostal junctions) revealed the loss of the germline EXT2 mutation. Analysis of microsatellite polymorphic markers in the 11p region harboring the EXT2 gene did not reveal any loss of heterozygosity. This observation supports a recent model of sarcomagenesis in which osteochondroma cells bear EXT homozygous inactivation, whereas chondrosarcoma-initiating cells are EXT-expressing cells.

Sgariglia F, Pedrini E, Bradfield JP, et al.
The type 2 diabetes associated rs7903146 T allele within TCF7L2 is significantly under-represented in Hereditary Multiple Exostoses: insights into pathogenesis.
Bone. 2015; 72:123-7 [PubMed] Free Access to Full Article Related Publications
Hereditary Multiple Exostoses (HME) is an autosomal-dominant disorder characterized by benign cartilage tumors (exostoses) forming near the growth plates, leading to severe health problems. EXT1 and EXT2 are the two genes known to harbor heterozygous loss-of-function mutations that account for the vast majority of the primary genetic component of HME. However, patients present with wide clinical heterogeneity, suggesting that modifier genes play a role in determining severity. Our previous work has pointed to an imbalance of β-catenin signaling being involved in the pathogenesis of osteochondroma formation. TCF7L2 is one of the key 'gate-keeper' TCF family members for Wnt/β-catenin signaling pathway, and TCF7L2 and EXT2 are among the earliest associated loci reported in genome wide appraisals of type 2 diabetes (T2D). Thus we investigated if the key T allele of single nucleotide polymorphism (SNP) rs7903146 within the TCF7L2 locus, which is strongly over-represented among T2D cases, was also associated with HME. We leveraged genotype data available from ongoing GWAS efforts from genomics and orthopedic centers in the US, Canada and Italy. Collectively 213 cases and 1890 controls were analyzed and, surprisingly, the T allele was in fact significantly under-represented in the HME patient group [P = 0.009; odds ratio = 0.737 (95% C.I. 0.587-0.926)]; in addition, the direction of effect was consistent within each individual cohort. Immunohistochemical analyses revealed that TCF7L2 is differentially expressed and distributed in normal human growth plate zones, and exhibits substantial variability in human exostoses in terms of staining intensity and distribution. In summary, the data indicate that there is a putative genetic connection between TCF7L2 and EXT in the context of HME. Given this observation, we suggest that these loci could possibly modulate shared pathways, in particular with respect to β-catenin, and their respective variants interplay to influence HME pathogenesis as well as T2D.

Mooij HL, Cabrales P, Bernelot Moens SJ, et al.
Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function.
J Am Heart Assoc. 2014; 3(6):e001274 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation genes EXT1 and EXT2 on endothelial function in vitro as well as in vivo.
METHODS AND RESULT: Flow-mediated dilation, a marker of nitric oxide bioavailability, was studied in Ext1(+/-) and Ext2(+/-) mice versus controls (n=7 per group), as well as in human subjects with heterozygous loss of function mutations in EXT1 and EXT2 (n=13 hereditary multiple exostoses and n=13 controls). Endothelial function was measured in microvascular endothelial cells under laminar flow with or without siRNA targeting EXT1 or EXT2. Endothelial glycocalyx and maximal arteriolar dilatation were significantly altered in Ext1(+/-) and Ext2(+/-) mice compared to wild-type littermates (glycocalyx: wild-type 0.67±0.1 μm, Ext1(+/-) 0.28±0.1 μm and Ext2(+/-) 0.25±0.1 μm, P<0.01, maximal arteriolar dilation during reperfusion: wild-type 11.3±1.0%), Ext1(+/-) 15.2±1.4% and Ext2(+/-) 13.8±1.6% P<0.05). In humans, brachial artery flow-mediated dilation was significantly increased in hereditary multiple exostoses patients (hereditary multiple exostoses 8.1±0.8% versus control 5.6±0.7%, P<0.05). In line, silencing of microvascular endothelial cell EXT1 and EXT2 under flow led to significant upregulation of endothelial nitric oxide synthesis and phospho-endothelial nitric oxide synthesis protein expression.
CONCLUSIONS: Our data implicate that heparan sulfate elongation genes EXT1 and EXT2 are involved in maintaining endothelial homeostasis, presumably via increased nitric oxide bioavailability.

