Gene Summary

Gene:ELN; elastin
Aliases: WS, WBS, SVAS
Summary:This gene encodes a protein that is one of the two components of elastic fibers. The encoded protein is rich in hydrophobic amino acids such as glycine and proline, which form mobile hydrophobic regions bounded by crosslinks between lysine residues. Deletions and mutations in this gene are associated with supravalvular aortic stenosis (SVAS) and autosomal dominant cutis laxa. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Staging
  • Follow-Up Studies
  • Chronic-Phase Myeloid Leukemia
  • Antineoplastic Agents
  • Chronic Myelogenous Leukemia
  • Hematopoietic Stem Cell Transplantation
  • MicroRNAs
  • Molecular Targeted Therapy
  • Bladder Cancer
  • Europe
  • Biomarkers, Tumor
  • Gene Expression Profiling
  • RT-PCR
  • Gene Dosage
  • Oligonucleotide Array Sequence Analysis
  • Chromosome 7
  • Childhood Cancer
  • Benzamides
  • Homologous Transplantat
  • Piperazines
  • Protein Kinase Inhibitors
  • Pyrimidines
  • Acute Myeloid Leukaemia
  • Polymerase Chain Reaction
  • Cytogenetic Analysis
  • Disease-Free Survival
  • Fusion Proteins, bcr-abl
  • Voluntary Health Agencies
  • Protein-Tyrosine Kinases
  • Mutation
  • Brain Tumours
  • Imatinib Mesylate
  • Survival Rate
  • Adolescents
  • Cancer RNA
  • Risk Factors
  • DNA Mutational Analysis
  • Leukemic Gene Expression Regulation
  • Practice Guidelines as Topic
  • Societies, Medical
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ELN (cancer-related)

Shi J, Fu H, Jia Z, et al.
High Expression of CPT1A Predicts Adverse Outcomes: A Potential Therapeutic Target for Acute Myeloid Leukemia.
EBioMedicine. 2016; 14:55-64 [PubMed] Free Access to Full Article Related Publications
Carnitine palmitoyl transferase 1A (CPT1A) protein catalyzes the rate-limiting step of Fatty-acid oxidation (FAO) pathway, which can promote cell proliferation and suppress apoptosis. Targeting CPT1A has shown remarkable anti-leukemia activity. But, its prognostic value remains unclear in Acute Myeloid Leukemia (AML). In two independent cohorts of cytogenetically normal AML (CN-AML) patients, compared to low expression of CPT1A (CPT1A(low)), high expression of CPT1A (CPT1A(high)) was significantly associated with adverse outcomes, which was also shown in European Leukemia Network (ELN) Intermediate-I category. Multivariable analyses adjusting for known factors confirmed CPT1A(high) as a high risk factor. Significant associations between CPT1A(high) and adverse outcomes were further validated whether for all AML patients (OS: P=0.008; EFS: P=0.002, n=334, no M3) or for National Comprehensive Cancer Network (NCCN) Intermediate-Risk subgroup (OS: P=0.021, EFS: P=0.024, n=173). Multiple omics analysis revealed aberrant alterations of genomics and epigenetics were significantly associated with CPT1A expression, including up- and down-regulation of oncogenes and tumor suppressor, activation and inhibition of leukemic (AML, CML) and immune activation pathways, hypermethylation enrichments on CpG island and gene promoter regions. Combined with the previously reported anti-leukemia activity of CPT1A's inhibitor, our results proved CPT1A as a potential prognosticator and therapeutic target for AML.

Decimi V, Fazio G, Dell'Acqua F, et al.
Williams syndrome and mature B-Leukemia: A random association?
Eur J Med Genet. 2016; 59(12):634-640 [PubMed] Related Publications
Williams syndrome (WBS) is a rare neurodevelopmental disorder with specific phenotypic characteristics and cardiac abnormalities, but is not considered as a cancer predisposing condition. However, in rare cases, malignancies have been described in patients with WBS, with hematologic cancer (mainly Burkitt Lymphoma and Acute Lymphoblastic Leukemia) as the most represented. We report here the case of a boy with WS and B-NHL. This is the unique case within the large cohort of patients (n = 117) followed in our institution for long time (mean clinical follow-up, 13 years). We herewith propose that the BCL7B gene, located in the chromosomal region commonly deleted in Williams syndrome, could potentially have a role in this particular association.

Pharoah PD, Song H, Dicks E, et al.
PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations.
J Natl Cancer Inst. 2016; 108(3) [PubMed] Free Access to Full Article Related Publications
Mosaic truncating mutations in the protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC.

