Gene Summary

Gene:ARAF; A-Raf proto-oncogene, serine/threonine kinase
Aliases: PKS2, A-RAF, ARAF1, RAFA1
Summary:This proto-oncogene belongs to the RAF subfamily of the Ser/Thr protein kinase family, and maybe involved in cell growth and development. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jan 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein kinase A-Raf
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Tumor Suppressor Proteins
  • Gene Expression Profiling
  • DNA Sequence Analysis
  • Neoplastic Cell Transformation
  • Antineoplastic Agents
  • Mutation
  • Cohort Studies
  • MAP Kinase Signaling System
  • BRAF
  • Bladder Cancer
  • Polymerase Chain Reaction
  • Sequence Analysis, RNA
  • Thyroid Cancer
  • Mitogen-Activated Protein Kinases
  • TOR Serine-Threonine Kinases
  • Tumor Necrosis Factor alpha-Induced Protein 3
  • ras Proteins
  • Xenograft Models
  • Follicular Lymphoma
  • Biomarkers, Tumor
  • Adenocarcinoma
  • CRAF
  • Nuclear Proteins
  • Molecular Sequence Data
  • Histones
  • Protein Isoforms
  • Molecular Targeted Therapy
  • Epidermal Growth Factor Receptor
  • Germ-Line Mutation
  • CREB-Binding Protein
  • DNA Mutational Analysis
  • Base Sequence
  • Proto-Oncogene Proteins A-raf
  • High-Throughput Nucleotide Sequencing
  • raf Kinases
  • Disease Progression
  • X Chromosome
  • Signal Transduction
  • Cancer Gene Expression Regulation
  • Neoplasm Recurrence, Local
Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ARAF (cancer-related)

Chen SH, Zhang Y, Van Horn RD, et al.
Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120.
Cancer Discov. 2016; 6(3):300-15 [PubMed] Related Publications
UNLABELLED: We have identified previously undiscovered BRAF in-frame deletions near the αC-helix region of the kinase domain in pancreatic, lung, ovarian, and thyroid cancers. These deletions are mutually exclusive with KRAS mutations and occur in 4.21% of KRAS wild-type pancreatic cancer. siRNA knockdown in cells harboring BRAF deletions showed that the MAPK activity and cell growth are BRAF dependent. Structurally, the BRAF deletions are predicted to shorten the β3/αC-helix loop and hinder its flexibility by locking the helix in the active αC-helix-in conformation that favors dimer formation. Expression of L485-P490-deleted BRAF is able to transform NIH/3T3 cells in a BRAF dimer-dependent manner. BRAF homodimer is confirmed to be the dominant RAF dimer by proximity ligation assays in BRAF deletion cells, which are resistant to the BRAF inhibitor vemurafenib and sensitive to LY3009120, a RAF dimer inhibitor. In tumor models with BRAF deletions, LY3009120 has shown tumor growth regression, whereas vemurafenib is inactive.
SIGNIFICANCE: This study discovered oncogenic BRAF deletions with a distinct activation mechanism dependent on the BRAF dimer formation in tumor cells. LY3009120 is active against these cells and represents a potential treatment option for patients with cancer with these BRAF deletions, or other atypical BRAF mutations where BRAF functions as a dimer.

Araf S, Okosun J, Koniali L, et al.
Epigenetic dysregulation in follicular lymphoma.
Epigenomics. 2016; 8(1):77-84 [PubMed] Free Access to Full Article Related Publications
The adoption of next-generation sequencing technologies has led to a remarkable shift in our understanding of the genetic landscape of follicular lymphoma. While the disease has been synonymous with the t(14;18), the prevalence of alterations in genes that regulate the epigenome has been established as a pivotal hallmark of these lymphomas. Giant strides are being made in unraveling the biological consequences of these alterations in tumorigenesis opening up new opportunities for directed therapies.

Okosun J, Wolfson RL, Wang J, et al.
Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma.
Nat Genet. 2016; 48(2):183-8 [PubMed] Free Access to Full Article Related Publications
Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting.

Huang D, Li Y, Cui F, et al.
Purification and characterization of a novel polysaccharide-peptide complex from Clinacanthus nutans Lindau leaves.
Carbohydr Polym. 2016; 137:701-8 [PubMed] Related Publications
A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.

An S, Yang Y, Ward R, et al.
A-Raf: A new star of the family of raf kinases.
Crit Rev Biochem Mol Biol. 2015; 50(6):520-31 [PubMed] Related Publications
The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.