Delgado MA, Martinez-Domenech G, Sarrión P, et al.
A broad spectrum of genomic changes in latinamerican patients with EXT1/EXT2-CDG.
Sci Rep. 2014; 4:6407 [PubMed] Free Access to Full Article Related Publications
Multiple osteochondromatosis (MO), or EXT1/EXT2-CDG, is an autosomal dominant O-linked glycosylation disorder characterized by the formation of multiple cartilage-capped tumors (osteochondromas). In contrast, solitary osteochondroma (SO) is a non-hereditary condition. EXT1 and EXT2, are tumor suppressor genes that encode glycosyltransferases involved in heparan sulfate elongation. We present the clinical and molecular analysis of 33 unrelated Latin American patients (27 MO and 6 SO). Sixty-three percent of all MO cases presented severe phenotype and two malignant transformations to chondrosarcoma (7%). We found the mutant allele in 78% of MO patients. Ten mutations were novel. The disease-causing mutations remained unknown in 22% of the MO patients and in all SO patients. No second mutational hit was detected in the DNA of the secondary chondrosarcoma from a patient who carried a nonsense EXT1 mutation. Neither EXT1 nor EXT2 protein could be detected in this sample. This is the first Latin American research program on EXT1/EXT2-CDG.

Tian C, Yan R, Wen S, et al.
A splice mutation and mRNA decay of EXT2 provoke hereditary multiple exostoses.
PLoS One. 2014; 9(4):e94848 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hereditary multiple exostoses (HME) is an autosomal dominant disease. The classical paradigm of mutation screening seeks to relate alterations in the exostosin glycosyltransferase genes, EXT1 and EXT2, which are responsible for over 70% of HME cases. However, the pathological significance of the majority of these mutations is often unclear.
METHODS: In a Chinese family with HME, EXT1 and EXT2 genes were screened by direct sequencing. The consequence of a detected mutant was predicted by in silico analysis and confirmed by mRNA analysis. The EXT1 and EXT2 mRNA and protein levels and the HS patterns in the HME patients were compared with those in healthy controls.
RESULTS: A heterozygous transition (c.743+1G>A) in the EXT2 gene, which co-segregated with the HME phenotype in this family, was identified. The G residue at position +1 in intron 4 of EXT2 was predicted to be a 5' donor splice site. The mRNA analysis revealed an alternative transcript with a cryptic splice site 5 bp downstream of the wild-type site, which harbored a premature stop codon. However, the predicted truncated protein was not detected by western blot analysis. Decay of the mutant mRNA was shown by clone sequencing and quantification analysis. The corresponding downregulation of the EXT2 mRNA will contribute to the abnormal EXT1/EXT2 ratio and HS pattern that were detected in the patients with HME.
CONCLUSION: The heterozygous mutation c.743+1G>A in the EXT2 gene causes HME as a result of abnormal splicing, mRNA decay, and the resulting haploinsufficiency of EXT2.

Jamsheer A, Socha M, Sowińska-Seidler A, et al.
Mutational screening of EXT1 and EXT2 genes in Polish patients with hereditary multiple exostoses.
J Appl Genet. 2014; 55(2):183-8 [PubMed] Free Access to Full Article Related Publications
Hereditary multiple exostoses (HME) also known as multiple osteochondromas represent one of the most frequent bone tumor disorder in humans. Its clinical presentation is characterized by the presence of multiple benign cartilage-capped tumors located most commonly in the juxta-epiphyseal portions of long bones. HME are usually inherited in autosomal dominant manner, however de novo mutations can also occur. In most patients, the disease is caused by alterations in the EXT1 and EXT2 genes. In this study we investigated 33 unrelated Polish probands with the clinical and radiological diagnosis of HME by means of Sanger sequencing and MLPA for all coding exons of EXT1 and EXT2. We demonstrated EXT1 and EXT2 heterozygous mutations in 18 (54.6 %) and ten (30.3 %) probands respectively, which represents a total of 28 (84.9 %) index cases. Sequencing allowed for the detection of causative changes in 26 (78.8 %) probands, whereas MLPA showed intragenic deletions in two (6.1 %) further cases (15 mutations represented novel changes). Our paper is the first report on the results of exhaustive mutational screening of both EXT1/EXT2 genes in Polish patients. The proportion of EXT1/EXT2 mutations in our group was similar to other Caucasian cohorts. However, we found that EXT1 lesions in Polish patients cluster in exons 1 and 2 (55.6 % of all EXT1 mutations). This important finding should lead to the optimization of cost-effectiveness rate of HME diagnostic testing. Therefore, the diagnostic algorithm for HME should include EXT1 sequencing (starting with exons 1-2), followed by EXT2 sequencing, and MLPA/qPCR for intragenic copy number changes.