Jain P, Kantarjian H, Patel KP, et al.
Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors.
Blood. 2016; 127(10):1269-75 [PubMed] Free Access to Full Article Related Publications
The most common breakpoint cluster region gene-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) transcripts in chronic myeloid leukemia (CML) are e13a2 (b2a2) and e14a2 (b3a2). The impact of the type of transcript on response and survival after initial treatment with different tyrosine kinase inhibitors is unknown. This study involved 481 patients with chronic phase CML expressing various BCR-ABL transcripts. Two hundred patients expressed e13a2 (42%), 196 (41%) expressed e14a2, and 85 (18%) expressed both transcripts. The proportion of patients with e13a2, e14a2, and both achieving complete cytogenetic response at 3 and 6 months was 59%, 67%, and 63% and 73%, 81%, and 82%, respectively, whereas major molecular response rates were 27%, 49%, and 50% at 3 months, 42%, 67%, and 70% at 6 months, and 55%, 83%, and 76% at 12 months, respectively. Median (international scale) levels of transcripts e13a2, e14a2, and both at 3 months were 0.2004, 0.056, and 0.0612 and at 6 months were 0.091, 0.0109, and 0.0130, respectively. In multivariate analysis, e14a2 and both predicted for optimal responses at 3, 6, and 12 months. The type of transcript also predicted for improved probability of event-free (P = .043; e14a2) and transformation-free survival (P = .04 for both). Compared to e13a2 transcripts, patients with e14a2 (alone or with coexpressed e13a2) achieved earlier and deeper responses, predicted for optimal European Leukemia Net (ELN) responses (at 3, 6, and 12 months) and predicted for longer event-free and transformation-free survival.

Crisan AM, Coriu D, Arion C, et al.
The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia.
J Med Life. 2015 Oct-Dec; 8(4):502-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chronic Myeloid Leukemia's (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival.
MATERIALS AND METHODS: Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included.
RESULTS: From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes).
CONCLUSIONS: In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study's end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported.
ABBREVIATIONS: CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine kinase inhibitor treatment, ACAs = additional cytogenetic abnormalities, CCyR = complete cytogenetic response, PCyR = partial cytogenetic response, mCyR = minor cytogenetic response, MMR = major molecular response, HSCT = hematopoietic stem cell transplant, HLA = human leukocyte antigens, CP = chronic phase, AP = accelerated phase, BP = blast phase, OS = overall survival, CBA = chromosome banding analysis, +8 = trisomy 8, i(17q) = isochromosome (17q), +Ph = second Philadelphia chromosome, -7 = monosomy 7, -17 = monosomy 17, +17 = trisomy 17, -21 = monosomy 21, +21 = trisomy 21, -Y = loss of Y chromosome, ELN = European LeukemiaNet, IMA600 = Imatinib 600 mg daily, IMA400 = Imatinib 400 mg daily, NILO600 = Nilotinib 600 mg daily, DASA100 = Dasatinib 100mg daily, DASA140 = Dasatinib 140 mg daily.

Su CW, Huang YW, Chen MK, et al.
Polymorphisms and Plasma Levels of Tissue Inhibitor of Metalloproteinase-3: Impact on Genetic Susceptibility and Clinical Outcome of Oral Cancer.
Medicine (Baltimore). 2015; 94(46):e2092 [PubMed] Free Access to Full Article Related Publications
Oral cancer, the fourth most common cancer among men in Taiwan, is associated with environmental carcinogens. Tissue inhibitor of metalloproteinase-3 (TIMP3), a member of the TIMP family, is the only protein that binds to the extracellular matrix for suppressing cancer cell growth, angiogenesis, migration, and invasion. The association of TIMP3 polymorphism with oral cancer susceptibility, however, has not yet been reported. In this study, 1947 participants-1200 healthy male controls and 747 male patients with oral cancer-were recruited. Allelic discrimination of TIMP3 -1296 T > C (rs9619311), TIMP3 C > T (rs9862), and TIMP3 C > T (rs11547635) polymorphisms were assessed through real-time polymerase chain reaction. The authors discovered that individuals carrying the polymorphic rs9862 allele are more susceptible to oral cancer [odds ratio (OR), 1.5; 95% confidence interval (CI), 1.2-1.9; adjusted OR (AOR), 1.6; 95% CI, 1.2-2.1] after adjustment for betel quid chewing, alcohol, and tobacco consumption. Among 601 betel quid chewers, the TIMP3 polymorphism rs9862 T/T carriers had a 32.2-fold (95% CI, 20.2-51.3) increased oral cancer risk compared with those carrying C/C and not chewing betel quid. In addition, the authors observed a significant association between rs9862 variants and large tumors (OR, 1.5; 95% CI, 1.0-2.3) development. Moreover, TIMP3 plasma levels significantly increased in oral cancer patients who have large tumor or carry T allele rs9862 polymorphism. In conclusion, these results suggest that gene-environment interactions between the TIMP3 rs9862 polymorphisms and betel quid may alter oral cancer susceptibility and tumor growth in Taiwanese men.

