SLC2A1

Gene Summary

Gene:SLC2A1; solute carrier family 2 member 1
Aliases: CSE, PED, DYT9, GLUT, DYT17, DYT18, EIG12, GLUT1, HTLVR, GLUT-1, SDCHCN, GLUT1DS
Location:1p34.2
Summary:This gene encodes a major glucose transporter in the mammalian blood-brain barrier. The encoded protein is found primarily in the cell membrane and on the cell surface, where it can also function as a receptor for human T-cell leukemia virus (HTLV) I and II. Mutations in this gene have been found in a family with paroxysmal exertion-induced dyskinesia. [provided by RefSeq, Apr 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:solute carrier family 2, facilitated glucose transporter member 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Glucose Transporters and Cancer: Rapid tumour growth requires accelerated metabolism and increased glucose uptake. Transport of glucose across the plasma membrane of cells is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, frequently with overexpression of GLUT1(SLC2A1) and/or GLUT3 (SLC2A3).

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Experimental Approaches to GLUT1 Supression

Latest Publications

Nagarajan A, Dogra SK, Sun L, et al.
Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport.
Mol Cell. 2017; 67(4):685-701.e6 [PubMed] Free Access to Full Article Related Publications
Metabolic deregulation is a hallmark of human cancers, and the glycolytic and glutamine metabolism pathways were shown to be deregulated in pancreatic ductal adenocarcinoma (PDAC). To identify new metabolic regulators of PDAC tumor growth and metastasis, we systematically knocked down metabolic genes that were overexpressed in human PDAC tumor samples using short hairpin RNAs. We found that p53 transcriptionally represses paraoxonase 2 (PON2), which regulates GLUT1-mediated glucose transport via stomatin. The loss of PON2 initiates the cellular starvation response and activates AMP-activated protein kinase (AMPK). In turn, AMPK activates FOXO3A and its transcriptional target, PUMA, which induces anoikis to suppress PDAC tumor growth and metastasis. Pharmacological or genetic activation of AMPK, similar to PON2 inhibition, blocks PDAC tumor growth. Collectively, our results identify PON2 as a new modulator of glucose transport that regulates a pharmacologically tractable pathway necessary for PDAC tumor growth and metastasis.

Koch A, Lang SA, Wild PJ, et al.
Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells.
Oncotarget. 2015; 6(32):32748-60 [PubMed] Free Access to Full Article Related Publications
The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor.

Song K, Li M, Xu XJ, et al.
HIF-1α and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia.
Asian Pac J Cancer Prev. 2014; 15(4):1823-9 [PubMed] Related Publications
AIMS: Much evidence suggests that increased glucose metabolism in tumor cells might contribute to the development of acquired chemoresistance. However, the molecular mechanisms are not fully clear. Therefore, we investigated a possible correlation of mRNA expression of HIF-1α and GLUT1 with chemoresistance in acute myeloid leukemia (AML).
METHODS: Bone marrow samples were obtained from newly diagnosed and relapsed AML (M3 exclusion) cases. RNA interference with short hairpin RNA (shRNA) was used to stably silence GLUT1 or HIF-1α gene expression in an AML cell line and HIF-1α and GLUT1 mRNA expression was measured by real-time quantitative polymerase chain reaction assay (qPCR).
RESULTS: High levels of HIF-1α and GLUT1 were associated with poor responsiveness to chemotherapy in AML. Down-regulation of the expression of GLUT1 by RNA interference obviously sensitized drug-resistant HL-60/ADR cells to adriamycin (ADR) in vitro, comparable with RNA interference for the HIF-1α gene.
CONCLUSIONS: Our data revealed that over-expression of HIF-1α and GLUT1 might play a role in the chemoresistance of AML. GLUT1 might be a potential target to reverse such drug resistance.

Li S, Yang X, Wang P, Ran X
The effects of GLUT1 on the survival of head and neck squamous cell carcinoma.
Cell Physiol Biochem. 2013; 32(3):624-34 [PubMed] Related Publications
BACKGROUND/AIMS: Cancer cells require increased nutrient uptake to support a high rate of proliferation, and the overexpression of glucose transporters, in particular GLUT1, is a common characteristic of human malignancies. Here, we investigated the relationship between the expression of GLUT1 and cell viability, colony forming ability and apoptosis of head and neck squamous cell carcinoma (HNSCC) in vitro and in a xenograft mouse model in vivo.
METHODS: Lentiviral mediated overexpression and knock-down of GLUT1 was performed in two oral cancer cell lines (CAL27 and SCC25). QRT-PCR and Western blot analysis were used to detect the mRNA and protein expression of GLUT1 and nuclear factor-kappa B (NFκB) p65 subunit. Cell viability and apoptosis were assessed by MTT and flow cytometry analyses, respectively. Colony formation assays were performed by staining with 0.5% crystal violet. The role of GLUT1 in HNSCC was examined in vivo through the generation of a CAL27 (or CAL27 with different transfections) nude mice xenograft model of HNSCC.
RESULTS: GLUT1 overexpression promoted cell viability and colony formation whereas GLUT1 silencing had the opposite effect. GLUT1 knock-down significantly increased the number of Annexin V positive cells in both cell lines and GLUT1 overexpression had the opposite effect, indicating that GLUT1 modulates apoptosis. Xenograft mouse models of GLUT1 knockdown and overexpression showed that GLUT1 expression was associated with poor survival and increased tumor growth. GLUT1 overexpression significantly upregulated the expression of NFκB-p65, and this effect was reversed by inhibition of GLUT1 expression.
CONCLUSIONS: GLUT1 expression plays an important role in the survival of HNSCC, and its effects may be associated with the activation of the NFκB pathway.

Wang YD, Li SJ, Liao JX
Inhibition of glucose transporter 1 (GLUT1) chemosensitized head and neck cancer cells to cisplatin.
Technol Cancer Res Treat. 2013; 12(6):525-35 [PubMed] Related Publications
Glucose transporter 1 (GLUT1) facilitates the cellular uptake of glucose and is overexpressed in most cancers. The altered expression of GLUT1 may influence the sensitivity of tumor cells to chemotherapy. This study investigated whether the knockdown of GLUT1 expression to sensitize head and neck cancer cells to the chemotherapy drug cisplatin in vitro. Anti-GLUT1 antibody was used to block activity of GLUT1 protein, and GLUT1-shRNA was used to knock down its mRNA expression in Cal27 cells. Immunocytochemistry, Western blot, and qRT-PCR were used to detect expression of GLUT1 mRNA and protein, respectively. Lentivirus was used to carrying GLUT1-shRNA to knockdown GLUT1 expression in Cal27 cells for MTT and flow cytometry analyses of cell viability and apoptosis, respectively. Glucose uptake assay was used to assess the changes in glucose levels in Cal27 cells. It showed that GLUT1 mRNA and protein were expressed in Cal27 cells, and GLUT1 protein was localized on the cell membrane. Both anti-GLUT1 antibody and GLUT1-shRNA sensitized Cal27 cells to cisplatin treatment under both normoxia and hypoxia conditions. Anti- GLUT1 antibody and GLUT1-shRNA inhibited tumor cell growth in vitro and induced them to undergo apoptosis. GLUT1-shRNA also suppressed tumor cell uptake of glucose into the cells. Our findings suggest that inhibition of GLUT1 activity and expression can sensitize Cal27 cells to cisplatin treatment in both normoxic and hypoxic conditions. These data could be further verified in animal xenografts before potential application as a clinical adjuvant or neoadjuvant therapy of head and neck cancer with cisplatin.

