WRN

Gene Summary

Gene:WRN; Werner syndrome RecQ like helicase
Aliases: RECQ3, RECQL2, RECQL3
Location:8p12
Summary:This gene encodes a member of the RecQ subfamily and the DEAH (Asp-Glu-Ala-His) subfamily of DNA and RNA helicases. DNA helicases are involved in many aspects of DNA metabolism, including transcription, replication, recombination, and repair. This protein contains a nuclear localization signal in the C-terminus and shows a predominant nucleolar localization. It possesses an intrinsic 3' to 5' DNA helicase activity, and is also a 3' to 5' exonuclease. Based on interactions between this protein and Ku70/80 heterodimer in DNA end processing, this protein may be involved in the repair of double strand DNA breaks. Defects in this gene are the cause of Werner syndrome, an autosomal recessive disorder characterized by premature aging. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:Werner syndrome ATP-dependent helicase
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (45)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Exodeoxyribonucleases
  • Cancer Gene Expression Regulation
  • Telomere
  • Aging, Premature
  • Bladder Cancer
  • Stomach Cancer
  • Genotype
  • CpG Islands
  • Colorectal Cancer
  • p53 Protein
  • Phenotype
  • DNA Methylation
  • Biological Models
  • Neoplastic Cell Transformation
  • DNA Helicases
  • Breast Cancer
  • Bloom Syndrome
  • DNA Repair
  • Werner Syndrome
  • Risk Factors
  • Gene Silencing
  • Self-Help Groups
  • Promoter Regions
  • RecQ Helicases
  • Chromosome 8
  • Cancer DNA
  • DNA Damage
  • Aging
  • DNA
  • Nuclear Proteins
  • Single Nucleotide Polymorphism
  • Adenosine Triphosphatases
  • DNA-Binding Proteins
  • Case-Control Studies
  • WRN
  • Mutation
  • DNA Replication
  • Microsatellite Instability
  • Genomic Instability
  • Genetic Recombination
  • Genetic Predisposition
  • Epigenetics
  • Adenocarcinoma
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: WRN (cancer-related)

Li Z, Guo X, Tang L, et al.
Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing.
Tumour Biol. 2016; 37(10):13111-13119 [PubMed] Related Publications
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

Hart SN, Ellingson MS, Schahl K, et al.
Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer.
BMJ Open. 2016; 6(4):e010332 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: To determine the frequency of pathogenic inherited mutations in 157 select genes from patients with metastatic castrate-resistant prostate cancer (mCRPC).
DESIGN: Observational.
SETTING: Multisite US-based cohort.
PARTICIPANTS: Seventy-one adult male patients with histological confirmation of prostate cancer, and had progressive disease while on androgen deprivation therapy.
RESULTS: Twelve patients (17.4%) showed evidence of carrying pathogenic or likely pathogenic germline variants in the ATM, ATR, BRCA2, FANCL, MSR1, MUTYH, RB1, TSHR and WRN genes. All but one patient opted in to receive clinically actionable results at the time of study initiation. We also found that pathogenic germline BRCA2 variants appear to be enriched in mCRPC compared to familial prostate cancers.
CONCLUSIONS: Pathogenic variants in cancer-susceptibility genes are frequently observed in patients with mCRPC. A substantial proportion of patients with mCRPC or their family members would derive clinical utility from mutation screening.
TRIAL REGISTRATION NUMBER: NCT01953640; Results.

Zins K, Frech B, Taubenschuss E, et al.
Association of the rs1346044 Polymorphism of the Werner Syndrome Gene RECQL2 with Increased Risk and Premature Onset of Breast Cancer.
Int J Mol Sci. 2015; 16(12):29643-53 [PubMed] Free Access to Full Article Related Publications
Like other RECQ helicases, WRN/RECQL2 plays a crucial role in DNA replication and the maintenance of genome stability. Inactivating mutations in RECQL2 lead to Werner syndrome, a rare autosomal disease associated with premature aging and an increased susceptibility to multiple cancer types. We analyzed the association of two coding single-nucleotide polymorphisms in WRN, Cys1367Arg (rs1346044), and Arg834Cys (rs3087425), with the risk, age at onset, and clinical subclasses of breast cancer in a hospital-based case-control study of an Austrian population of 272 breast cancer patients and 254 controls. Here we report that the rare homozygous CC genotype of rs1346044 was associated with an approximately two-fold elevated breast cancer risk. Moreover, patients with the CC genotype exhibited a significantly increased risk of developing breast cancer under the age of 55 in both recessive and log-additive genetic models. CC patients developed breast cancer at a mean age of 55.2 ± 13.3 years and TT patients at 60.2 ± 14.7 years. Consistently, the risk of breast cancer was increased in pre-menopausal patients in the recessive model. These findings suggest that the CC genotype of WRN rs1346044 may contribute to an increased risk and a premature onset of breast cancer.