Martínez R, Stühmer W, Martin S, et al.
Analysis of the expression of Kv10.1 potassium channel in patients with brain metastases and glioblastoma multiforme: impact on survival.
BMC Cancer. 2015; 15:839 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Kv10.1, a voltage-gated potassium channel only detected in the healthy brain, was found to be aberrantly expressed in extracerebral cancers. Investigations of Kv10.1 in brain metastasis and glioblastoma multiforme (GBM) are lacking.
METHODS: We analyzed the expression of Kv10.1 by immunohistochemistry in these brain tumors (75 metastasis from different primary tumors, 71 GBM patients) and the influence of a therapy with tricyclic antidepressants (which are Kv10.1 blockers) on survival. We also investigated Kv10.1 expression in the corresponding primary carcinomas of metastases patients.
RESULTS: We observed positive Kv10.1 expression in 85.3 % of the brain metastases and in 77.5 % of GBMs. Patients with brain metastases, showing low Kv10.1 expression, had a significantly longer overall survival compared to those patients with high Kv10.1 expression. Metastases patients displaying low Kv10.1 expression and also receiving tricyclic antidepressants showed a significantly longer median overall survival as compared to untreated patients.
CONCLUSIONS: Our data show that Kv10.1 is not only highly expressed in malignant tumors outside CNS, but also in the most frequent cerebral cancer entities, metastasis and GBM, which remain incurable in spite of aggressive multimodal therapies. Our results extend the correlation between dismal prognosis and Kv10.1 expression to patients with brain metastases or GBMs and, moreover, they strongly suggest a role of tricyclic antidepressants for personalized therapy of brain malignancies.

Shi JL, Fu L, Ang Q, et al.
Overexpression of ATP1B1 predicts an adverse prognosis in cytogenetically normal acute myeloid leukemia.
Oncotarget. 2016; 7(3):2585-95 [PubMed] Free Access to Full Article Related Publications
ATP1B1 encodes the Na,K-ATPase β subunit, a key regulator of the Na+ and K+ electrochemical gradients across the plasma membrane and an essential regulator of cellular activity. We used several microarray datasets to test the prognostic efficacy of ATP1B1 expression in cytogenetically normal acute myeloid leukemia (CN-AML). Within the primary cohort (n = 157), high ATP1B1 expression (ATP1B1(high)) was associated with shorter overall survival (OS) and event-free survival (EFS) (P = 0.0068, P = 0.0039, respectively). Similar results were also obtained in the European Leukemia Net (ELN) Intermediate-I genetic category (OS: P = 0.0035, EFS: P = 0.0007). Multivariable analyses confirmed ATP1B1(high) is an independent predictor of shorter OS (P = 0.042) and EFS (P = 0.035). Analysis of another CN-AML cohort confirmed that ATP1B1(high) is associated with shorter OS (P = 0.0046, n = 162). In addition, up-regulation of oncogenes/onco-microRNAs such as MYCN, CCND2, CDK6, KIT and miR-155, among others, was associated with ATP1B1(high), which may be indicative of ATP1B1's leukemogenicity. Our results may improve risk stratification and indicate new therapeutic targets for CN-AML.

Ramus SJ, Song H, Dicks E, et al.
Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer.
J Natl Cancer Inst. 2015; 107(11) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, responsible for 13 000 deaths per year in the United States. Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes could have a clinically significant impact on reducing disease mortality.
METHODS: Next generation sequencing was used to identify germline mutations in the coding regions of four candidate susceptibility genes-BRIP1, BARD1, PALB2 and NBN-in 3236 invasive EOC case patients and 3431 control patients of European origin, and in 2000 unaffected high-risk women from a clinical screening trial of ovarian cancer (UKFOCSS). For each gene, we estimated the prevalence and EOC risks and evaluated associations between germline variant status and clinical and epidemiological risk factor information. All statistical tests were two-sided.
RESULTS: We found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the UKFOCSS participants (0.6%) compared with control patients (0.09%) (P = 1 x 10(-4) and 8 x 10(-4), respectively), but no differences for BARD1 (P = .39), NBN1 ( P = .61), or PALB2 (P = .08). There was also a difference in the frequency of rare missense variants in BRIP1 between case patients and control patients (P = 5.5 x 10(-4)). The relative risks associated with BRIP1 mutations were 11.22 for invasive EOC (95% confidence interval [CI] = 3.22 to 34.10, P = 1 x 10(-4)) and 14.09 for high-grade serous disease (95% CI = 4.04 to 45.02, P = 2 x 10(-5)). Segregation analysis in families estimated the average relative risks in BRIP1 mutation carriers compared with the general population to be 3.41 (95% CI = 2.12 to 5.54, P = 7×10(-7)).
CONCLUSIONS: Deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer prevention.

Fu D, Ren C, Tan H, et al.
Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer.
Medicine (Baltimore). 2015; 94(11):e637 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation that leads to the inactivation of tumor suppressor genes is known to play an important role in the development and progression of breast cancer. Methylation status of cancer-related genes is considered to be a promising biomarker for the early diagnosis and prognosis of tumors. This study investigated the methylation status of the Sox17 gene in breast cancer tissue and its corresponding plasma DNA to evaluate the association of methylation levels with clinicopathological parameters and prognosis.The methylation status of the Sox17 gene promoter was evaluated with methylation-specific polymerase chain reaction (MSP) in 155 paired breast cancer tissue and plasma samples and in 60 paired normal breast tissue and plasma samples. Association of Sox17 methylation status with clinicopathological parameters was analyzed by χ tests. Overall and disease-free survival (DFS) curves were calculated using Kaplan-Meier analysis, and the differences between curves were analyzed by log-rank tests.The frequency of Sox17 gene methylation was 72.9% (113/155) in breast cancer tissues and 58.1% (90/155) in plasma DNA. Sox17 gene methylation was not found in normal breast tissues or in their paired plasma DNA. There was a significant correlation of Sox17 methylation between corresponding tumor tissues and paired plasma DNA (r = 0.688, P < 0.001). Aberrant Sox17 methylation in cancer tissues and in plasma DNA was significantly associated with the tumor node metastasis stage (P = 0.035 and P = 0.001, respectively) and with lymph node metastasis (P < 0.001 and P = 0.001, respectively). Kaplan-Meier survival curves showed that aberrant Sox17 promoter methylation in cancer tissues and plasma DNA was associated with poor DFS (P < 0.005) and overall survival (OS) (P < 0.005). Multivariate analysis showed that Sox17 methylation in plasma DNA was an independent prognostic factor in breast cancer for both DFS (P = 0.020; hazard ratio [HR] = 2.142; 95% confidence interval [CI]: 1.128-4.067) and for OS (P = 0.001; HR = 4.737; 95% CI: 2.088-10.747).Sox17 gene promoter methylation may play an important role in breast cancer progression and could be used as a prognostic biomarker to identify patients at risk of developing metastasis or recurrence after mastectomy.