Shimanishi M, Ogi K, Sogabe Y, et al.
Silencing of GLUT-1 inhibits sensitization of oral cancer cells to cisplatin during hypoxia.
J Oral Pathol Med. 2013; 42(5):382-8 [PubMed] Related Publications
BACKGROUND: During tumor development, cells are exposed to a hypoxic microenvironment. Tumor hypoxia also has a profound influence on the sensitivity of cancer chemotherapy. The objective of this study was to investigate the mechanism of cisplatin (CDDP) resistance of oral squamous cell carcinoma (OSCC) cells under hypoxia by analyzing gene expression profiles to identify key genes and factors involved.
METHODS: Cell viability was measured following culture of the cells in the presence or absence of CDDP, under normoxic or hypoxic conditions, using a CCK-8 assay. Analysis of the expression of HIF target genes in hypoxia-treated cells was performed using an HIF-regulated cDNA plate array. Changes in the mRNA expression of selected HIF target genes were analyzed using RT-PCR, and changes in the protein levels of these genes were analyzed by Western blotting. Tumor cell apoptosis was assessed by flow cytometry.
RESULTS: The OSCC cell lines responded differently to CDDP under normoxic and hypoxic conditions. The expression of glucose transporter protein-1 (GLUT-1) was up-regulated in human squamous cell carcinoma of mouth (HSC-2) cells under hypoxia. Furthermore, there was little correlation between the cisplatin sensitivity of human squamous cell carcinoma of tongue (SAS) in normoxia and hypoxia. After GLUT-1 knockdown, CDDP treatment resulted in increased rates of apoptosis under hypoxia as compared with normoxia in cell lines HSC-2, Ca9-22, and SAS (P = 0.025).
CONCLUSION: The results of this study suggest that knockdown of GLUT-1 inhibits sensitization of oral squamous cells to CDDP during hypoxia in HSC-2, Ca9-22, and SAS cells.

Mogi A, Koga K, Aoki M, et al.
Expression and role of GLUT-1, MCT-1, and MCT-4 in malignant pleural mesothelioma.
Virchows Arch. 2013; 462(1):83-93 [PubMed] Related Publications
Malignant cells supply their energy needs through increased glucose consumption, producing large quantities of lactic acid via glycolysis. Glucose transporters (GLUTs) and monocarboxylate transporters (MCTs) are therefore commonly up-regulated in human malignancies to mediate glucose influx and lactic acid efflux, respectively. However, their roles in malignant pleural mesothelioma (MPM) have not been fully elucidated. Here, we evaluated GLUT-1, MCT-1, and MCT-4 expression in human MPM and reactive mesothelial hyperplasia (RMH) and elucidated their biological role in vitro. GLUT-1, MCT-1, and MCT-4 expression was determined in human MPM (n = 35) and RMH (n = 20) specimens by immunohistochemistry and in frozen tissue, and MPM cell lines, by real-time reverse transcription-polymerase chain reaction and western blot analysis. GLUT-1, MCT-1, and MCT-4 functions in MPM were evaluated by transfection with small interfering RNA. Immunohistochemical analysis revealed higher levels of GLUT-1, MCT-1, and MCT-4 in MPM than in RMH. Additionally, GLUT-1, MCT-1, and MCT-4 mRNA levels were higher in MPM than in non-neoplastic mesothelial cell lines. The siRNA-mediated knockdown of GLUT-1 or MCT-1 significantly suppressed tumor cell proliferation, and MCT-1 silencing inhibited invasion and induced apoptosis. Taken together, these results indicate that combined application of GLUT-1, MCT-1, and MCT-4 immunohistochemistry might be useful in differentiating MPM from RMH and suggest that MCT-1plays an important biological role.

Luo XM, Zhou SH, Fan J
Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma.
J Int Med Res. 2010; 38(6):1885-92 [PubMed] Related Publications
Treatment options for laryngeal carcinoma, one of the most common head and neck malignancies, consist of radiotherapy, surgery, chemotherapy or a combination thereof. The functional treatment of laryngeal carcinoma poses a considerable challenge because of its resistance to chemotherapy and radiotherapy, and its tendency for local recurrence. Finding ways to inhibit the energy supply of malignant tumours is becoming an increasingly attractive proposition. Glucose transporter-1 (Glut-1; encoded by the SLC2A1 gene in humans) is the main transporter of glucose in solid carcinomas and has become a focus of cancer research. Recently, it was shown that the increased expression of SLC2A1 in head and neck carcinomas is correlated with lymph node metastasis, poor survival and clinical stage, and revealed that the suppression of SLC2A1 expression by antisense oligodeoxynucleotides decreased glucose uptake and inhibited the proliferation of Hep-2 cells. Thus, the authors propose the suppression of SLC2A1 expression as a new therapeutic target for laryngeal carcinoma.

Noguchi Y, Saito A, Miyagi Y, et al.
Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth.
Cancer Lett. 2000; 154(2):175-82 [PubMed] Related Publications
We attempted to suppress glucose transporter 1 (GLUT1) expression by transfecting MKN45 cells with cDNA for antisense GLUT1. Glucose transport was significantly decreased in cells with antisense GLUT1 compared with wild-type cells or cells with vector alone. Suppression of GLUT1 mRNA resulted in a decreased number of cells in the S phase. This was accompanied by overexpression of p21 protein. Tumorigenicity in the nude mice injected with antisense GLUT1 expressing cells was significantly slower than in those with wild-type MKN45 cells. These results suggest that antisense GLUT1 mRNA inhibits tumor growth through a G(1) arrest and that expression of antisense GLUT1 mRNA via gene therapy can be used as a tool in the treatment of cancer.

Latest Publications: SLC2A1 (cancer-related)

Banerjee S, Karunagaran D
An integrated approach for mining precise RNA-based cervical cancer staging biomarkers.
Gene. 2019; 712:143961 [PubMed] Related Publications
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.

Wendling-Keim D, Vokuhl C, Walz C, et al.
Activation of Hedgehog Signaling in Aggressive Hepatic Hemangioma in Newborns and Infants.
Anticancer Res. 2019; 39(5):2351-2360 [PubMed] Related Publications
BACKGROUND/AIM: Hepatic hemangiomas (HH) can show an aggressive course with significant complications. Prognostic markers that identify an aggressive course are entirely absent. Since we have showed that Hedgehog signaling is overexpressed in aggressive hemangiomas of the skin. Here, we hypothesize that it is also altered in aggressive HH.
MATERIALS AND METHODS: Immunohistological staining for GLUT1 and quantitative PCR was performed in seven specimens with aggressive HH. For comparison, we included specimens of kaposiform hemangioendothelioma (KHE), skin hemangioma and normal liver tissue.
RESULTS: Overexpression of the Hedgehog signaling components SHH and GLI2 and its target gene FOXA2 in HH were similar to those found in aggressive skin hemangioma and KHE, their expression being significantly higher than in mild skin hemangioma. High expression levels of SHH and FOXA2 positively correlated with HH, but not with normal liver tissue.
CONCLUSION: Hedgehog signaling is up-regulated in aggressive HH. This finding may lead to a biomarker allowing early intervention.