Spencer Chapman M, Araf S, Smith M
Clinical and laboratory characteristics of acute myeloid leukaemia (AML) at relapse and the risk of acute incapacitation.
J Clin Pathol. 2016; 69(3):275-6 [PubMed] Related Publications

Wang R, Zhang Y, Pan Y, et al.
Comprehensive investigation of oncogenic driver mutations in Chinese non-small cell lung cancer patients.
Oncotarget. 2015; 6(33):34300-8 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To determine the frequency of driver mutations in Chinese non-small cell lung cancer (NSCLC) patients.
METHODS: Comprehensive mutational analysis was performed in 1356 lung adenocarcinoma, 503 squamous cell carcinoma, 57 adenosquamous lung carcinoma, 19 large cell carcinoma and 8 sarcomatoid carcinoma. The effect of EGFR tyrosine kinase inhibitors (TKIs) on EGFR-mutated lung adenocarcinoma patients after disease recurrence was investigated.
RESULTS: Mutations in EGFR kinase domain, HER2 kinase domain, KRAS, BRAF, ALK, ROS1 and RET were mutually exclusive. In lung adenocarcinoma cases "pan-negative" for the seven above-mentioned driver mutations, we also detected two oncogenic EGFR extracellular domain mutations (A289D and R324L), two HER2 extracellular and transmembrane domain mutations (S310Y and V659E), one ARAF S214C mutation and two CD74-NRG1 fusions. Six (1.2%) FGFR3 activating mutations were identified in lung squamous cell carcinoma (five S249C and one R248C). There were three (15.8%) EGFR mutations and four (21.1%) KRAS mutations in large cell carcinoma. Three (37.5%) KRAS mutations were detected in sarcomatoid carcinoma. In EGFR-mutated lung adenocarcinoma patients who experienced disease recurrence, treatment with EGFR TKIs was an independent predictor of better overall survival (HR = 0.299, 95% CI: 0.172-0.519, P < 0.001).
CONCLUSION: We determined the frequency of driver mutations in a large series of Chinese NSCLC patients. EGFR TKIs might improve the survival outcomes of EGFR-mutated lung adenocarcinoma patients who experienced disease recurrence.

Peng SB, Henry JR, Kaufman MD, et al.
Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.
Cancer Cell. 2015; 28(3):384-98 [PubMed] Related Publications
LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.

Datar I, Feng J, Qiu X, et al.
RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.
PLoS One. 2015; 10(8):e0134494 [PubMed] Free Access to Full Article Related Publications
Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs) including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP transcription, suggesting a potential mechanism by which RKIP inhibits tumor progression and metastasis.

Castro L, Alves S, Chaves SR, et al.
RAF-1 promotes survival of thyroid cancer cells harboring RET/PTC1 rearrangement independently of ERK activation.
Mol Cell Endocrinol. 2015; 415:64-75 [PubMed] Related Publications
Thyroid cancer (TC) is frequently associated with BRAF or RAS oncogenic mutations and RET/PTC rearrangements, with aberrant RAF-MEK-ERK and/or PI3K pathway activation. BRAF underlies ERK activation in most TC cells, but not in TPC-1 cells with RET/PTC1 rearrangement. Here, we show that depletion of RAF-1, a RAF family member with a poorly defined role in TC, decreases proliferation and increases apoptosis in TPC-1 cells and, less significantly, in cells harboring a BRAF(V600E) or HRAS(G13R) mutations, but without affecting ERK activation. We further demonstrate that constitutive activation of ERKs in TPC-1 cells is not caused by mutations in 50 oncogenes and tumor suppressors prone to activate the ERK pathway, or affected by inhibition of BRAF, MEK1/2 or PI3K. Our data indicate that RAF-1 is important for the survival of TPC-1 cells independently of the classical MEK1/2-ERK activation, offering new perspectives on RET/PTC signaling and for the therapy of thyroid cancers.

Martin del Campo SE, Levine KM, Mundy-Bosse BL, et al.
The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells.
J Immunol. 2015; 195(5):1995-2005 [PubMed] Free Access to Full Article Related Publications
Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells.