Shi JL, Fu L, Wang WD
High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia.
Oncotarget. 2015; 6(7):5299-309 [PubMed] Free Access to Full Article Related Publications
Inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) is a key regulator for the activity of calcium ion transmembrane transportation, which plays a critical role in cell cycle and proliferation. However, the clinical impact of ITPR2 in cytogenetically normal acute myeloid leukemia (CN-AML) remained unknown. Several microarray datasets were used to evaluate the association between ITPR2 expression and clinical and molecular characteristics. ITPR2 showed a higher expression in CN-AML patients than normal persons. In a cohort of 157 CN-AML patients, high ITPR2 expression (ITPR2high) was associated with dramatically shorter overall survival (OS; P = 0.004) and event-free survival (EFS; P = 0.01), which were also shown in the European Leukemia Net (ELN) intermediate-I genetic category (OS: P = 0.0066; EFS: P = 0.009). Multivariable analyses adjusting for known prognostic factors confirmed ITPR2high to be associated with shorter OS (P = 0.0019) and EFS (P = 0.012). The prognostic value of ITPR2 was further validated in another cohort of 162 CN-AML patients (P = 0.007). In addition, first gene/microRNA expression signatures were derived that associated with ITPR2high on the genome-wide scale, which provided many indications to illustrate the possible mechanisms why ITPR2 could function. These results could aid to identify new targets and design novel therapeutic strategies for CN-AML patients.

Jinlong S, Lin F, Yonghui L, et al.
Identification of let-7a-2-3p or/and miR-188-5p as prognostic biomarkers in cytogenetically normal acute myeloid leukemia.
PLoS One. 2015; 10(2):e0118099 [PubMed] Free Access to Full Article Related Publications
Cytogenetically normal acute myeloid leukemia (CN-AML) is the largest and most heterogeneous AML subgroup. It lacks sensitive and specific biomarkers. Emerging evidences have suggested that microRNAs are involved in the pathogenesis of various leukemias. This paper evaluated the association between microRNA expression and prognostic outcome for CN-AML, based on the RNA/microRNA sequencing data of CN-AML patients. High let-7a-2-3p expression and low miR-188-5p expression were identified to be significantly associated with longer overall survival (OS) and event free survival (EFS) for CN-AML, independently or in a combined way. Their prognostic values were further confirmed in European Leukemia Net (ELN) genetic categories. Also, in multivariable analysis with other known risk factors, high let-7a-2-3p and low miR-188-5p expression remained to be associated with longer OS and EFS. In addition, the prognostic value of these two microRNAs was confirmed in patients who received hematopoietic stem cell transplantation (HSCT). To gain more biological insights of the underlying mechanisms, we derived the genome-wide differential gene/microRNA signatures associated with the expression of let-7a-2-3p and miR-188-5p. Several common microRNA signatures indicating favorable outcome in previous studies were up-regulated in both high let-7a-2-3p expressers and low miR-188-5p expressers, including miR-135a, miR-335 and miR-125b and all members of miR-181 family. Additionally, common up-regulated genes included FOSB, IGJ, SNORD50A and ZNF502, and FOSB was a known favorable signature in AML. These common signatures further confirmed the underlying common mechanisms for these two microRNAs value as favorable prognostic biomarkers. We concluded that high let-7a-2-3p and low miR-188-5p expression could be potentially used as favorably prognostic biomarkers independently or in a combined way in CN-AML patients, whether they received HSCT or not.

Shimamoto A, Kagawa H, Zensho K, et al.
Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.
PLoS One. 2014; 9(11):e112900 [PubMed] Free Access to Full Article Related Publications
Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs). In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

Guenat D, Quentin S, Rizzari C, et al.
Constitutional and somatic deletions of the Williams-Beuren syndrome critical region in non-Hodgkin lymphoma.
J Hematol Oncol. 2014; 7:82 [PubMed] Free Access to Full Article Related Publications
Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in WBS is intriguing. Therefore, the role of haploinsufficiency of genes located at 7q11.23 in lymphomagenesis deserves to be investigated.

Di Narzo AF, Tejpar S, Rossi S, et al.
Test of four colon cancer risk-scores in formalin fixed paraffin embedded microarray gene expression data.
J Natl Cancer Inst. 2014; 106(10) [PubMed] Related Publications
BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification.
METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase.
RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score.
CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.