Chen HF, Wu LX, Li XF, et al.
Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism.
Cell Mol Biol (Noisy-le-grand). 2019; 65(4):48-52 [PubMed] Related Publications
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. Compound K, an active metabolite of ginsenosides, is reported to exhibit anti-cancer property in various types of human malignancies. The present study investigated the role of compound K on glucose metabolism in NSCLC cells and its underlying mechanism. Our study found that compound K dose-dependently inhibited the cell viability of NSCLC cells. Moreover, administration with compound K decreased glucose uptake and lactate secretion under normoxic and hypoxic conditions. Consistently, the expression of key enzymes (HK II, PDK1 and LDHA) involved in glucose metabolism were inhibited in compound K-treated tumor cells. In addition, compound K inhibited the expression of HIF-1α and its downstream gene GLUT1. On the contrary, overexpression of HIF-1α elevated metabolic reactions and partly attenuated the inhibitory role of compound K on NSCLC cell growth. These results demonstrate that compound K suppresses NSCLC cell growth via HIF-1α mediated metabolic alteration, contributing to novel anticancer therapy by targeting glucose metabolism.

Liao Y, Guo Z, Xia X, et al.
Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer.
J Exp Clin Cancer Res. 2019; 38(1):157 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (PCa) remains a challenge worldwide. Due to the development of castration-resistance, traditional first-line androgen deprivation therapy (ADT) became powerlessness. Epidermal growth factor receptor (EGFR) is a well characterized therapeutic target to treat colorectal carcinoma and non-small cell lung cancer. Increasing studies have unraveled the significance of EGFR and its downstream signaling in the progression of castration-resistant PCa.
METHOD: MTS, colony formation and Edu staining assays were used to analyze the cell proliferation of PCa cells. Flow cytometry was used to analyze PCa cell cycle distribution and cell apoptosis. Western blot was used to measure the expression of key proteins associated with cell cycle progression, apoptosis and EGFR signaling pathways. Transfection of exogenous small interfering RNA (siRNA) or plasmid was used to intervene specific gene expression. Nude mouse model was employed to test the in vivo effect of Spautin-1.
RESULTS: The current study reveals that Spautin-1, a known inhibitor of ubiquitin-specific peptidase 10 (USP10) and USP13, inhibits EGFR phosphorylation and the activation of its downstream signaling. Inhibition of EGFR signaling induced by Spautin-1 leads to cell cycle arrest and apoptosis of PCa in a USP10/USP13 independent manner. The application of Spautin-1 reduces the expression of glucose transporter 1 (Glut1) and dramatically induces cell death under glucose deprivation condition. In vivo experiments show a potent anti-tumor effect of Spautin-1 alone and in combination with Enzalutamide.
CONCLUSION: This study demonstrates the therapeutic potential of EGFR signaling inhibition by the use of Spautin-1 for PCa treatment.

Zhou HG, Zhang JD, Zhang YF
[The effect of downregulation of MCT1 on the proliferation of glioma cells].
Zhonghua Zhong Liu Za Zhi. 2019; 41(3):208-213 [PubMed] Related Publications

Chen J, Cao L, Li Z, Li Y
SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake.
Hum Cell. 2019; 32(2):193-201 [PubMed] Related Publications
Bladder cancer (BC) is one of the most common tumors. Metabolic reprogramming is a feature of neoplasia and tumor growth. Understanding the metabolic alterations in bladder cancer may provide new directions for bladder cancer treatment. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators. In pancreatic cancer, the loss of SIRT1 is accompanied by a decreased expression of proteins in the glycolysis pathway, such as GLUT1, and cancer cell proliferation. Thus, we hypothesize that SIRT1 may interact with GLUT1 to modulate the proliferation and glycolysis phenotype in bladder cancer. In the present study, the expression of SIRT1 and GLUT1 was upregulated in BC tissues and cell lines and positively correlated in tissue samples. SIRT1 overexpression or GLUT1 overexpression alone was sufficient to promote cell proliferation and glucose uptake in BC cells. EX527, a specific inhibitor of SIRT1, exerted an opposing effect on bladder cancer proliferation and glucose uptake. The effect of EX527 could be partially reversed by GLUT1 overexpression. More importantly, SIRT1 overexpression significantly promoted the transcriptional activity and expression of GLUT1, indicating that SIRT1 increases the transcription activity and expression of GLUT1, therefore, promoting the cell proliferation and glycolysis in BC cells. Our study first reported that SIRT1/GLUT1 axis promotes bladder cancer progression via regulation of glucose uptake.

Sawayama H, Ogata Y, Ishimoto T, et al.
Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer.
Cancer Sci. 2019; 110(5):1705-1714 [PubMed] Free Access to Full Article Related Publications
Glucose transporter 1 (GLUT1) expression is a prognostic marker for esophageal squamous cell carcinoma (ESCC). Recent work on GLUT1 and development of specific inhibitors supports the feasibility of GLUT1 inhibition as a treatment for various cancers. The anti-proliferative effects of GLUT1-specific small interfering RNA (siRNA) and a GLUT1 inhibitor were evaluated in ESCC cell lines. Expression of pro-proliferative and anti-proliferative signaling and effector molecules was examined by western blotting and quantitative RT-PCR. GLUT1 expression in pretreatment clinical biopsy samples was measured by immunohistochemistry and correlated with various clinicopathological parameters and response to chemotherapy. The reduction in standardized uptake value (SUV) of

Labib PL, Goodchild G, Pereira SP
Molecular Pathogenesis of Cholangiocarcinoma.
BMC Cancer. 2019; 19(1):185 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cholangiocarcinomas are a heterogeneous group of malignancies arising from a number of cells of origin along the biliary tree. Although most cases in Western countries are sporadic, large population-based studies have identified a number of risk factors. This review summarises the evidence behind reported risk factors and current understanding of the molecular pathogenesis of cholangiocarcinoma, with a focus on inflammation and cholestasis as the driving forces in cholangiocarcinoma development.
RISK FACTORS FOR CHOLANGIOCARCINOGENESIS: Cholestatic liver diseases (e.g. primary sclerosing cholangitis and fibropolycystic liver diseases), liver cirrhosis, and biliary stone disease all increase the risk of cholangiocarcinoma. Certain bacterial, viral or parasitic infections such as hepatitis B and C and liver flukes also increase cholangiocarcinoma risk. Other risk factors include inflammatory disorders (such as inflammatory bowel disease and chronic pancreatitis), toxins (e.g. alcohol and tobacco), metabolic conditions (diabetes, obesity and non-alcoholic fatty liver disease) and a number of genetic disorders.
MOLECULAR PATHOGENESIS OF CHOLANGIOCARCINOMA: Regardless of aetiology, most risk factors cause chronic inflammation or cholestasis. Chronic inflammation leads to increased exposure of cholangiocytes to the inflammatory mediators interleukin-6, Tumour Necrosis Factor-ɑ, Cyclo-oxygenase-2 and Wnt, resulting in progressive mutations in tumour suppressor genes, proto-oncogenes and DNA mismatch-repair genes. Accumulating bile acids from cholestasis lead to reduced pH, increased apoptosis and activation of ERK1/2, Akt and NF-κB pathways that encourage cell proliferation, migration and survival. Other mediators upregulated in cholangiocarcinoma include Transforming Growth Factor-β, Vascular Endothelial Growth Factor, Hepatocyte Growth Factor and several microRNAs. Increased expression of the cell surface receptor c-Met, the glucose transporter GLUT-1 and the sodium iodide symporter lead to tumour growth, angiogenesis and cell migration. Stromal changes are also observed, resulting in alterations to the extracellular matrix composition and recruitment of fibroblasts and macrophages that create a microenvironment promoting cell survival, invasion and metastasis.
CONCLUSION: Regardless of aetiology, most risk factors for cholangiocarcinoma cause chronic inflammation and/or cholestasis, leading to the activation of common intracellular pathways that result in reactive cell proliferation, genetic/epigenetic mutations and cholangiocarcinogenesis. An understanding of the molecular pathogenesis of cholangiocarcinoma is vital when developing new diagnostic biomarkers and targeted therapies for this disease.