Samuel AM, Costa J, Lindskog DM
Genetic alterations in chondrosarcomas - keys to targeted therapies?
Cell Oncol (Dordr). 2014; 37(2):95-105 [PubMed] Related Publications
BACKGROUND: Chondrosarcomas are malignant tumors of chondrocytes and represent the second most common type of primary bone tumors. Within the context of normal chondrogenesis, this review summarizes results from recent research outlining the key molecular changes that occur during the development of this sarcoma type.
RESULTS: Current data support the notion that a two-hit scenario, common to many tumors, also underlies chondrosarcoma formation. First, early-stage mutations alter the normal proliferation and differentiation of chondrocytes, thereby predisposing them to malignant transformation. These early-stage mutations, found in both benign cartilaginous lesions and chondrosarcomas, include alterations affecting the IHH/PTHrP and IDH1/IDH2 pathways. As they are not observed in malignant cells, mutations in the EXT1 and EXT2 genes are considered early-stage events providing an environment that alters IHH/PTHrP signaling, thereby inducing mutations in adjacent cells. Due to normal cell cycle control that remains active, a low rate of malignant transformation is seen in benign cartilaginous lesions with early-stage mutations. In contrast, late-stage mutations, seen in most malignant chondrosarcomas, appear to induce malignant transformation as they are not found in benign cartilaginous lesions. These late-stage mutations primarily involve cell cycle pathway regulators including p53 and pRB, two genes that are also known to be implicated in numerous other human tumor types.
CONCLUSIONS: Now the key genetic alterations involved in both early and late stages of chondrosarcoma development have been identified, focus should be shifted to the identification of druggable molecular targets for the design of novel chondrosarcoma-specific therapies.

Jones KB, Pacifici M, Hilton MJ
Multiple hereditary exostoses (MHE): elucidating the pathogenesis of a rare skeletal disorder through interdisciplinary research.
Connect Tissue Res. 2014; 55(2):80-8 [PubMed] Related Publications
Abstract An interdisciplinary and international group of clinicians and scientists gathered in Philadelphia, PA, to attend the fourth International Research Conference on Multiple Hereditary Exostoses (MHE), a rare and severe skeletal disorder. MHE is largely caused by autosomal dominant mutations in EXT1 or EXT2, genes encoding Golgi-associated glycosyltransferases responsible for heparan sulfate (HS) synthesis. HS chains are key constituents of cell surface- and extracellular matrix-associated proteoglycans, which are known regulators of skeletal development. MHE affected individuals are HS-deficient, can display skeletal growth retardation and deformities, and consistently develop benign, cartilage-capped bony outgrowths (termed exostoses or osteochondromas) near the growth plates of many skeletal elements. Nearly 2% of patients will have their exostoses progress to malignancy, becoming peripheral chondrosarcomas. Current treatments are limited to the surgical removal of symptomatic exostoses. No definitive treatments have been established to inhibit further formation and growth of exostoses, prevent transition to malignancy, or address other medical problems experienced by MHE patients, including chronic pain. Thus, the goals of the Conference were to assess our current understanding of MHE pathogenesis, identify key gaps in information, envision future therapeutic strategies and discuss ways to test and implement them. This report provides an assessment of the exciting and promising findings in MHE and related fields presented at the Conference and a discussion of the future MHE research directions. The Conference underlined the critical usefulness of gathering experts in several research fields to forge new alliances and identify cross-fertilization areas to benefit both basic and translational biomedical research on the skeleton.

Cao L, Liu F, Kong M, et al.
Novel EXT1 mutation identified in a pedigree with hereditary multiple exostoses.
Oncol Rep. 2014; 31(2):713-8 [PubMed] Related Publications
Hereditary multiple exostoses (HME) is an autosomal dominant bone disorder characterized by the presence of multiple benign cartilage-capped tumors. EXT1 located on chromosome 8q23-q24 and EXT2 located on 11p11-p12 are the main disease-causing genes which are responsible for ~90% of HME cases. Mutations of EXT1 or EXT2 result in insufficient heparan sulfate biosynthesis, which facilitates chondrocyte proliferation, boosts abnormal bone growth of neighboring regions, causes multiple exostoses, and ultimately leads to possible malignant transformation. A family who displayed typical features of HME was enrolled in the present study. Mutation screening by Sanger sequencing identified a novel heterozygous nonsense mutation c.1902C>A (p.Tyr634X) in the EXT1 gene exclusively in all 3 patients, which is located in the glycosyltransferase domain and results in the truncation of 112 amino acids at the C-terminus of the EXT1 protein. Thus, the present study identified a novel disease-causing EXT1 mutation in a pedigree with HME, which provides additional evidence for developing quick and accurate genetic tools for HME diagnosis.