Wang BS, Liu Z, Xu WX, Sun SL
Functional polymorphisms in microRNAs and susceptibility to liver cancer: a meta-analysis and meta-regression.
Genet Mol Res. 2014; 13(3):5426-40 [PubMed] Related Publications
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a fundamental role in controlling a variety of biological functions. Emerging evidence has shown that common genetic polymorphisms in miRNAs may be associated with the development of liver cancer; however, several individually published studies showed inconclusive results. This meta-analysis aimed to derive a more precise estimation of the association between functional polymorphisms in miRNAs and susceptibility to liver cancer. A literature search of PubMed, Embase, Web of Science, and China BioMedicine (CBM) databases was conducted on articles published before May 1, 2012. Crude odds ratios with 95% confidence intervals were calculated. Fourteen case-control studies were included with a total of 6824 liver cancer patients and 7674 healthy controls. Nine single nucleotide polymorphisms in miRNAs were assessed, including miR-146a G>C (rs2910164), miR-499 T>C (rs3746444), miR-218 A>G (rs11134527), miR-let-7c Ins/Del (rs6147150), miR-106b-25 A>G (rs999885), miR-34b/c T>C (rs4938723), miR-196a-2 C>T (rs11614913), miR-920 Ins/Del (rs16405), and miR-122 Ins/Del (rs3783553). The meta-analysis results showed that miR-let-7c Del, miR-34b/c C, and miR-122 Del variants may be associated with increased liver cancer risk. Conversely, miR-920*Del variant may decrease the risk of liver cancer. However, miR-146a G>C, miR-196a-2 C>T, miR-499 T>C, and miR-218 A>G polymorphisms showed no significant association with liver cancer risk. In conclusion, the current meta-analysis suggests that miR-let- 7c Del, miR-34b/c C and miR-122 Del variants may be associated with increased liver cancer risk, while miR-920 Del variant may be a protective factor against liver cancer.

Morgan K, Sadofsky LR, Crow C, Morice AH
Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor.
Biosci Rep. 2014; 34(4) [PubMed] Free Access to Full Article Related Publications
TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation.

Guemann AS, Andrieux J, Petit F, et al.
ELN gene triplication responsible for familial supravalvular aortic aneurysm.
Cardiol Young. 2015; 25(4):712-7 [PubMed] Related Publications
Supravalvular aortic aneurysms are less frequent than abdominal ones. Among Supravalvular aortic aneurysm aetiologies, we focused on dystrophic lesions as they can be secondary to genetic causes such as elastin anomaly. We report on a familial 7q11.23 triplication - including the ELN gene - segregating with a supravalvular aortic aneurysm. During her first pregnancy, our index patient was diagnosed with tuberous sclerosis and with a Supravalvular aortic aneurysm. The foetus was affected equally. For the second pregnancy, parents applied for preimplantation diagnosis, and a subsequent prenatal diagnosis was offered to the couple, comprising TSC1 molecular analysis, karyotype, and multiplex ligation probe amplification. TSC1 mutation was not found on foetal deoxyribo nucleic acid. Foetal karyotype was normal, but multiplex ligation probe amplification detected a 7q11.23 duplication. Quantitative-polymerase chain reaction and array-comparative genomic hybridisation carried out to further assess this chromosome imbalance subsequently identified a 7q11.23 triplication involving ELN and LIMK1. Foetal heart ultrasound identified a Supravalvular aortic aneurysm. A familial screening was offered for the 7q11.23 triplication and, when found, heart ultrasound was performed. The triplication was diagnosed in our index case as well as in her first child. Of the 17 individuals from this family, 11 have the triplication. Of the 11 individuals with the triplication, 10 were identified to have a supravalvular aortic aneurysm. Of them, two individuals received a medical treatment and one individual needed surgery. We provide evidence of supravalvular aortic aneurysm segregating with 7q11.23 triplication in this family. We would therefore recommend cardiac surveillance for individuals with 7q11.23 triplication. It would also be interesting to offer a quantitative-polymerase chain reaction or an array-comparative genomic hybridisation to a larger cohort of patients presenting with isolated supravalvular aortic aneurysm, as it may provide further information.

Herold T, Metzeler KH, Vosberg S, et al.
Isolated trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis.
Blood. 2014; 124(8):1304-11 [PubMed] Related Publications
In acute myeloid leukemia (AML), isolated trisomy 13 (AML+13) is a rare chromosomal abnormality whose prognostic relevance is poorly characterized. We analyzed the clinical course of 34 AML+13 patients enrolled in the German AMLCG-1999 and SAL trials and performed exome sequencing, targeted candidate gene sequencing and gene expression profiling. Relapse-free (RFS) and overall survival (OS) of AML+13 patients were inferior compared to other ELN Intermediate-II patients (n=855) (median RFS, 7.8 vs 14.1 months, P = .006; median OS 9.3 vs. 14.8 months, P = .004). Besides the known high frequency of RUNX1 mutations (75%), we identified mutations in spliceosome components in 88%, including SRSF2 codon 95 mutations in 81%. Recurring mutations were detected in ASXL1 (44%) and BCOR (25%). Two patients carried mutations in CEBPZ, suggesting that CEBPZ is a novel recurrently mutated gene in AML. Gene expression analysis revealed a homogeneous expression profile including upregulation of FOXO1 and FLT3 and downregulation of SPRY2. This is the most comprehensive clinical and biological characterization of AML+13 to date, and reveals a striking clustering of lesions in a few genes, defining AML+13 as a genetically homogeneous subgroup with alterations in a few critical cellular pathways. Clinicaltrials.gov identifiers: AMLCG-1999: NCT00266136; AML96: NCT00180115; AML2003: NCT00180102; and AML60+: NCT00893373.