Zhao J, Zhang Z, Nie D, et al.
PET Imaging of Hepatocellular Carcinomas:
Mol Imaging. 2019 Jan-Dec; 18:1536012118821032 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To evaluate the preclinical value of
METHODS: The
RESULTS: In vitro experiments showed that the radiotracer uptake patterns were complementary in the HCC cell lines. Orlistat and 5-tetradecyloxy-2-furoic acid decreased the uptake of
CONCLUSIONS: PET imaging with

Sun K, Tang S, Hou Y, et al.
Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
EBioMedicine. 2019; 41:370-383 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-associated fibroblasts (CAFs) are the predominant residents in the breast tumor microenvironment. In our work, we found activation of DNA damage-independent ATM (oxidized ATM), enhanced glycolysis and aberrant metabolism-associated gene expressions in breast CAFs. Nevertheless, whether and how oxidized ATM regulates the glycolytic activity of CAFs keep in unveil. Recently, a reverse Warburg effect was observed in tumor tissues, in which host cells (such as CAFs, PSCs) in the tumor microenvironment have been found to "fuel" the cancer cells via metabolites transfer. However, the molecular mechanisms of the metabolites from stromal cells playing a role to the progression of cancer cells remain to be determined.
METHODS: Oxidized ATM activation in stromal CAFs was assessed by western blotting and immunofluorescence. The increased glycolytic ability of CAFs was validated by measurements of OCR and ECAR and detections of glucose consumption and lactate production. Kinase assay and western blotting were performed to confirm the phosphorylation of GLUT1. The membrane location of phosphorylated GLUT1 was determined by biotin pull-down assay and immunofluorescence staining. The regulation of PKM2 through oxidized ATM was evaluated by western blots. In addition, the impact of lactate derived from hypoxic CAFs on cancer cell invasion was investigated both in vitro (transwell assays, western blots) and in vivo (orthotopic xenografts).
FINDINGS: Hypoxia-induced oxidized ATM promotes glycolytic activity of CAFs by phosphorylating GLUT1 at S490 and increasing PKM2 expression. Moreover, lactate derived from hypoxic CAFs, acting as a metabolic coupling between CAFs and breast cancer cells, promotes breast cancer cell invasion by activating the TGFβ1/p38 MAPK/MMP2/9 signaling axis and fueling the mitochondrial activity in cancer cells.
INTERPRETATION: Our work shows that oxidized ATM-mediated glycolysis enhancement in hypoxic stromal fibroblasts plays an essential role in cancer cell invasion and metastasis and may implicate oxidized ATM as a target for breast tumor treatment. FUND: This research was supported by National Natural Science Foundation of China.

Li H, Fu L, Liu B, et al.
Ajuba overexpression regulates mitochondrial potential and glucose uptake through YAP/Bcl-xL/GLUT1 in human gastric cancer.
Gene. 2019; 693:16-24 [PubMed] Related Publications
Ajuba dysregulation has been reported in several human cancers. However, its expression patterns and biological roles in human gastric cancers have not yet been characterized. In the current study, we found that Ajuba protein was increased in gastric cancer tissues and in cell lines. High Ajuba expression positively correlated with the tumor-node-metastasis (TNM) stage, lymph node metastasis and poor prognosis. The Cancer Genome Atlas (TCGA) and Oncomine microarray data mining also suggested that Ajuba mRNA upregulation in gastric cancer tissues. We used SGC-7901 and NCI-N87 cell lines for Ajuba overexpression and siRNA knockdown respectively. MTT and colony formation assays indicated that Ajuba overexpression increased proliferation rate and colony formation ability while Ajuba siRNA inhibited proliferation rate and colony formation ability. AnnexinV and JC1 staining showed that Ajuba downregulated cisplatin induced apoptosis while it upregulated mitochondrial membrane potential. Ajuba overexpression also inhibited caspase-3 and PARP cleavage, while Ajuba depletion showed the opposite effects. Notably, Ajuba enhanced glucose metabolism by upregulating glucose uptake, glucose consumption, lactate production and ATP production. We further revealed that Ajuba positively regulated cyclin D1, Bcl-xL and GLUT1 at both mRNA and protein levels. Analysis of TCGA dataset revealed that there were positive correlations between Ajuba and cyclin D1, Bcl-xL, GLUT1 at the mRNA levels. Further investigation demonstrated that Ajuba overexpression inhibited Hippo signaling by upregulating YAP protein expression. Depletion of YAP by siRNA abolished the effect of Ajuba on cyclin D1, Bcl-xL and GLUT1. Together, our study showed that Ajuba was overexpressed in human gastric cancers, where it increased cell growth and chemoresistance. Our data also identified novel roles of Ajuba in gastric cancer progression involving regulating glucose uptake and mitochondrial function through the YAP-GLUT1/Bcl-xL axis, making it a potential therapeutic target.

Wang L, Liu Y, Zhao TL, et al.
Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer.
Phytomedicine. 2019; 57:117-128 [PubMed] Related Publications
BACKGROUND: Topotecan (TPT) is a Topo I inhibitor and shows obvious anti-cancer effects on gastric cancer. Cancer cells reprogram their metabolic pathways to increase nutrients uptake, which has already been a hallmark of cancer. But the effect of TPT on metabolism in gastric cancer remains unknown.
PURPOSE: To investigate the effect of TPT on metabolism in gastric cancer.
METHODS: ATP production was measured by ATP Assay kit. Glucose and glutamine uptake were measured by Glucose (HK) Assay Kit and Glutamine/Glutamate Determination Kit respectively. To detect glutathione (GSH) concentration and reactive oxygen species (ROS) generation, GSH and GSSG Assay Kit and ROS Assay Kit were adopted. Apoptosis rates, mitochondrial membrane potential (MMP) were determined by flow cytometry and protein levels were analyzed by immumohistochemical staining and western blotting.
RESULTS: TPT increased ATP production. TPT promoted glucose uptake possibly via up-regulation of hexokinase 2 (HK2) or glucose transporter 1 (GLUT1) expression, while decreased glutamine uptake by down-regulation of ASCT2 expression. ASCT2 inhibitor GPNA and ASCT2 knockdown significantly suppressed the growth of gastric cancer cells. Inhibition of ASCT2 reduced glutamine uptake which led to decreased production of GSH and increased ROS level. ASCT2 knockdown induced apoptosis via the mitochondrial pathway and weakened anti-cancer effect of TPT.
CONCLUSION: TPT inhibits glutamine uptake via down-regulation of ASCT2 which causes oxidative stress and induces apoptosis through the mitochondrial pathway. Moreover, TPT inhibits proliferation partially via ASCT2. These observations reveal a previously undescribed mechanism of ASCT2 regulated gastric cancer proliferation and demonstrate ASCT2 is a potential anti-cancer target of TPT.