Busse-Wicher M, Wicher KB, Kusche-Gullberg M
The exostosin family: proteins with many functions.
Matrix Biol. 2014; 35:25-33 [PubMed] Related Publications
Heparan sulfates are complex sulfated molecules found in abundance at cell surfaces and in the extracellular matrix. They bind to and influence the activity of a variety of molecules like growth factors, proteases and morphogens and are thus involved in various cell-cell and cell-matrix interactions. The mammalian EXT proteins have glycosyltransferase activities relevant for HS chain polymerization, however their exact role in this process is still confusing. In this review, we summarize current knowledge about the biochemical activities and some proposed functions of the members of the EXT protein family and their roles in human disease.

Kang QL, Xu J, Zhang Z, et al.
Mutation screening for the EXT1 and EXT2 genes in Chinese patients with multiple osteochondromas.
Arch Med Res. 2013; 44(7):542-8 [PubMed] Related Publications
BACKGROUND AND AIMS: Multiple osteochondromas (MO), an autosomal dominant skeletal disease, is characterized by the presence of multiple cartilage-capped bone tumors (exostoses). Two genes with mutations that are most commonly associated with MO have been identified as EXT1 and EXT2, which are Exostosin-1 and Exostosin-2. In this study, a variety of EXT1 and EXT2 gene mutations were identified in ten Chinese families with MO.
METHODS: We investigated ten unrelated Chinese families involving a total of 46 patients who exhibited typical features of MO. The coding exons of EXT1 and EXT2 were sequenced after PCR amplification in ten probands. Radiological investigation was conducted simultaneously.
RESULTS: Nine mutations were identified, five in EXT1 and four in EXT2, of which three were de novo mutations and six were novel mutations. One proband carried mutations in both EXT1 and EXT2 simultaneously, and three probands, including one sporadic case and two familial cases, had no detectable mutations.
CONCLUSIONS: Our findings are useful for extending the mutational spectrum in EXT1 and EXT2 and understanding the genetic basis of MO in Chinese patients.

Wu Y, Xing X, Xu S, et al.
Novel and recurrent mutations in the EXT1 and EXT2 genes in Chinese kindreds with multiple osteochondromas.
J Orthop Res. 2013; 31(9):1492-9 [PubMed] Related Publications
Multiple osteochondromas (MO) is an autosomal dominant hereditary disorder caused by heterozygous germline mutations in the exostonsin-1 (EXT1) or exostosin-2 (EXT2) genes. In this study, we screened mutations in the EXT1/EXT2 genes in four Chinese MO kindreds by direct sequencing. Three point mutations were detected, including a nonsense mutation in the EXT2 gene (c.544C > T) and two splice site mutations in the EXT1 and EXT2 genes, respectively (EXT1: c.1883 + 1G > A and EXT2: c.1173 + 1G > T). Although splice site mutations constitute at least 10% of all mutations that cause MO, there has been limited research on their pathogenic effect on RNA processing due to poor availability of patient RNA samples. In this study, ex vivo and in vivo splicing assays were used to investigate the effect of EXT1 and EXT2 mutations on aberrant splicing at the mRNA level. Our results indicate that identified splice site mutations can cause either cryptic splice site usage or exon skipping.

Sarrión P, Sangorrin A, Urreizti R, et al.
Mutations in the EXT1 and EXT2 genes in Spanish patients with multiple osteochondromas.
Sci Rep. 2013; 3:1346 [PubMed] Free Access to Full Article Related Publications
Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.