Vanhapiha N, Knuutila S, Vettenranta K, Lohi O
Burkitt lymphoma and Ewing sarcoma in a child with Williams syndrome.
Pediatr Blood Cancer. 2014; 61(10):1877-9 [PubMed] Related Publications
Williams syndrome (WS) is a relatively rare multisystem neurodevelopmental disorder caused by a hemizygous deletion of contiguous genes on chromosome 7q11.23. Although WS does not predispose carriers to cancers, alterations of chromosome 7 are common in several human neoplasms. We report here a patient with WS and two different cancers, Burkitt lymphoma and Ewing sarcoma. Array-CGH analysis of the patient blood revealed a constitutive 1.4 million base pair deletion at 7q11.23, compatible with WS diagnosis.

Sugimoto M
A cascade leading to premature aging phenotypes including abnormal tumor profiles in Werner syndrome (review).
Int J Mol Med. 2014; 33(2):247-53 [PubMed] Related Publications
This perspective review focused on the Werner syndrome (WS) by addressing the issue of how a single mutation in a WRN gene encoding WRN DNA helicase induces a wide range of premature aging phenotypes accompanied by an abnormal pattern of tumors. The key event caused by WRN gene mutation is the dysfunction of telomeres. Studies on normal aging have identified a molecular circuit in which the dysfunction of telomeres caused by cellular aging activates the TP53 gene. The resultant p53 suppresses cell growth and induces a shorter cellular lifespan, and also compromises mitochondrial biogenesis leading to the overproduction of reactive oxygen species (ROS) causing multiple aging phenotypes. As an analogy of the mechanism in natural aging, we described a hypothetical mechanism of premature aging in WS: telomere dysfunction induced by WRN mutation causes multiple premature aging phenotypes of WS, including shortened cellular lifespan and inflammation induced by ROS, such as diabetes mellitus. This model also explains the relatively late onset of the disorder, at approximately age 20. Telomere dysfunction in WS is closely correlated with abnormality in tumorigenesis. Thus, the majority of wide and complex pathological phenotypes of WS may be explained in a unified manner by the cascade beginning with telomere dysfunction initiated by WRN gene mutation.

Christoforidis A, Tsakalides C, Chatziavramidis A, et al.
Sizeable acquired subglottic cyst in a baby with Williams-Beuren syndrome: association or coincidence?
Gene. 2013; 529(1):148-9 [PubMed] Related Publications
We describe a case of an acquired subglottic cyst presented with persistent stridor and voice hoarsening in a baby diagnosed with Williams-Beuren syndrome that was born premature and required intubation during neonatal period. We also comment on whether this is a coincidence or there can be an association between impaired elastogenesis, a feature of patients with the syndrome and the formation of a subglottic cyst.

Frampton AE, Fletcher CE, Gall TM, et al.
Circulating peripheral blood mononuclear cells exhibit altered miRNA expression patterns in pancreatic cancer.
Expert Rev Mol Diagn. 2013; 13(5):425-30 [PubMed] Related Publications
Evaluation of: Wang WS, Liu LX, Li GP et al. Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer. Cancer Prev. Res. (Phila.) 6(4), 331-338 (2013). Patients with pancreatic ductal adenocarcinoma (PDAC) have a bleak outlook, primarily because tumors are detected late and are often too advanced for surgical resection. In addition, these lesions are incredibly resistant to anticancer therapies. The majority of PDAC patients have impaired tumor immunity, contributing to disease development and progression, although the mechanisms remain poorly understood. miRNAs are important negative gene regulators that have critical roles in human tumorigenesis. Blood-based miRNAs have been investigated as biomarkers for various cancers, in the hope that these will outperform current serum tumor markers. The evaluated study examined the miRNA profiles in peripheral blood mononuclear cells from PDAC patients. The theory is that circulating blood cells monitor the patients' physiological state and respond by altering their transcriptome and that this can then be used to detect disease. In this article, we have examined the evidence for using circulating miRNAs to diagnose/prognose PDAC.

Zhang B, Xu ZW, Wang KH, et al.
Complex regulatory network of microRNAs, transcription factors, gene alterations in adrenocortical cancer.
Asian Pac J Cancer Prev. 2013; 14(4):2265-8 [PubMed] Related Publications
Several lines of evidence indicate that cancer is a multistep process. To survey the mechanisms involving gene alteration and miRNAs in adrenocortical cancer, we focused on transcriptional factors as a point of penetration to build a regulatory network. We derived three level networks: differentially expressed; related; and global. A topology network ws then set up for development of adrenocortical cancer. In this network, we found that some pathways with differentially expressed elements (genetic and miRNA) showed some self-adaption relations, such as EGFR. The differentially expressed elements partially uncovered mechanistic changes for adrenocortical cancer which should guide medical researchers to further achieve pertinent research.