Cheng Y, Wang K, Geng L, et al.
Identification of candidate diagnostic and prognostic biomarkers for pancreatic carcinoma.
EBioMedicine. 2019; 40:382-393 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pancreatic carcinoma (PC) is one of the most aggressive cancers affecting human health. It is essential to identify candidate biomarkers for the diagnosis and prognosis of PC. The present study aimed to investigate the diagnosis and prognosis biomarkers of PC.
METHODS: Differentially expressed genes (DEGs) were identified from the mRNA expression profiles of GSE62452, GSE28735 and GSE16515. Functional analysis and the protein-protein interaction network analysis was performed to explore the biological function of the identified DEGs. Diagnosis markers for PC were identified using ROC curve analysis. Prognosis markers were identified via survival analysis of TCGA data. The protein expression pattern of the identified genes was verified in clinical tissue samples. A retrospective clinical study was performed to evaluate the correlation between the expression of candidate proteins and survival time of patients. Moreover, comprehensive analysis of the combination of multiple genes/proteins for the prognosis prediction of PC was performed using both TCGA data and clinical data. In vitro studies were undertaken to elaborate the potential roles of these biomarkers in clonability and invasion of PC cells.
FINDINGS: In total, 389 DEGs were identified. These genes were mainly associated with pancreatic secretion, protein digestion and absorption, cytochrome P450 drug metabolism, and energy metabolism pathway. The top 10 genes were filtered out following Fisher's exact test. ROC curve analysis demonstrated that TMPRSS4, SERPINB5, SLC6A14, SCEL, and TNS4 could be used as biomarkers for the diagnosis of PC. Survival analysis of TCGA data and clinical data suggested that TMC7, TMPRSS4, SCEL, SLC2A1, CENPF, SERPINB5 and SLC6A14 can be potential biomarkers for the prognosis of PC. Comprehensive analysis show that a combination of identified genes/proteins can predict the prognosis of PC. Mechanistically, the identified genes attributes to clonability and invasiveness of PC cells.
INTERPRETATION: We synthesized several sets of public data and preliminarily clarified pathways and functions of PC. Candidate molecular markers were identified for diagnosis and prognosis prediction of PC including a novel gene, TMC7. Moreover, we found that the combination of TMC7, TMPRSS4, SCEL, SLC2A1, CENPF, SERPINB5 and SLC6A14 can serve as a promising indicator of the prognosis of PC patients. The candidate proteins may attribute to clonability and invasiveness of PC cells. This research provides a novel insight into molecular mechanisms as well as diagnostic and prognostic markers of PC. FUND: National Natural Science Foundation of China [No. 81602646 &81802339], Natural Science Foundation of Guangdong Province [No. 2016A030310254] and China Postdoctoral Science Foundation [No. 2016M600648].

Miikkulainen P, Högel H, Seyednasrollah F, et al.
Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high
J Biol Chem. 2019; 294(10):3760-3771 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Most clear cell renal cell carcinomas (ccRCCs) have inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL), resulting in the accumulation of hypoxia-inducible factor α-subunits (HIF-α) and their downstream targets. HIF-2α expression is particularly high in ccRCC and is associated with increased ccRCC growth and aggressiveness. In the canonical HIF signaling pathway, HIF-prolyl hydroxylase 3 (PHD3) suppresses HIF-2α protein by post-translational hydroxylation under sufficient oxygen availability. Here, using immunoblotting and immunofluorescence staining, qRT-PCR, and siRNA-mediated gene silencing, we show that unlike in the canonical pathway, PHD3 silencing in ccRCC cells leads to down-regulation of HIF-2α protein and mRNA. Depletion of other PHD family members had no effect on HIF-2α expression, and PHD3 knockdown in non-RCC cells resulted in the expected increase in HIF-2α protein expression. Accordingly, PHD3 knockdown decreased HIF-2α target gene expression in ccRCC cells and expression was restored upon forced HIF-2α expression. The effect of PHD3 depletion was pinpointed to

Wakui M, Kawai K, Mizushima T, et al.
Fatty Acid β-Oxidation-dependent and -independent Responses and Tumor Aggressiveness Acquired Under Mild Hypoxia.
Anticancer Res. 2019; 39(1):191-200 [PubMed] Related Publications
BACKGROUND/AIM: The present study assessed whether and how tumor cells undergoing hypoxia contribute to disease progression after moving to areas with different oxygen conditions.
MATERIALS AND METHODS: Human colorectal carcinoma HCT116 cells cultured under mild hypoxia were subjected to in vivo experiments using transfer to immunodeficient murine recipients and to in vitro experiments using pharmacological inhibition of fatty acid β-oxidation (FAO).
RESULTS: Bone involvement and hepatic metastases were accelerated in transfer models of hypoxically cultured HCT116 cells. Hypoxic HCT116 cells exhibited FAO-dependent glycogen synthesis. FAO-dependent and -independent induction of gene expression also occurred under hypoxia. The distribution of glucose transporter 1 expression compared with heme oxygenase 1 expression in HCT116 cell spheroids seemed consistent with differential dependence of hypoxic expression of these molecules on FAO.
CONCLUSION: These results provide insights into the contribution of hypoxia to tumor progression and the relevance of FAO.

Gasinska A, Jaszczynski J, Adamczyk A, et al.
Biomarkers of epithelial-mesenchymal transition in localized, surgically treated clear-cell renal cell carcinoma.
Folia Histochem Cytobiol. 2018; 56(4):195-206 [PubMed] Related Publications
INTRODUCTION: It has been suggested that the metastatic potential of neoplastic cells can be predicted on the basis of their biological features, including expression of proteins involved in the epithelial to mesenchymal transition (EMT). Therefore, the purpose of this work was to (1) evaluate the expression of EMT markers: ZEB2, vimentin, N-cadherin, TWIST, PTEN, survivin, E-cadherin, Ki-67 and GLUT-1, (2) assess mutation status of two genes: PIK3CA and KRAS, and (3) investigate the potential relationships between the studied biomarkers and clinicopathological factors in clear-cell renal cell carcinoma (ccRCC).
MATERIAL AND METHODS: Tumor tissue samples (embedded in paraffin blocks) from 159 patients undergoing radical nephrectomy were analyzed. Proteins expression was evaluated immunohistochemically. DNA mutations were analyzed on DNA isolated from tumor tissue and amplified by real-time PCR detection using suitable fluorescent labeled TaqMan assays.
RESULTS: One hundred and seven men and 52 women of mean age of 63.1years were enrolled. Fifty four cancers at pTNM stage I-II and 98 at pTNM III-IV stage were diagnosed. There were 30 Fuhrman grade G1, 61 Fuhrman G2, 49 Fuhrman G3 and 19 Fuhrman G4 tumors. A negative correlation between ZEB2 (p = 0.047, r = -0.172) or E-cadherin expression (p = 0.027, r = -0.191) and TNM was observed. Positive association between grade and Ki-67 (p < 0.001), survivin (p < 0.001), vimentin (p < 0.001) immunoreactivity and negative association between TWIST expression (p = 0.029) or PTEN expression (p = 0.013) were found. Ki-67 expression was positively correlated with survivin (p < 0.001, r = 0.617), vimentin (p = 0.001, r = 0.251) and N-cadherin (p = 0,009, r = 0.207) immunoreactivity which can suggest tumor aggressiveness. TWIST was negatively correlated with E-cadherin (p < 0.001, r = -0.284), vimentin (p < 0.001, r = -0.297) and N-cadherin (p < 0.002, r = -0.241). ZEB2 was not associated with ccRCC grade but was negatively correlated with E-cadherin (p = 0.055, r= -0.153) and PTEN (p = 0.006). GLUT-1 expression was inversely linked to E-cadherin expression (p = 0.022, r= -0.182). Mutations in PIK3CA and KRAS genes were not found in any of the studied ccRCC tumors.
CONCLUSIONS: Low-grade tumors showed higher expression of ZEB2 and TWIST proteins than high-grade tumors, which can suggest that EMT in ccRCC begins at early stages of tumor development and, therefore, evaluation of these proteins, together with other biomarkers, may be useful for assessment of the tumor metastatic potential.