Waaijer CJ, Winter MG, Reijnders CM, et al.
Intronic deletion and duplication proximal of the EXT1 gene: a novel causative mechanism for multiple osteochondromas.
Genes Chromosomes Cancer. 2013; 52(4):431-6 [PubMed] Related Publications
Multiple osteochondromas (MO) is a syndrome in which benign cartilage-capped neoplasms develop at the surface of the long bones. Most cases are caused by exonic changes in EXT1 or EXT2, but 15% are negative for these changes. Here we report for the first time a family of MO patients with germline genomic alterations at the EXT1 locus without detectable mutations or copy number alterations of EXT exonic sequences. Array-CGH showed an 80.7 kb deletion of Intron 1 of EXT1 and a 68.9 kb duplication proximal of EXT1. We identified a breakpoint between the distal end of the duplicated region and a sequence distal of the deleted region in the first intron. This breakpoint was absent in non-affected family members. The configuration of the breakpoint indicates a direct insertion of the duplicated region into the deletion. However, no other breakpoint was found, which suggests a more complex genomic rearrangement has occurred within the duplicated region. Our results reveal intronic deletion and duplication as a new causative mechanism for MO not detected by conventional diagnostic methods.

Ciavarella M, Coco M, Baorda F, et al.
20 novel point mutations and one large deletion in EXT1 and EXT2 genes: report of diagnostic screening in a large Italian cohort of patients affected by hereditary multiple exostosis.
Gene. 2013; 515(2):339-48 [PubMed] Related Publications
BACKGROUND: Hereditary multiple exostosis represents the most frequent bone tumor disease in humans. It consists of cartilage deformities affecting the juxta-ephyseal region of long bones. Usually benign, exostosis could degenerate in malignant chondrosarcoma form in less than 5% of the cases. Being caused by mutations in the predicted tumor suppressor genes, EXT1 (chr 8q23-q24) and EXT2 (chr 11p11-p12) genes, HMEs are usually inherited with an autosomal dominant pattern, although "de novo" cases are not infrequent.
AIM: Here we present our genetic diagnostic report on the largest Southern Italy cohort of HME patients consisting of 90 subjects recruited over the last 5years.
RESULTS: Molecular screening performed by direct sequencing of both EXT1 and EXT2 genes, by MLPA and Array CGH analyses led to the identification of 66 mutations (56 different occurrences) and one large EXT2 deletion out of 90 patients (74.4%). The total of 21 mutations (20 different occurrences, 33.3%) and the EXT2 gene deletion were novel. In agreement with literature data, EXT1 gene mutations were scattered along all the protein sequence, while EXT2 lesions fell in the first part of the protein. Conservation, damaging prediction and 3-D modeling, in-silico, analyses, performed on three novel missense variants, confirmed that at least in two cases the novel aminoacidic changes could alter the structure stability causing a strong protein misfolding.
CONCLUSIONS: Here we present 20 novel EXT1/EXT2 mutations and one large EXT2 deletion identified in the largest Southern Italy cohort of patients affected by hereditary multiple exostosis.

Bari MS, Jahangir Alam MM, Chowdhury FR, et al.
Hereditary multiple exostoses causing cord compression.
J Coll Physicians Surg Pak. 2012; 22(12):797-9 [PubMed] Related Publications
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder characterized by the presence of multiple osseous prominences. It can occur sporadically or within families (22 - 56%). Two genes, EXT1 and EXT2 located respectively at 8q24 and 11p11-p12, have been isolated to cause HME. It can cause gross deformity of limbs and growth disturbance which is quite a common complication. Malignant transformation to chondrosarcoma can also occur. Neurological presentations are rare and usually happened due to direct compression of a peripheral nerve or nerve root or less often the spinal cord. This case is possibly the first case of HME described from Bangladesh, presented with dorsal cord compression. Decompression was done and the complaints of myelopathy were improved.

Niini T, Scheinin I, Lahti L, et al.
Homozygous deletions of cadherin genes in chondrosarcoma-an array comparative genomic hybridization study.
Cancer Genet. 2012; 205(11):588-93 [PubMed] Related Publications
Chondrosarcoma is a malignant bone tumor that is often resistant to chemotherapy and radiotherapy. We applied high resolution oligonucleotide array comparative genomic hybridization to 46 tumor specimens from 44 patients with chondrosarcoma and identified several genes with potential importance for the development of chondrosarcoma. Several homozygous deletions were detected. The tumor suppressor genes CDKN2A and MTAP were each homozygously deleted in four of the cases, and the RB1 gene was homozygously deleted in one. Two homozygous deletions of MTAP did not affect CDKN2A. Deletions were also found to affect genes of the cadherin family, including CDH4 and CDH7, each of which had a targeted homozygous loss in one case, and CDH19, which had a targeted homozygous loss in two cases. Loss of the EXT1 and EXT2 genes was uncommon; EXT1 was homozygously deleted in none and EXT2 in two of the cases, and large heterozygous losses including EXT1 and/or EXT2 were seen in three cases. Targeted gains and amplifications affected the MYC, E2F3, CDK6, PDGFRA, KIT, and PDGFD genes in one case each. The data indicate that chondrosarcomas develop through a combination of genomic imbalances that often affect the RB1 signaling pathway. The inactivation of cadherin genes may also be critical in the pathogenesis of the tumor.