Nomdedéu JF, Hoyos M, Carricondo M, et al.
Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML.
Leukemia. 2013; 27(11):2157-64 [PubMed] Related Publications
We retrospectively assessed whether normalized bone marrow WT1 levels could be used for risk stratification in a consecutive series of 584 acute myeloid leukemia (AML) patients. A cutoff value of 5065 copies at diagnosis identified two prognostic groups (overall survival (OS): 44 ± 3 vs 36 ± 3%, P=0.023; leukemia-free survival (LFS): 47 ± 3 vs 36 ± 4%, P=0.038; and cumulative incidence of relapse (CIR): 37 ± 3 vs 47 ± 4%, P=:0.043). Three groups were identified on the basis of WT1 levels post-induction: Group 0 (WT1 between 0 and 17.5 copies, 134 patients, OS: 59 ± 4%, LFS:59 ± 4% and CIR: 26 ± 4%); Group 1 (WT1 between 17.6 and 170.5 copies, 160 patients, OS: 48 ± 5%, LFS:41 ± 4% and CIR: 45 ± 4%); and Group 2 (WT1 >170.5 copies, 71 patients, OS: 23 ± 6%, LFS: 19 ± 7% and CIR: 68 ± 8%) (P<0.001). Post-intensification samples distinguished three groups: patients with WT1 >100 copies (47 patients, 16%); an intermediate group of patients with WT1 between 10 and 100 copies (148 patients, 52%); and a third group with WT1 <10 copies (92 patients, 32%). Outcomes differed significantly in terms of OS (30 ± 7%, 59 ± 4%, 72 ± 5%), LFS (24 ± 7%, 46 ± 4%, 65 ± 5%) and relapse probability (CIR 72 ± 7%, 45 ± 4%, 25 ± 5%), all P<0.001. WT1 levels in bone marrow assayed using the standardized ELN method provide relevant prognostic information in de novo AML.

Li Z, Herold T, He C, et al.
Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study.
J Clin Oncol. 2013; 31(9):1172-81 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To identify a robust prognostic gene expression signature as an independent predictor of survival of patients with acute myeloid leukemia (AML) and use it to improve established risk classification.
PATIENTS AND METHODS: Four independent sets totaling 499 patients with AML carrying various cytogenetic and molecular abnormalities were used as training sets. Two independent patient sets composed of 825 patients were used as validation sets. Notably, patients from different sets were treated with different protocols, and their gene expression profiles were derived using different microarray platforms. Cox regression and Kaplan-Meier methods were used for survival analyses.
RESULTS: A prognostic signature composed of 24 genes was derived from a meta-analysis of Cox regression values of each gene across the four training sets. In multivariable models, a higher sum value of the 24-gene signature was an independent predictor of shorter overall (OS) and event-free survival (EFS) in both training and validation sets (P < .01). Moreover, this signature could substantially improve the European LeukemiaNet (ELN) risk classification of AML, and patients in three new risk groups classified by the integrated risk classification showed significantly (P < .001) distinct OS and EFS.
CONCLUSION: Despite different treatment protocols applied to patients and use of different microarray platforms for expression profiling, a common prognostic gene signature was identified as an independent predictor of survival of patients with AML. The integrated risk classification incorporating this gene signature provides a better framework for risk stratification and outcome prediction than the ELN classification.

Jour G, West K, Ghali V, et al.
Differential expression of p16(INK4A) and cyclin D1 in benign and malignant salivary gland tumors: a study of 44 Cases.
Head Neck Pathol. 2013; 7(3):224-31 [PubMed] Free Access to Full Article Related Publications
Salivary gland tumors (SGT) are a heterogeneous group of lesions. There is conflicting data concerning the molecular events involving the tumour suppressor retinoblastoma protein (pRb) pathway in these tumors. Few studies examined the alterations in components of the Rb pathway by immunohistochemical (IHC) methods in benign and malignant SGTs. Furthermore, recent evidence implicates human papillomavirus (HPV) in mucoepidermoid carcinoma (MEC) carcinogenesis. The purpose of our study is to examine p16(INK4A) and cyclin D1 expression in a variety of benign and malignant salivary gland tumors, and to investigate p16(INK4A) expression as a surrogate marker for HPV infection in MEC. Our series includes 30 malignant tumors [14 MEC, 6 acinic cell carcinomas (ACC), 5 polymorphous low grade adenocarcinomas (PLGA), 5 (AdCC)] and 14 benign tumors (4 benign cysts, 5 Warthin tumors and 5 pleomorphic adenomas (PA). All cases were tested by IHC for p16(INK4A) and cyclin D1. Testing for HPV wide spectrum (HPV-WS) was performed by in situ hybridization in all MEC cases. Staining intensity was recorded semi quantitatively (on a scale from 0 to 4+). Fisher's exact test and Pearson X2 test with a p < 0.05 were used. Cyclin D1 and p16(INK4A) are expressed similarly in malignant and benign tumors (p = 0.146 and p = 0.543, respectively). None of the MEC cases showed nuclear reactivity for HPV-WS. Statistical analysis showed positive correlation between cyclin D1 and p16(INK4A) expression. Our findings suggest that p16(INK4A) overexpression is likely secondary to cyclin D1 gene upregulation or amplification. Further molecular studies are warranted.