Peng Y, Xing SN, Tang HY, et al.
Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro.
Gene. 2019; 689:11-17 [PubMed] Related Publications
Most cancer cells predominantly produce their energy through a high rate of glycolysis in the presence of abundant oxygen. Glycolysis has become a target of anticancer strategies. Previous researches showed that glucose transporter 1 (GLUT1) inhibitor is effective as anticancer agents. This study assessed the effects of the selective GLUT1 inhibitor WZB117 on regulation of neuroblastoma (NB) cell line SH-SY5Y viability, cell cycle and glycolysis in vitro. SH-SY5Y cells were grown and treated with WZB117 for up to 72 h and then subjected to cell viability, qRT-PCR, Western blot and flow cytometry analysis. Level of ATP and LDH was also analyzed. The result showed that WZB117 treatment reduced tumor cells viability, downregulated level of GLUT1 protein. Moreover, WZB117 treatment arrested tumor cells at the G0-G1 phase of the cell cycle, induced tumor cells to undergo necrosis instead of apoptosis. In addition, WZB117 treatment downregulated the levels of intracellular ATP, LDH and glycolytic enzymes. Thus, WZB117-induced GLUT1 inhibition suppressed tumor cell growth, induced cell cycle arrest and reduced glycolysis metabolites in NB cells in vitro. This study suggested that GLUT1 can be used as a potential therapeutic target for NB.

Zhang B, Xie Z, Li B
The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: A meta-analysis.
Gene. 2019; 689:76-83 [PubMed] Related Publications
BACKGROUND: Accumulating studies have reported that GLUT1 is aberrantly expressed in lung cancer; nevertheless, the clinicopathologic significance and the prognostic role of GLUT1 still remain controversial. The aim of this meta-analysis was to identify the clinicopathologic and prognostic implications of the GLUT1 expression in lung cancer patients.
MATERIALS AND METHODS: Databases with literature published in English, including Cochrane Library, Embase, Web of Science, and PubMed, and the China National Knowledge Infrastructure (CNKI) and WanFang database in Chinese were searched comprehensively for relevant studies in August 2017. The pooled odds ratio (OR) or hazard ratio (HR) with 95% confidence intervals (CIs) were calculated to evaluate the clinicopathologic significance and prognostic value of GLUT1 in lung cancer.
RESULTS: A total of 26 studies (2653 cases) were included in the current study. Totally, 1423 patients from nineteen studies were included to assess the relationships between GLUT1 and clinicopathological parameters, the pooled OR indicated that positive GLUT1 expression was significantly related with classification (adenocarcinomas vs. squamous carcinomas, OR = 0.276, 95% CIs: 0.117-0.651, P = 0.003), tumor differentiation (G3-4 vs. G2~1, OR = 1.944, 95% CIs: 1.384-2.730; P < 0.001), lymph node metastasis (positive vs. negative, OR = 3.65, 95% CIs: 1.82-7.32, P < 0.001),tumor size (large tumor size vs. small tumor size, OR = 2.03, 95% CI: 1.42-2.91, P < 0.001), and advanced tumor stages (OR = 2.527, 95% CIs: 1.325-4.820). Regarding the significance of GLUT1 in the overall survival (OS) of lung cancer, the pooled HRs with 1731 lung cancer patients was 1.41 (P = 0.002; 95% CIs: 1.13-1.76). Additionally, the overexpression of GLUT1 could significantly predict the shorter disease-free survival (HR = 1.68, 95% CIs: 1.01-2.79) and disease-specific survival (HR = 1.59, 95% CIs: 1.11-2.29).
CONCLUSIONS: A positive expression of GLUT1 significantly predicts a poor prognosis in lung cancer patients. GLUT1 may server as a helpful biomarker and a potential target for the treatment strategies of lung cancer.

Fan Y, Ou L, Fan J, et al.
HepaCAM Regulates Warburg Effect of Renal Cell Carcinoma via HIF-1α/NF-κB Signaling Pathway.
Urology. 2019; 127:61-67 [PubMed] Related Publications
OBJECTIVE: To investigate how hepatocyte cell adhesion molecule (hepaCAM) regulates cancer energy metabolism through hypoxia-inducible factor (HIF-1α) in renal cell carcinoma (RCC).
MATERIALS AND METHODS: The expression of hepaCAM and HIF-1α in RCC tissue samples was examined by immunohistochemistry. Glucose consumption and lactate production assays were used to detect metabolic activity in RCC cell lines. P65 and IκB kinase (IKKβ) mRNA and protein expression were detected using quantitative real-time polymerase chain reaction and western blotting, respectively. Nuclear translocation of P65 was observed by immunofluorescence staining after re-expressing hepaCAM. The luciferase reporter assay was applied to validate the transcriptional activity of HIF-1α.
RESULTS: HIF-1α expression was elevated and hepaCAM suppressed in RCC compared with adjacent normal tissues. Furthermore, hepaCAM re-expression significantly decreased glycolytic metabolism in RCC cell lines, and reduced HIF-1α, IKKβ, and P65 expression. The expression of HIF-1α, GLUT1, LDHA, and PKM2 were further reduced with combined hepaCAM overexpression and treatment with the NF-κB inhibitor BAY11-7082, compared to hepaCAM overexpression alone. Additionally, hepaCAM decreased the transcriptional activity of HIF-1α and blocked P65 nuclear translocation by the NF-κB pathway.
CONCLUSION: Our data suggest that hepaCAM suppresses the Warburg effect via the HIF-1α/NF-κB pathway in RCC, which is a facilitating factor in hepaCAM-reduced tumorigenesis.

Zhou D, Jin J, Liu Q, et al.
PPARδ agonist enhances colitis-associated colorectal cancer.
Eur J Pharmacol. 2019; 842:248-254 [PubMed] Related Publications
As a nuclear receptor, peroxisome proliferator-activated receptor-δ (PPARδ) plays a critical role in regulating inflammation and cancer, while it is still unclear the mechanism of PPARδ agonist GW501516 on colitis-associated colorectal cancer. Here we found that GW501516 significantly enhanced colitis-associated colorectal cancer in AOM/DSS-induced mice. In addition, PPARδ agonist GW501516 enhanced pro-inflammatory gene expressions (COX-2, IL-6, IL-8 and MCP-1) in inflamed colon. Further analysis showed that GW501516 increased the expressions of Glut1 and SLC1A5 in colon cancer cells as well as AOM/DSS-induced colorectal tumors. These findings revealed a new mechanism of PPARδ agonist GW501516-mediated colitis-associated colorectal cancer.