Sehgal M, Gupta R, Moussa A, Singh TR
An Integrative Approach for Mapping Differentially Expressed Genes and Network Components Using Novel Parameters to Elucidate Key Regulatory Genes in Colorectal Cancer.
PLoS One. 2015; 10(7):e0133901 [PubMed] Free Access to Full Article Related Publications
For examining the intricate biological processes concerned with colorectal cancer (CRC), a systems biology approach integrating several biological components and other influencing factors is essential to understand. We performed a comprehensive system level analysis for CRC which assisted in unravelling crucial network components and many regulatory elements through a coordinated view. Using this integrative approach, the perceptive of complexity hidden in a biological phenomenon is extensively simplified. The microarray analyses facilitated differential expression of 631 significant genes employed in the progression of disease and supplied interesting associated up and down regulated genes like jun, fos and mapk1. The transcriptional regulation of these genes was deliberated widely by examining transcription factors such as hnf4, nr2f1, znf219 and dr1 which directly influence the expression. Further, interactions of these genes/proteins were evaluated and crucial network motifs were detected to associate with the pathophysiology of CRC. The available standard statistical parameters such as z-score, p-value and significance profile were explored for the identification of key signatures from CRC pathway whereas a few novel parameters representing over-represented structures were also designed in the study. The applied approach revealed 5 key genes i.e. kras, araf, pik3r5, ralgds and akt3 via our novel designed parameters illustrating high statistical significance. These novel parameters can assist in scrutinizing candidate markers for diseases having known biological pathways. Further, investigating and targeting these proposed genes for experimental validations, instead being spellbound by the complicated pathway will certainly endow valuable insight in a well-timed systematic understanding of CRC.

Ross JS, Wang K, Gay L, et al.
Comprehensive Genomic Profiling of Carcinoma of Unknown Primary Site: New Routes to Targeted Therapies.
JAMA Oncol. 2015; 1(1):40-9 [PubMed] Related Publications
IMPORTANCE: For carcinoma of unknown primary site (CUP), determining the primary tumor site may be uninformative and often does not improve outcome.
OBJECTIVE: To discover opportunities for targeted therapies in patients with CUP not currently searched for in routine practice.
DESIGN, SETTING, AND PARTICIPANTS: Comprehensive genomic profiling on 200 CUP formalin-fixed paraffin-embedded specimens (mean, 756× coverage) using the hybrid-capture-based FoundationOne assay at academic and community oncology clinics.
MAIN OUTCOMES AND MEASURES: Presence of targetable genomic alterations (GAs) in CUP and responses to targeted therapies.
RESULTS: There were 125 adenocarcinomas of unknown primary site (ACUPs) and 75 carcinomas of unknown primary site without features of adenocarcinoma (non-ACUPs). At least 1 GA was found in 192 (96%) of CUP specimens, with a mean (SD) of 4.2 (2.8) GAs per tumor. The most frequent GAs were in TP53 (110 [55%]), KRAS (40 [20%]), CDKN2A (37 [19%]), MYC (23 [12%]), ARID1A (21 [11%]), MCL1 (19 [10%]), PIK3CA (17 [9%]), ERBB2 (16 [8%]), PTEN (14 [7%]), EGFR (12 [6%]), SMAD4 (13 [7%]), STK11 (13 [7%]), SMARCA4 (12 [6%]), RB1 (12 [6%]), RICTOR (12 [6%]), MLL2 (12 [6%]), BRAF (11 [6%]), and BRCA2 (11 [6%]). One or more potentially targetable GAs were identified in 169 of 200 (85%) CUP specimens. Mutations or amplifications of ERBB2 were more frequent in ACUPs (13 [10%]) than in non-ACUPs (3 [4%]). Alterations of EGFR (10 [8%] vs 2 [3%]) and BRAF (8 [6%] vs 3 [4%]) were more common in ACUPs than in non-ACUPs. Strikingly, clinically relevant alterations in the receptor tyrosine kinase (RTK)/Ras signaling pathway including alterations in ALK, ARAF, BRAF, EGFR, FGFR1, FGFR2, KIT, KRAS, MAP2K1, MET, NF1, NF2, NRAS, RAF1, RET, and ROS1 were found in 90 (72%) ACUPs but in only 29 (39%) non-ACUPs (P < .001).
CONCLUSIONS AND RELEVANCE: Almost all CUP samples harbored at least 1 clinically relevant GA with potential to influence and personalize therapy. The ACUP tumors were more frequently driven by GAs in the highly druggable RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway than the non-ACUP tumors. Comprehensive genomic profiling can identify novel treatment paradigms to address the limited options and poor prognoses of patients with CUP.