Kang Z, Peng F, Ling T
Mutation screening of EXT genes in Chinese patients with multiple osteochondromas.
Gene. 2012; 506(2):298-300 [PubMed] Related Publications
Multiple osteochondromas (MO), a dominantly inherited genetic disorder, is characterized by the presence of multiple osteochondromas in the long bones. EXT1 and EXT2 are the causative genes in most MO patients. We have characterized 9 MO families and 1 sporadic case involving a total of 25 patients. The coding exons of EXT1 and EXT2 were screened in 10 probands affected with MO. In five of the 10 probands novel pathogenic mutations have been identified: two in EXT1 and three in EXT2. Four probands carried recurrent mutations and one proband had no detectable mutation. Our study extends the mutational spectrum in EXT1 and EXT2 and will facilitate the deep understanding of the pathophysiology of the disease.

Wang X, Li L, Li J, et al.
Pathogenic gene screening and mutation detection in a Chinese family with multiple osteochondroma.
Genet Test Mol Biomarkers. 2012; 16(7):827-32 [PubMed] Free Access to Full Article Related Publications
Multiple osteochondroma (MO) is an autosomal dominant disease characterized by abnormal skeleton development: one or more exostoses localized mainly at the end of long bones. Three pathogenic gene loci have been identified and cloned: EXT1, 2, and 3. Only EXT1 and 2 mutations were reported to cause MO. Here, we report on a large Chinese family with MO and a disease-causing mutation in EXT. We extracted DNA from peripheral blood samples of 25 family members, 9 with MO. Polymerase chain reaction and direct DNA sequencing of the entire coding regions of EXT1 and 2 for the nine patients revealed a novel pathogenic mutation, insertion of a T in exon 2 (c.72-73 insT) of EXT2. Our results extend the mutational spectrum of MO and can help with genetic counseling and prenatal diagnosis for this family.

Kyriazoglou AI, Dimitriadis E, Arnogiannaki N, et al.
Similar cytogenetic findings in two synchronous secondary peripheral chondrosarcomas in a patient with multiple osteochondromas.
Cancer Genet. 2011; 204(12):677-81 [PubMed] Related Publications
Secondary peripheral chondrosarcoma is a malignant chondroid tumor arising in a benign precursor, either an osteochondroma or an enchondroma. Multiple osteochondromas syndrome (MO) is an autosomal dominant skeletal disorder associated with bony growths in the form of osteochondromas that occasionally undergo malignant transformation to secondary peripheral chondrosarcomas. We describe the genetic examination of three secondary peripheral chondrosarcomas that had arisen synchronously from osteochondromas in a patient with MO by chromosome banding, high resolution chromosomal comparative genomic hybridization, and mutation analysis of the EXT1 and EXT2 genes. In two of the tumors (the third was not genetically informative), very similar chromosome abnormalities were found, indicating that they must somehow be part of the same neoplastic process in spite of being anatomically distinct.

Wiweger MI, Zhao Z, van Merkesteyn RJ, et al.
HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas.
PLoS One. 2012; 7(1):e29734 [PubMed] Free Access to Full Article Related Publications
Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2⁻/⁻ fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2⁻/⁻ fish. Histological analysis reveals that ext2⁻/⁻ fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2⁻/⁻ fish have a single tooth at the end of the 5(th) pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2⁻/⁻ teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2⁺/⁻ adults. The tooth morphology in ext2⁻/⁻ was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems.

Zhu HY, Hu YL, Yang Y, et al.
Mutation analysis and prenatal diagnosis of EXT1 gene mutations in Chinese patients with multiple osteochondromas.
Chin Med J (Engl). 2011; 124(19):3054-7 [PubMed] Related Publications
BACKGROUND: Multiple osteochondromas (MO), an inherited autosomal dominant disorder, is characterized by the presence of multiple exostoses on the long bones. MO is caused by mutations in the EXT1 or EXT2 genes which encode glycosyltransferases implicated in heparin sulfate biosynthesis.
METHODS: In this study, efforts were made to identify the underlying disease-causing mutations in patients from two MO families in China.
RESULTS: Two novel EXT1 gene mutations were identified and no mutation was found in EXT2 gene. The mutation c.497T > A in exon 1 of the EXT1 gene was cosegregated with the disease phenotype in family 1 and formed a stop codon at amino acid site 166. The fetus of the proband was diagnosed negative. In family 2, the mutation c.1430-1431delCC in exon 6 of the EXT1 gene would cause frameshift and introduce a premature stop codon after the reading frame being open for 42 amino acids. The fetus of this family inherited this mutation from the father.
CONCLUSIONS: Mutation analysis of two MO families in this study demonstrates its further application in MO genetic counseling and prenatal diagnosis.