de Castro TB, Mota AL, Bordin-Junior NA, et al.
Immunohistochemical Expression of Melatonin Receptor MT1 and Glucose Transporter GLUT1 in Human Breast Cancer.
Anticancer Agents Med Chem. 2018; 18(15):2110-2116 [PubMed] Related Publications
BACKGROUND: Breast cancer is a heterogeneous disease and is the leading cause of cancer-related deaths among women. Even after diagnosis, the prognosis cannot be concluded since patients can develop resistance to therapy, which favors tumor growth, invasion and metastasis. In recent years, research has focused on identifying significant markers that can be used to determine the prognosis. Melatonin can act through G protein- coupled MT1 receptor, which controls selected protein kinases, influences the levels of transcription factor phosphorylation, specific genes expression, proliferation, angiogenesis, cell differentiation, migration, and indirectly controls the transport of glucose in cancer cells. It is known that glucose enters the cells by glucose transporters, such as GLUT1 which shows wide tissue distribution and appears to be altered in human breast carcinoma. High GLUT1 expression is associated with increased malignant potential, invasiveness and poor prognosis in some cancers including breast cancer.
OBJECTIVE: The aim of this study was to evaluate the expression of MT1 receptor and GLUT1 in breast tumors and correlate with molecular subtypes and prognostic characteristics.
METHOD: Protein expression was performed by an immunohistochemical procedure with specific antibodies and positive and negative controls.
RESULTS: We found that MT1 high expression was associated with good prognosis subtype (Luminal A), while GLUT1 high expression was related to poor prognosis subtype (triple-negative). In addition, we found high expression of MT1 in ER+ and the inverse in GLUT1 expression. GLUT1 is also highly expressed in tumor ≥20mm.
CONCLUSION: These results indicate MT1 and GLUT1 as potential targets for breast cancer subtypes and prognosis.

Wei R, Mao L, Xu P, et al.
Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models.
Food Funct. 2018; 9(11):5682-5696 [PubMed] Related Publications
Numerous studies propose that epigallocatechin-3-gallate (EGCG), an abundant polyphenol in green tea, has anti-cancer properties. However, its mechanism of action in breast cancer remains unclear. This study investigated the capacity of EGCG to suppress breast cancer cell growth in vitro and in vivo, characterizing the underlying mechanisms, focusing on the effect of EGCG on glucose metabolism. EGCG reduced breast cancer 4T1 cell growth in a concentration- (10-320 μM) and time- (12-48 h) dependent manner. EGCG induced breast cancer apoptotic cell death at 24 h, as evidenced by annexin V/PI, caspase 3, caspase 8 and caspase 9 activation. Furthermore, EGCG affected the expression of 16 apoptosis-related genes, and promoted mitochondrial depolarization. EGCG induced autophagy concentration-dependently in 4T1 cells by modulating the levels of the autophagy-related proteins Beclin1, ATG5 and LC3B. Moreover, EGCG affected glucose, lactate and ATP levels. Mechanistically, EGCG significantly inhibited the activities and mRNA levels of the glycolytic enzymes hexokinase (HK), phosphofructokinase (PFK), and lactic dehydrogenase (LDH), and to a lesser extent the activity of pyruvate kinase (PK). In addition, EGCG decreased the expression of hypoxia-inducible factor 1α (HIF1α) and glucose transporter 1 (GLUT1), critical players in regulating glycolysis. In vivo, EGCG reduced breast tumor weight in a dose-dependent manner, reduced glucose and lactic acid levels and reduced the expression of the vascular endothelial growth factor (VEGF). In conclusion, EGCG exerts an anti-tumor effect through the inhibition of key enzymes that participate in the glycolytic pathway and the suppression of glucose metabolism.

Cheng Y, Lu Y, Zhang D, et al.
Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming.
Int J Oncol. 2018; 53(6):2590-2604 [PubMed] Related Publications
Metastasis accounts for the majority of cancer-related mortalities, and the complex processes of metastasis remain the least understood aspect of cancer biology. Metabolic reprogramming is associated with cancer cell survival and metastasis in a hostile envi-ronment with a limited nutrient supply, such as solid tumors. Little is known regarding the differences of bioenergetic adaptation between primary tumor cells and metastatic tumor cells in unfavorable microenvironments; to clarify these differences, the present study aimed to compare metabolic reprogramming of primary tumor cells and metastatic tumor cells. SW620 metastatic tumor cells exhibited stronger bioenergetic adaptation in unfavorable conditions compared with SW480 primary tumor-derived cells, as determined by the sustained elevation of glycolysis and regulation of the cell cycle. This remarkable glycolytic ability of SW620 cells was associated with high expression levels of hexokinase (HK)1, HK2, glucose transporter type 1 and hypoxia-inducible factor 1α. Compared with SW480 cells, the expression of cell cycle regulatory proteins was effectively inhibited in SW620 cells to sustain cell survival when there was a lack of energy. Furthermore, SW620 cells exhibited a stronger mesenchymal phenotype and stem cell characteristics compared with SW480 cells; CD133 and CD166 were highly expressed in SW620 cells, whereas expression was not detected in SW480 cells. These data may explain why metastatic cancer cells exhibit greater microenvironmental adaptability and survivability; specifically, this may be achieved by upregulating glycolysis, optimizing the cell cycle and reprogramming cell metabolism. The present study may provide a target metabolic pathway for cancer metastasis therapy.

Rogalska A, Forma E, Bryś M, et al.
Hyperglycemia-Associated Dysregulation of O-GlcNAcylation and HIF1A Reduces Anticancer Action of Metformin in Ovarian Cancer Cells (SKOV-3).
Int J Mol Sci. 2018; 19(9) [PubMed] Article available free on PMC after 08/03/2020 Related Publications
Although cancer cells need more glucose than normal cells to maintain energy demand, chronic hyperglycemia induces metabolic alteration that may dysregulate signaling pathways, including the O-GlcNAcylation and HIF1A (Hypoxia-inducible factor 1-alpha) pathways. Metformin was demonstrated to evoke metabolic stress and induce cancer cell death. The aim of this study was to determine the cytotoxic efficiency of metformin on SKOV-3 cells cultured in hyperglycemia and normoglycemia. To identify the potential mechanism, we assessed the expression of O-linked β-

Kurihara J, Yokoo S, Ichikawa M, et al.
Intraosseous intraneural perineurioma derived from the inferior alveolar nerve with an abnormality of chromosome 22 and expression of the BCR-ABL fusion gene: report of a case and review of recent literature.
World J Surg Oncol. 2018; 16(1):189 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
BACKGROUND: Perineurioma (PN) is a peripheral nerve disease that primarily develops in the limbs and trunk and very rarely occurs in the oral cavity. PN is classified into two types: intraneural perineurioma (INPN) and soft tissue perineurioma (extraneural perineurioma, ENPN). In this article, we report a patient with mandibular body INPN derived from the perineurium of the inferior alveolar nerve.
CASE PRESENTATION: The patient was a 43-year-old male. He consulted our department for a detailed examination of the right mandibular body. A biopsy was performed at another hospital and he was diagnosed with a schwannoma. At his first visit, hypesthesia extending from the right lower lip to the mental region was recognized and enlargement of the right mandibular canal was confirmed with X-ray CT and MRI. Considering the possibility of future tumor growth, we extirpated the tumor under general anesthesia. Cystic tumor was seen continuously in the inferior alveolar nerve. Immunohistologically, the tumor cells were positive for Glut-1, weakly positive for EMA, and weakly positive for Claudin-1, and the histopathological diagnosis was INPN. In addition, absence of the BCR region of chromosome 22 and expression of the BCR-ABL fusion gene were observed by fluorescent in situ hybridization (FISH), and a chromosome 22 abnormality was confirmed. These findings indicated that the disease was a neoplastic lesion.
CONCLUSION: Expression of the BCR-ABL fusion gene in INPN that develops in the oral cavity is thought to be very rare, and to the best of our knowledge, ours is the first case to be reported in the literature. About three postoperative years have passed, but findings suggestive of recurrence have not been observed.