Tawana K, Wang J, Renneville A, et al.
Disease evolution and outcomes in familial AML with germline CEBPA mutations.
Blood. 2015; 126(10):1214-23 [PubMed] Related Publications
In-depth molecular investigation of familial leukemia has been limited by the rarity of recognized cases. This study examines the genetic events initiating leukemia and details the clinical progression of disease across multiple families harboring germ-line CEBPA mutations. Clinical data were collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n = 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course, with different mutations identified at recurrence. Deep sequencing of diagnostic and relapse paired samples confirmed that relapse-associated CEBPA mutations were absent at diagnosis, suggesting recurrence was triggered by novel, independent clones. Integrated WES and deep sequencing subsequently revealed an entirely new complement of mutations at relapse, verifying the presentation of a de novo leukemic episode. The cumulative incidence of relapse in familial AML was 56% at 10 years (n = 11), and 3 patients experienced ≥3 disease episodes over a period of 17 to 20 years. Durable responses to secondary therapies were observed, with prolonged median survival after relapse (8 years) and long-term overall survival (10-year overall survival, 67%). Our data reveal that familial CEBPA-mutated AML exhibits a unique model of disease progression, associated with favorable long-term outcomes.

Wang Y, Huang M, Sun R, Pan L
Extraction, characterization of a Ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma.
Carbohydr Polym. 2015; 127:215-21 [PubMed] Related Publications
In this study, one polysaccharide (GFP1), with an average molecular weight of 1.4 × 10(5)Da, was isolated from Ginseng fruits. GFP1 was composed of galactose, glucose, rhamnose, and arabinose in a molar ratio of 6.1:2.0:1.1:3.2, and had a backbone mainly consisting of (1 → 6)-linked-Galp, (1 → 3,6)-linked-Galp and (1 → 3,6)-linked-Glcp residues, which was terminated with terminal (1 →)-linked-Araf or -Rhap attached to O-3 position of (1 → 3,6)-linked-Galp and (1 → 3,6)-linked-Glcp. We also evaluated the effect of GFP1 on anti-tumor immune response in Lewis lung carcinoma (LLC)-bearing mouse model and explored the possible mechanism. GPF1 could significantly inhibit tumor growth and lung metastasis in vivo, increase the relative spleen and thymus weight, promote ConA or LPS-induced spleen lymphocytes proliferation, elevate the activities of NK cell in spleen, and increase the serum concentration of interleukin-2 (IL-2) and interferon-γ (IFN-γ), as well as the ratio of CD4(+)/CD8(+) in LLC-bearing mice. All these findings implied that GFP1 could effectively inhibit tumor growth and lung metastasis via activating immune function and provide insights into the mechanism of GFP1 in the prevention and treatment of lung cancer.

Mathew LK, Huangyang P, Mucaj V, et al.
Feedback circuitry between miR-218 repression and RTK activation in glioblastoma.
Sci Signal. 2015; 8(375):ra42 [PubMed] Free Access to Full Article Related Publications
Receptor tyrosine kinase (RTK) signaling promotes the growth and progression of glioblastoma (GBM), a highly aggressive type of brain tumor. We previously reported that decreased miR-218 expression in GBM directly promotes RTK activity by increasing the expression of key RTKs and their signaling mediators, including the RTK epidermal growth factor receptor (EGFR), phospholipase C-γ1 (PLCγ1), and the kinases PIK3CA and ARAF. However, increased RTK signaling usually activates negative feedback mechanisms to maintain homeostasis. We found that decreased miR-218 expression in GBM cells also increased the expression of genes encoding additional upstream and downstream components of RTK signaling pathways, including the RTK platelet-derived growth factor receptor α (PDGFRα) and the kinases ribosomal S6 kinase 2 (RSK2) and S6 kinase 1 (S6K1), that collectively overrode the negative feedback mechanism. Furthermore, increased RTK signaling itself suppressed miR-218 expression. Mass spectrometry and DNA pull-down identified binding of signal transducer and activator of transcription 3 (STAT3) along with the transcriptional repressor BCL2-associated transcription factor 1 (BCLAF1) directly to the miR-218 locus. These data identify previously unknown feedback loops by which miR-218 repression promotes increased RTK signaling in high-grade gliomas.

Xu L, Cao J, Chen W
Structural characterization of a broccoli polysaccharide and evaluation of anti-cancer cell proliferation effects.
Carbohydr Polym. 2015; 126:179-84 [PubMed] Related Publications
Broccoli is a widely consumed vegetable with abundant amount of nutrients, which bring numerous beneficial effects on human health. The structural information of water-soluble polysaccharides in broccoli was eludicated for the first time in this work. A purified polysaccharide fraction (BPCa) was obtained by column chromatography. It comprised of arabinose (Ara), galactose (Gal), rhamnose (Rha) with a molar ratio of 5.3:0.8:1.0. Nuclear magnetic resonnance spectra data revealed that α-L-1,5-Araf and α-L-1,3,5-Araf are present in the backbone, while α-L-Araf terminal was attended in side chain. α-L-1,2-Rhap was found to be linked to α-L-1,5-Araf in heteronuclear multiple bond correlation spectra. The presences of β-D-1,4-Galp and α-D-1,4-GalpA were also detected. Furthermore, BPCa showed significant anti-cancer cell proliferation activities against HepG2, Siha and MDA-MB-231 carcinoma cell lines. The results indicated that BPCa had a good potential to be applied as functional food additives.