Jennes I, Zuntini M, Mees K, et al.
Identification and functional characterization of the human EXT1 promoter region.
Gene. 2012; 492(1):148-59 [PubMed] Related Publications
BACKGROUND: Mutations in Exostosin-1 (EXT1) or Exostosin-2 (EXT2) cause the autosomal dominant disorder multiple osteochondromas (MO). This disease is mainly characterized by the appearance of multiple cartilage-capped protuberances arising from children's metaphyses and is known to display clinical inter- and intrafamilial variations. EXT1 and EXT2 are both tumor suppressor genes encoding proteins that function as glycosyltransferases, catalyzing the biosynthesis of heparan sulfate. At present, however, very little is known about the regulation of these genes. Two of the most intriguing questions concerning the pathogenesis of MO are how disruption of a ubiquitously expressed gene causes this cartilage-specific disease and how the clinical intrafamilial variation can be explained. Since mutations in the EXT1 gene are responsible for ~65% of the MO families with known causal mutation, our aim was to isolate and characterize the EXT1 promoter region to elucidate the transcriptional regulation of this tumor suppressor gene.
METHODS: In the present study, luciferase reporter gene assays were used to experimentally confirm the in silico predicted EXT1 core promoter region. Subsequently, we evaluated the effect of single nucleotide polymorphisms (SNP's) on EXT1 promoter activity and transcription factor binding using luciferase assays, electrophoretic mobility shift assays (EMSA), and enzyme-linked immunosorbent assays (ELISA). Finally, a genotype-phenotype study was performed with the aim to identify one or more genetic modifiers influencing the clinical expression of MO.
RESULTS: Transient transfection of HEK293 cells with a series of luciferase reporter constructs mapped the EXT1 core promoter at approximately -917 bp upstream of the EXT1 start codon, within a 123 bp region. This region is conserved in mammals and located within a CpG-island containing a CAAT- and a GT-box. A polymorphic G/C-SNP at -1158 bp (rs34016643) was demonstrated to be located in a USF1 transcription factor binding site, which is lost with the presence of the C-allele resulting in a ~56% increase in EXT1 promoter activity. A genotype-phenotype study was suggestive for association of the C-allele with shorter stature, but also with a smaller number of osteochondromas.
CONCLUSIONS: We provide for the first time insight into the molecular regulation of EXT1. Although a larger patient population will be necessary for statistical significance, our data suggest the polymorphism rs34016643, in close proximity of the EXT1 promoter, to be a potential regulatory SNP, which could be a primary modifier that might explain part of the clinical variation observed in MO patients.

de Andrea CE, Hogendoorn PC
Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter.
J Pathol. 2012; 226(2):219-28 [PubMed] Related Publications
Chondrocytes interact with their neighbours through their cartilaginous extracellular matrix (ECM). Chondrocyte-matrix interactions compensate the lack of cell-cell contact and are modulated by proteoglycans and other molecules. The epiphyseal growth plate is a highly organized tissue responsible for long bone elongation. The growth plate is regulated by gradients of morphogens that are established by proteoglycans. Morphogens diffuse across the ECM, creating short- and long-range signalling that lead to the formation of a polarized tissue. Mutations affecting genes that modulate cell-matrix interactions are linked to several human disorders. Homozygous mutations of EXT1/EXT2 result in reduced synthesis and shortened heparan sulphate chains on both cell surface and matrix proteoglycans. This disrupts the diffusion gradients of morphogens and signal transduction in the epiphyseal growth plate, contributing to loss of cell polarity and osteochondroma formation. Osteochondromas are cartilage-capped bony projections arising from the metaphyses of endochondral bones adjacent to the growth plate. The osteochondroma cap is formed by cells with homozygous mutation of EXT1/EXT2 and committed stem cells/wild-type chondrocytes. Osteochondroma serves as a niche (a permissive environment), which facilitates the committed stem cells/wild-type chondrocytes to acquire secondary genetic changes to form a secondary peripheral chondrosarcoma. In such a scenario, the micro-environment is the site of the initiating processes that ultimately lead to cancer.