Fan P, Wang B, Meng Z, et al.
PES1 is transcriptionally regulated by BRD4 and promotes cell proliferation and glycolysis in hepatocellular carcinoma.
Int J Biochem Cell Biol. 2018; 104:1-8 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the mechanism underlying the tumorigenesis of HCC is still unclear. Improper recruitment of Pescadillo homologue 1 (PES1) can lead to tumorigenesis in multiple cancer types, such as gastric cancer and colon cancer. Here, we reported that PES1 was upregulated and associated with a poor prognosis in HCC specimens. Next, we found that PES1 promoted the growth of HCC in vivo and in vitro. Furthermore, we showed that the knockdown of PES1 decreased glycolysis via altering the gene expression of GLUT1, PKM2, ENO1, FBP1, and PCK1, which are related to glucose metabolism in HCC cells. Moreover, we demonstrated that PES1 is regulated by bromodomain-containing protein 4 (BRD4) and is partially responsible for modulating the antitumor effect of BET inhibitors in HCC. Taken together, our results suggest that PES1 plays an important role in promoting the proliferation of human liver cancer cells, suggesting that PES1 may be an ideal molecular target for HCC therapy.

Kim MC, Hwang SH, Kim NY, et al.
Hypoxia promotes acquisition of aggressive phenotypes in human malignant mesothelioma.
BMC Cancer. 2018; 18(1):819 [PubMed] Article available free on PMC after 08/03/2020 Related Publications
BACKGROUND: Hypoxia is a hallmark of the solid tumor microenvironment and is associated with poor outcomes in cancer patients. The present study was performed to investigate mechanisms underlying the hypoxia-induced phenotypic changes using human malignant mesothelioma (HMM) cells.
METHODS: Hypoxic conditions were achieved by incubating HMM cells in the air chamber. The effect of hypoxia on phenotype changes in HMM cells was investigated by performing in vitro clonogenicity, drug resistance, migration, and invasion assays. Signaling pathways and molecules involved in the more aggressive behaviors of HMM cells under hypoxia were investigated. A two-tailed unpaired Student's t-test or one-way ANOVA with Bonferroni post-test correction was used in this study.
RESULTS: Hypoxic conditions upregulated hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in parallel with the upregulation of its target, Glut-1, in HMM cells. In vitro clonogenicity of HMM cells was significantly increased in hypoxic conditions, but the proliferation of cells at a high density in hypoxia was lower than that in normoxic conditions. The expression levels of HIF-2α and Oct4 were increased in hypoxic HMM cells. The percentage of cells with high CD44 expression was significantly higher in HMM cells cultured in hypoxia than those cultured in normoxia. Hypoxia significantly enhanced the resistance of HMM cells to cisplatin, which occurred through cytoprotection against cisplatin-induced apoptosis. While cisplatin treatment decreased the ratio of Bcl-2 to Bax in normoxic condition, hypoxia conversely increased the ratio in HMM cells treated with cisplatin. Hypoxia increased the mobility and invasiveness of HMM cells. Epithelial to mesenchymal transition was promoted, which was indicated by the repression of E-cadherin and the concomitant increase of vimentin in HMM cells.
CONCLUSIONS: The data illustrated that hypoxic conditions augmented the aggressive phenotypes of HMM cells at the biological and molecular levels. The present study provides valuable background information beginning to understand aggressiveness of HMM in tumor microenvironments, suggesting that a control measure for tumor hypoxia may be an effective therapeutic strategy to reduce the aggressiveness of cancer cells in HMM patients.

Carreño D, Corro N, Torres-Estay V, et al.
Fructose and prostate cancer: toward an integrated view of cancer cell metabolism.
Prostate Cancer Prostatic Dis. 2019; 22(1):49-58 [PubMed] Related Publications
Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.

Taira N, Atsumi E, Nakachi S, et al.
Comparison of GLUT-1, SGLT-1, and SGLT-2 expression in false-negative and true-positive lymph nodes during the
Lung Cancer. 2018; 123:30-35 [PubMed] Related Publications
INTRODUCTION: Although positron emission tomography (PET) with 2-deoxy-2-[fluorine-18]fluoro-d-glucose integrated with computed tomography (CT), (
METHODS: We investigated patients with clinically-diagnosed N0/pathological N2 diseases and patients with clinically-diagnosed N2/pathological N2 disease. The patients who were included in this study were evaluated using
RESULTS: The total number of PET false negative metastatic mediastinal lymph nodes was 22 in the 17 patients who were clinical N0/pathological N2, and the number of PET true positives was 15 in the 11 patients who were clinical N2/pathological N2. GLUT-1 expression was positive in five false negative nodes and 10 true positive nodes. SGLT-2 expression was positive in 12 false negative nodes and one true positive node, whereas both false negative and true positive nodes showed no SGLT-1 staining. Univariate analysis showed that the reduced expression of GLUT-1 (P = 0.015), and overexpression of SGLT-2 (P = 0.004) were the significant causative factors for false negative nodes. Multivariate analysis also showed that the reduced expression of GLUT-1 (P = 0.012) and overexpression of SGLT-2 (P = 0.006) were the significant causative factors for false negative nodes.
CONCLUSION: It suggests that the reduced expression of GLUT-1 and overexpression of SGLT-2 are associated with false-negative lymph node metastases in NSCLC.

Do SK, Jeong JY, Lee SY, et al.
Glucose Transporter 1 Gene Variants Predict the Prognosis of Patients with Early-Stage Non-small Cell Lung Cancer.
Ann Surg Oncol. 2018; 25(11):3396-3403 [PubMed] Related Publications
BACKGROUND: This study was conducted to investigate whether polymorphisms of glucose transporter 1 (GLUT1) gene are associated with the prognosis of patients with non-small cell lung cancer (NSCLC) after surgical resection.
METHODS: Five single nucleotide polymorphisms (SNPs) in GLUT1 were investigated in a total of 354 patients with NSCLC who underwent curative surgery. The association of the SNPs with patients' survival was analyzed.
RESULTS: Among the five SNPs investigated, two SNPs (GLUT1 rs3820589T > A and rs4658G > C) were significantly associated with OS in multivariate analyses. GLUT1 rs3820589T > A was associated with significantly better OS (adjusted hazard ratio [aHR] = 0.57, 95% confidence interval [CI] = 0.34-0.94, P = 0.03, under dominant model), and rs4658G > C was associated with significantly worse OS (aHR = 1.91, 95% CI = 1.09-3.33, P = 0.02, under recessive model). In the stratified analysis by tumor histology, the effect of these SNPs on OS was only significant in squamous cell carcinoma but not in adenocarcinoma. When the two SNPs were combined, OS decreased as the number of bad genotypes increased (Ptrend = 4 × 10
CONCLUSIONS: This study suggests that genetic variation in GLUT1 may be useful in predicting survival of patients with early stage NSCLC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SLC2A1, Cancer Genetics Web: http://www.cancer-genetics.org/SLC2A1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999