Margalef P, Colomer C, Villanueva A, et al.
BRAF-induced tumorigenesis is IKKα-dependent but NF-κB-independent.
Sci Signal. 2015; 8(373):ra38 [PubMed] Related Publications
KRAS mutations contribute to cell proliferation and survival in numerous cancers, including colorectal cancers (CRC). One pathway through which mutant KRAS acts is an inflammatory pathway that involves the kinase IKK and activates the transcription factor NF-κB. BRAF, a kinase that is downstream of KRAS, is mutated in a subset of CRC and is predictive of poor prognosis and therapeutic resistance. We found that, in contrast to mutant KRAS, mutant BRAF (BRAF(V600E)) did not trigger NF-κB activation but instead triggered the phosphorylation of a proteolytic fragment of IKKα (p45-IKKα) in CRC cells. BRAF(V600E) CRC cells had a high abundance of phosphorylated p45-IKKα, which was decreased by a RAF inhibitor. However, the abundance and DNA binding of NF-κB in these cells were unaffected by the RAF inhibitor, and expression of BRAF(V600E) in human embryonic kidney-293T cells did not activate an NF-κB reporter. Moreover, BRAF-induced transformation of NIH-3T3 cells and BRAF-dependent transcription required phosphorylation of p45-IKKα. The kinase TAK1, which was associated with the endosomal compartment, phosphorylated p45-IKKα. Inhibition of endosomal vacuolar adenosine triphosphatase (V-ATPase) with chloroquine or bafilomycin A1 blocked p45-IKKα phosphorylation and induced apoptosis in BRAF-mutant CRC cells independent of autophagy. Treating mice with V-ATPase inhibitors reduced the growth and metastasis of BRAF(V600E) xenograft tumors in the cecum of mice.

Wang L, Tang DQ, Kuang Y, et al.
Structural characteristics of pineapple pulp polysaccharides and their antitumor cell proliferation activities.
J Sci Food Agric. 2015; 95(12):2554-61 [PubMed] Related Publications
BACKGROUND: Pineapple has a delicious taste and good health benefits. Bioactive polysaccharides are important components of pineapple that might contribute to its health benefits. Since little structural information on these polysaccharides is currently available, the aim of this study was to investigate their structural characteristics and bioactivities.
RESULTS: The polysaccharides of pineapple pulp were fractionated into three fractions (PAPs 1-3) by anion exchange chromatography. Their structural characteristics were first identified, including molecular weights and glycosidic linkages. The monosaccharide compositions were revealed as PAP 1 (Ara, Xyl, Man, Glc and Gal), PAP 2 (Rha, Ara, Xyl, Man, Glc and Gal) and PAP 3 (Rha, Ara, Xyl, Man and Gal). Nuclear magnetic resonance (NMR) spectra suggested that PAP 2 had a backbone of → 4)-α-d-Manp-(1 → 2,4)-α-d-Manp-(1 → with branches attached to O-4 of Manp. The NMR data of α-l-Araf-(1→, →3)-α-l-Araf-(1→, →4)-β-d-Galp-(1 → and → 4)-α-d-GalpAMe-(1 → were assigned. PAPs 1 and 2 showed significant antitumor cell proliferation activities against breast carcinoma cell line and strong antioxidant activities.
CONCLUSION: The above findings indicated that PAPs 1-3 contributed much to the health benefits of pineapple. They could be used as health-beneficial food additives in functional foods.

Lee J, Jeong S, Park JH, et al.
Aberrant expression of COT is related to recurrence of papillary thyroid cancer.
Medicine (Baltimore). 2015; 94(6):e548 [PubMed] Free Access to Full Article Related Publications
Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC was associated with shorter recurrence-free survival (mean follow-up duration, 14.2 ± 4.1 years; P = 0.0403). GSEA indicated that gene sets related to B-RAF-RAS (P < 0.0001, false discovery rate [FDR] q-value = 0.000) and thyroid differentiation (P = 0.048, FDR q-value = 0.05) scores were enriched in lower COT expression group and gene sets such as T-cell receptor signaling pathway and Toll-like receptor signaling pathway are coordinately upregulated in higher COT expression group (both, P < 0.0001, FDR q-value = 0.000).Aberrant expression of A-, B-, and C-RAF, and COT is frequent in PTC; increased expression of COT is correlated with recurrence of PTC.