Vining NC, Done S, Glass IA, et al.
EXT2-positive multiple hereditary osteochondromas with some features suggestive of metachondromatosis.
Skeletal Radiol. 2012; 41(5):607-10 [PubMed] Related Publications
Metachondromatosis (MC) and hereditary multiple osteochondromas (HMO) are thought to be distinct disorders, each with characteristic x-ray and clinical features. Radiographic differences are the current mainstay of differential diagnosis. Both disorders are autosomal dominant, but the majority of patients with HMO have mutations in EXT-1 or EXT 2 genes. The genetic defect in MC is unknown, although recent studies indicate a possible identifiable mutation. The cancer risk in HMO is thought to be greater than in MC, although the small number of cases make such conjecture imprecise. The purpose of this report is to review existing literature and examine whether radiographic findings in HMO and MC can be reliable as a stand-alone means of differential diagnosis. Three members of a multi-generational family with an autosomal dominant exostosis syndrome were studied by clinical examination and complete skeletal survey. The roentgenographic characteristics of all osteochondromas were analyzed. The father underwent gene sequencing for EXT-1 and EXT-2, which revealed a novel EXT-2 mutation. Typical radiographic and clinical findings of both HMO and MC were seen throughout the family as well as in individuals. These family study findings contradict many of the long-standing clinical and x-ray diagnostic criteria for differentiating MC from HMO. The phenotypic crossover between the two conditions in this family, and results of genetic analysis, suggest that in the absence of a definitive genetic diagnosis, radiographic and clinical diagnosis of past and future cases HMO and MC may not be as reliable as previously assumed.

de Andrea CE, Reijnders CM, Kroon HM, et al.
Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT.
Oncogene. 2012; 31(9):1095-104 [PubMed] Related Publications
Secondary peripheral chondrosarcoma is the result of malignant transformation of a pre-existing osteochondroma, the most common benign bone tumor. Osteochondromas are caused by genetic abnormalities in EXT1 or EXT2: homozygous deletion of EXT1 characterizes sporadic osteochondromas (non-familial/solitary), and germline mutations in EXT1 or EXT2 combined with loss of heterozygosity define hereditary multiple osteochondromas. While cells with homozygous inactivation of EXT and wild-type cells shape osteochondromas, the cellular composition of secondary peripheral chondrosarcomas and the role of EXT in their formation have remained unclear. We report using a targeted-tiling-resolution oligo-array-CGH (array comparative genomic hybridization) that homozygous deletions of EXT1 or EXT2 are much less frequently detected (2/17, 12%) in sporadic secondary peripheral chondrosarcomas than expected based on the assumption that they originate in sporadic osteochondromas, in which homozygous inactivation of EXT1 is found in ~80% of our cases. FISH with an EXT1 probe confirmed that, unlike sporadic osteochondromas, cells from sporadic secondary peripheral chondrosarcomas predominantly retained one (hemizygous deleted loci) or both copies (wild-type) of the EXT1 locus. By immunohistochemistry, we confirm the presence of cells with dysfunctional EXT1 in sporadic osteochondromas and show cells with functional EXT1 in sporadic secondary peripheral chondrosarcomas. These immuno results were verified in osteochondromas and secondary peripheral chondrosarcomas in the setting of hereditary multiple osteochondromas. Our data therefore point to a model of oncogenesis in which the osteochondroma creates a niche in which wild-type cells with functional EXT are predisposed to acquire other mutations giving rise to secondary peripheral chondrosarcoma, indicating that EXT-independent mechanisms are involved in the pathogenesis of secondary peripheral chondrosarcoma.

Jennes I, de Jong D, Mees K, et al.
Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 multiple osteochondromas families.
BMC Med Genet. 2011; 12:85 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in EXT1 or EXT2, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.
METHODS: Here we report on the first molecular characterization of ten large EXT1- and EXT2-deletions in MO-patients. Deletions were initially identified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.
RESULTS: Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One EXT2 exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of EXT1 and EXT2. Non-allelic homologous recombination (NAHR) mediated by Alu-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.
CONCLUSIONS: Molecular characterization of EXT1- and EXT2-deletion breakpoints in MO-patients indicates that NAHR between Alu-sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in EXT1 and EXT2.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EXT2, Cancer Genetics Web: http://www.cancer-genetics.org/EXT2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999