Daniels-Wells TR, Helguera G, Rodríguez JA, et al.
Insights into the mechanism of cell death induced by saporin delivered into cancer cells by an antibody fusion protein targeting the transferrin receptor 1.
Toxicol In Vitro. 2013; 27(1):220-31 [PubMed] Free Access to Full Article Related Publications
We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.1Av is also a delivery system and its conjugation with biotinylated saporin (b-SO6), a plant ribosome-inactivating toxin, results in a dramatic iron-independent cytotoxicity, both in malignant cells that are sensitive or resistant to ch128.1Av alone, in which the toxin effectively inhibits protein synthesis and triggers caspase activation. We have now found that the ch128.1Av/b-SO6 complex induces a transcriptional response consistent with oxidative stress and DNA damage, a response that is not observed with ch128.1Av alone. Furthermore, we show that the antioxidant N-acetylcysteine partially blocks saporin-induced apoptosis suggesting that oxidative stress contributes to DNA damage and ultimately saporin-induced cell death. Interestingly, the toxin was detected in nuclear extracts by immunoblotting, suggesting the possibility that saporin might induce direct DNA damage. However, confocal microscopy did not show a clear and consistent pattern of intranuclear localization. Finally, using the long-term culture-initiating cell assay we found that ch128.1Av/b-SO6 is not toxic to normal human hematopoietic stem cells suggesting that this critical cell population would be preserved in therapeutic interventions using this immunotoxin.

Polak J, Hajkova H, Haskovec C, et al.
Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia - a useful tool for early detection of minimal residual disease.
Neoplasma. 2013; 60(1):74-82 [PubMed] Related Publications
Overexpressed Wilms tumor gene 1 (WT1) has been found in a majority of patients with acute myeloid leukemia (AML). The aim of this study was to confirm the applicability of WT1 expression measurement as a marker of minimal residual disease (MRD). The expression of WT1 gene was measured by real-time polymerase chain reaction in peripheral blood (PB) according to European Leukemia Net (ELN) recommendations. The WT1 expression was related to the expression of a reference gene Abelson (ABL) and the results were calculated as a number of WT1 copies related to 104 copies of ABL gene. The upper normal limit of WT1 expression was set at 50 copies of WT1 to 104 copies of ABL. Morphological, flow cytometry and chimerism examinations were evaluated according to standard protocols.A total of 51 AML patients with overexpressed WT1 gene were analyzed. The median follow-up after transplantation was 14 (2-72) months. WT1 expression levels exceeding the upper normal limit were considered as a sign of impending hematological relapse, in accord with morphological, flow cytometry and chimerism data, as well as with the expression of the specific fusion genes. Moreover, in 7 patients the rise of WT1 expression preceded all other standard methods. Patients with high WT1 expression before allogeneic hematopoietic stem cell transplantation (allo-HSCT) had significantly worse outcome than patients with low WT1 level. Examination of WT1 expression in PB of patients with AML is a useful tool for MRD monitoring. Moreover, the WT1 gene expression before stem cell transplantation seems to be of prognostic significance.

Ben-Shachar S, Constantini S, Hallevi H, et al.
Increased rate of missense/in-frame mutations in individuals with NF1-related pulmonary stenosis: a novel genotype-phenotype correlation.
Eur J Hum Genet. 2013; 21(5):535-9 [PubMed] Free Access to Full Article Related Publications
Neurofibromatosis type 1 (NF1) and its related disorders (NF1-Noonan syndrome (NFNS) and Watson syndrome (WS)) are caused by heterozygous mutations in the NF1 gene. Pulmonary stenosis (PS) occurs more commonly in NF1 and its related disorders than in the general population. This study investigated whether PS is associated with specific types of NF1 gene mutations in NF1, NFNS and WS. The frequency of different NF1 mutation types in a cohort of published and unpublished cases with NF1/NFNS/WS and PS was examined. Compared with NF1 in general, NFNS patients had higher rates of PS (9/35=26% vs 25/2322=1.1%, P value<0.001). Stratification according to mutation type showed that the increased PS rate appears to be driven by the NFNS group with non-truncating mutations. Eight of twelve (66.7%) NFNS cases with non-truncating mutations had PS compared with a 1.1% PS frequency in NF1 in general (P<0.001); there was no increase in the frequency of PS in NFNS patients with truncating mutations. Eight out of eleven (73%) individuals with NF1 and PS, were found to have non-truncating mutations, a much higher frequency than the 19% reported in NF1 cohorts (P<0.015). Only three cases of WS have been published with intragenic mutations, two of three had non-truncating mutations. Therefore, PS in NF1 and its related disorders is clearly associated with non-truncating mutations in the NF1 gene providing a new genotype-phenotype correlation. The data indicate a specific role of non-truncating mutations on the NF1 cardiac phenotype.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ELN, Cancer Genetics Web: http://www.cancer-genetics.org/ELN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999