Sia D, Losic B, Moeini A, et al.
Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma.
Nat Commun. 2015; 6:6087 [PubMed] Related Publications
Intrahepatic cholangiocarcinoma (iCCA) is a fatal bile duct cancer with dismal prognosis and limited therapeutic options. By performing RNA- and exome-sequencing analyses, we report a novel fusion event, FGFR2-PPHLN1 (16%), and damaging mutations in the ARAF oncogene (11%). Here we demonstrate that the chromosomal translocation t(10;12)(q26;q12) leading to FGFR2-PPHLN1 fusion possesses transforming and oncogenic activity, which is successfully inhibited by a selective FGFR2 inhibitor in vitro. Among the ARAF mutations, N217I and G322S lead to activation of the pathway and N217I shows oncogenic potential in vitro. Screening of a cohort of 107 iCCA patients reveals that FGFR2 fusions represent the most recurrent targetable alteration (45%, 17/107), while they are rarely present in other primary liver tumours (0/100 of hepatocellular carcinoma (HCC); 1/21 of mixed iCCA-HCC). Taken together, around 70% of iCCA patients harbour at least one actionable molecular alteration (FGFR2 fusions, IDH1/2, ARAF, KRAS, BRAF and FGF19) that is amenable for therapeutic targeting.

Kim JH, Hong SK, Wu PK, et al.
Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels.
Exp Cell Res. 2014; 327(2):340-52 [PubMed] Free Access to Full Article Related Publications
While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.

Mooz J, Oberoi-Khanuja TK, Harms GS, et al.
Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration.
Sci Signal. 2014; 7(337):ra73 [PubMed] Related Publications
The RAF family of kinases mediates RAS signaling, and RAF inhibitors can be effective for treating tumors with BRAF(V600E) mutant protein. However, RAF inhibitors paradoxically accelerate metastasis in RAS-mutant tumors and become ineffective in BRAF(V600E) tumors because of reactivation of downstream mitogen-activated protein kinase (MAPK) signaling. We found that the RAF isoform ARAF has an obligatory role in promoting MAPK activity and cell migration in a cell type-dependent manner. Knocking down ARAF prevented the activation of MAPK kinase 1 (MEK1) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and decreased the number of protrusions from tumor cell spheroids in three-dimensional culture that were induced by BRAF(V600E)-specific or BRAF/CRAF inhibitors (GDC-0879 and sorafenib, respectively). RAF inhibitors induced the homodimerization of ARAF and the heterodimerization of BRAF with CRAF and the scaffolding protein KSR1. In a purified protein solution, recombinant proteins of the three RAF isoforms competed for binding to MEK1. In cells in culture, overexpressing mutants of ARAF that could not homodimerize impaired the interaction between ARAF and endogenous MEK1 and thus prevented the subsequent activation of MEK1 and ERK1/2. Our findings reveal a new role for ARAF in directly activating the MAPK cascade and promoting tumor cell invasion and suggest a new therapeutic target for RAS- and RAF-mediated cancers.

Aldea MD, Petrushev B, Soritau O, et al.
Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells.
J BUON. 2014 Apr-Jun; 19(2):502-11 [PubMed] Related Publications
PURPOSE: Glioblastoma stem cells (GSCs), responsible for the dismal disease prognosis after conventional treatments, are driven by overactive signaling pathways, such as PI3K/ AKT/mTOR and RAS/RAF/MAPK. The objective of our study was to target in vitro-GSCs by combining metformin (Met) as a mTOR inhibitor, with sorafenib (Soraf) as a RAF inhibitor.
METHODS: GSCs cultured under basal conditions were treated with Met, temozolomide (TMZ), Soraf, Met+TMZ and Met+Soraf; as untreated arm served as control. At 4 hrs of drug exposure, we measured the level of reactive oxygen species (ROS) by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, apoptosis by prodium iodide (PI)-V Annexin staining and efflux pump activity by using the fluorescent dye rhodamine 123. At 24 hrs, we measured cell proliferation by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and malondialdehyde (MDA) levels. MTT results were compared with corresponding measurements on cultures of non-stem glioblastoma cells and osteoblasts.
RESULTS: Met+Soraf exerted the highest antiproliferative effects in GSCs and non-stem glioblastoma cells (p<0.001). Both Met and Soraf monotherapy exhibited a selective cytotoxic effect on GSCs (p<0.001), while no effect was detected on non-stem glioblastoma cells (p>0.05). Soraf, but not Met, impacted the proliferation of normal cells. Soraf displayed synergism with Met in producing high levels of ROS, decreasing efflux pump activity and generating the highest apoptotic rates when compared to either drug alone (p<0.001).
CONCLUSION: GSCs were highly sensitive to the combination of Met and Soraf which reduced cell proliferation, increased oxidative stress, inhibited efflux pump activity and ultimately killed GSCs. We strongly believe that these results warrant further in vivo exploration.

Vu HL, Aplin AE
Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma.
Mol Cancer Res. 2014; 12(10):1509-19 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Melanoma is a devastating form of skin cancer with limited therapeutic options. Fifteen to 20% of patients with melanoma have an activating mutation in the GTPase, NRAS. The major downstream effectors of RAS are RAFs (ARAF, BRAF, and CRAF), phosphoinositide 3-kinase (PI3K), and the Ral guanine exchange factors (RalGEF). TANK-binding kinase 1 (TBK1) is an atypical IκB kinase family member that acts downstream of RalGEFs. Whereas many studies have analyzed RAF and PI3K signaling in mutant NRAS melanoma, the role of RalGEF/Ral is understudied and TBK1 has not been examined. To address this, TBK1 was modulated with knockdown approaches and targeted therapies to determine the role of TBK1 in motility, apoptosis, and signaling. In melanoma, NRAS overexpression increased TBK1 phosphorylation. TBK1 depletion inhibited migration and invasion, whereas its constitutive overexpression led to an increase in invasion. In three-dimensional systems that mimic the dermal microenvironment, TBK1 depletion or inhibition cooperated with MEK inhibitors to promote apoptosis, particularly in the context of MEK-insensitive mutant NRAS. This effect was absent in melanoma cells that are wild-type for NRAS. These results suggest the utility of TBK1 inhibitors as part of a treatment regimen for patients with mutant NRAS melanoma, for whom there are no current effective therapies.
IMPLICATIONS: TBK1 promotes the malignant properties of NRAS-mutant melanoma and its targeting, in combination with MEK, promotes apoptosis, thus providing a potential novel targeted therapeutic option.

Mazur PK, Reynoird N, Khatri P, et al.
SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer.
Nature. 2014; 510(7504):283-7 [PubMed] Free Access to Full Article Related Publications
Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.

Nguyen TV, Sleiman M, Moriarty T, et al.
Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening.
Biomaterials. 2014; 35(22):5749-59 [PubMed] Related Publications
Tumor progression is coincident with mechanochemical changes in the extracellular matrix (ECM). We hypothesized that tumor stroma stiffening, alongside a shift in the ECM composition from a basement membrane-like microenvironment toward a dense network of collagen-rich fibers during tumorigenesis, confers resistance to otherwise powerful chemotherapeutics. To test this hypothesis, we created a high-throughput drug screening platform based on our poly(ethylene glycol)-phosphorylcholine (PEG-PC) hydrogel system, and customized it to capture the stiffness and integrin-binding profile of in vivo tumors. We report that the efficacy of a Raf kinase inhibitor, sorafenib, is reduced on stiff, collagen-rich microenvironments, independent of ROCK activity. Instead, sustained activation of JNK mediated this resistance, and combining a JNK inhibitor with sorafenib eliminated stiffness-mediated resistance in triple negative breast cancer cells. Surprisingly, neither ERK nor p38 appears to mediate sorafenib resistance, and instead, either ERK or p38 inhibition rescued sorafenib resistance during JNK inhibition, suggesting negative crosstalk between these signaling pathways on stiff, collagen-rich environments. Overall, we discovered that β1 integrin and its downstream effector JNK mediate sorafenib resistance during tumor stiffening. These results also highlight the need for more advanced cell culture platforms, such as our high-throughput PEG-PC system, with which to screen chemotherapeutics.

Li JE, Cui SW, Nie SP, Xie MY
Structure and biological activities of a pectic polysaccharide from Mosla chinensis Maxim. cv. Jiangxiangru.
Carbohydr Polym. 2014; 105:276-84 [PubMed] Related Publications
A water-soluble pectic polysaccharide (MP-A40) was isolated and purified from Mosla chinensis Maxim. cv. Jiangxiangru for the first time, with a molecular weight of 32,600Da. MP-A40 was comprised of 68.63% galacturonic acid and 13.05% neutral sugar. In addition, arabinose, galactose, rhamnose, mannose and glucose composed the neutral sugar in a relative ratio of 4.94, 3.07, 2.13, 1.62 and 1.29% of the dry weight of MP-A40, respectively. Structural characterization of MP-A40 was investigated by methylation analysis and 1D/2D NMR spectroscopy. From the results, the structure of MP-A40 was revealed as follows: 1,4-linked α-d-GalpA and 1,4-linked α-d-GalpA6Me interspersed with rare t-Araf (0.60%), t-Rhap (1.67%) and t-GalpA (10.15%). Esterification assay showed that about 32% of the carboxylic groups in GalA residues existed as methyl ester. In addition, MP-A40 could inhibit the growth of human leukemic cell line K562 and stimulate nitric oxide production from RAW 264.7 macrophages both in dose-dependent manners.

Kanazawa T, Morisaki K, Suzuki S, Takashima Y
Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles.
Mol Pharm. 2014; 11(5):1471-8 [PubMed] Related Publications
New therapeutic strategies are required to develop candidate drugs and ensure efficient delivery of these drugs to the brain and the central nervous system (CNS). Small interfering RNA (siRNA)-based therapies have been investigated as potential novel approaches for the treatment of brain disorders. Previously, we showed that Tat, a cell-penetrating peptide derived from HIV-Tat, and the modified block copolymers (MPEG-PCL-Tat) can form stable complexes with siRNA or can be loaded with an anticancer drug and efficiently deliver the drugs to the brain tissue via intranasal delivery. In this study, to develop a novel, efficient, and safe therapeutic strategy for managing brain disorders, we used MPEG-PCL-Tat micelles with a nose-to-brain delivery system to investigate its therapeutic effects on a rat model of malignant glioma using siRNA with a Raf-1 (siRaf-1)/camptothecin (CPT) codelivery system. MPEG-PCL-Tat and CPT-loaded MPEG-PCL-Tat can form a stable complex with siRNA with a particle size from 60 to 200 nm and a positive charge at N/P ratios up to 5. Additionally, MPEG-PCL-Tat/siRaf-1 and CPT-loaded MPEG-PCL-Tat/siRaf-1 have fostered cell death in rat glioma cells after the high cellular uptake of siRaf-1/drug by the MPEG-PCL-Tat carrier. Furthermore, compared to the unloaded MPEG-PCL-Tat/siRaf-1 complex, a CPT-loaded MPEG-PCL-Tat/siRaf-1 complex achieved the high therapeutic effect because of the additive effects of CPT and siRaf-1. These results indicate that drug/siRNA codelivery using MPEG-PCL-Tat nanomicelles with nose-to-brain delivery is an excellent therapeutic approach for brain and CNS diseases.

Li L, Liu H, Zhang SH, et al.
[Anticancer effect of 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin: in vitro and in vivo].
Yao Xue Xue Bao. 2013; 48(12):1771-7 [PubMed] Related Publications
In the present study, a new compound named 17-(6-cinnamamido-hexylamino-)-17-demethoxygeldanamycin (CDG) was obtained by introducing the cinnamic acid (CA) group into the 17-site of geldanamycin (GDM). The anti-cancer effects of CDG in vitro and in vivo were evaluated. MTT assay was used to examine the inhibitory effect of CDG on the proliferation of MCF-7, HepG2, H460 and SW1990 cells. Immunofluorescent staining flow cytometry combined with Annexin V-FITC/PI staining were used to detect apoptotic cells. Transwell assay was used to analyze the effect of CDG on cell invasion and migration ability. Western blotting was used to detect the expression levels of RAF-1, EGFR, AKT, CDK4 and HER-2 of MCF-7, HepG2 and H460 cells. The toxicities of CDG and GDM were evaluated in mice. Using the subcutaneously transplanted MCF-7 xenograft in nude mice, inhibitory effect was evaluated in vivo. The results showed that CDG inhibited the proliferation of cancer cells (IC50: 13.6-67.4 microg.mL-1). After exposure to CDG for 48 h, most cells presented typical morphologic changes of apoptosis such as chromatin condensation or shrunken nucleus. The rates of apoptosis of MCF-7, HepG2, H460 and SW1990 cells incubated with 10 microg.mL-1 CDG were 23.16%, 27.55%, 22.21%, 20.47%, respectively. A dose-dependent reduction of migration of four cell lines was found after exposure to CDG. The decreased levels of RAF-1, EGFR, AKT, CDK4 and HER-2 showed that CDG possessed HSP90 inhibitory effect. The result of animal toxicity test on the mice suggested that CDG had lower toxicity than GDM. Meanwhile, CDG inhibited the growth of MCF-7 xenografts of athymic mice.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ARAF, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999