Wu J, Zhi L, Dai X, et al.
Decreased RECQL5 correlated with disease progression of osteosarcoma.
Biochem Biophys Res Commun. 2015; 467(4):617-22 [PubMed] Related Publications
Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressed lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment.

Alsubhi N, Middleton F, Abdel-Fatah TM, et al.
Chk1 phosphorylated at serine345 is a predictor of early local recurrence and radio-resistance in breast cancer.
Mol Oncol. 2016; 10(2):213-23 [PubMed] Related Publications
Radiation-induced DNA damage activates the DNA damage response (DDR). DDR up-regulation may predict radio-resistance and increase the risk of early local recurrence despite radiotherapy in early stage breast cancers. In 1755 early stage breast cancers, DDR signalling [ATM, ATR, total Ckh1, Chk1 phosphorylated at serine(345) (pChk1), Chk2, p53], base excision repair [PARP1, POLβ, XRCC1, FEN1, SMUG1], non-homologous end joining (Ku70/Ku80, DNA-PKcs) and homologous recombination [RAD51, BRCA1, γH2AX, BLM, WRN, RECQL5, PTEN] protein expression was correlated to time to early local recurrence. Pre-clinically, radio-sensitization by inhibition of Chk1 activation by ATR inhibitor (VE-821) and inhibition of Chk1 (V158411) were investigated in MDA-MB-231 (p53 mutant) and MCF-7 (p53 wild-type) breast cancer cells. In the whole cohort, 208/1755 patients (11.9%) developed local recurrence of which 126 (61%) developed local recurrence within 5 years of initiation of primary therapy. Of the 20 markers tested, only pChk1 and p53 significantly associated with early local recurrence (p value = 0.015 and 0.010, respectively). When analysed together, high cytoplasmic pChk1-nuclear pChk1 (p = 0.039), high cytoplasmic pChk1-p53 (p = 0.004) and high nuclear pChk1-p53 (p = 0.029) co-expression remain significantly linked to early local recurrence. In multivariate analysis, cytoplasmic pChk1 level independently predicted early local recurrence (p = 0.025). In patients who received adjuvant local radiotherapy (n = 949), p53 (p = 0.014) and high cytoplasmic pChk1-p53 (p = 0.017) remain associated with early local recurrence. Pre-clinically, radio-sensitisation by VE-821 or V158411 was observed in both MCF-7 and MDA-MB-231 cells and was more pronounced in MCF-7 cells. We conclude that pChk1 is a predictive biomarker of radiotherapy resistance and early local recurrence.

Arora S, Yan H, Cho I, et al.
Genetic Variants That Predispose to DNA Double-Strand Breaks in Lymphocytes From a Subset of Patients With Familial Colorectal Carcinomas.
Gastroenterology. 2015; 149(7):1872-1883.e9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: DNA structural lesions are prevalent in sporadic colorectal cancer. Therefore, we proposed that gene variants that predispose to DNA double-strand breaks (DSBs) would be found in patients with familial colorectal carcinomas of an undefined genetic basis (UFCRC).
METHODS: We collected primary T cells from 25 patients with UFCRC and matched patients without colorectal cancer (controls) and assayed for DSBs. We performed exome sequence analyses of germline DNA from 20 patients with UFCRC and 5 undiagnosed patients with polyposis. The prevalence of identified variants in genes linked to DNA integrity was compared with that of individuals without a family history of cancer. The effects of representative variants found to be associated with UFCRC was confirmed in functional assays with HCT116 cells.
RESULTS: Primary T cells from most patients with UFCRC had increased levels of the DSB marker γ(phosphorylated)histone2AX (γH2AX) after treatment with DNA damaging agents, compared with T cells from controls (P < .001). Exome sequence analysis identified a mean 1.4 rare variants per patient that were predicted to disrupt functions of genes relevant to DSBs. Controls (from public databases) had a much lower frequency of variants in the same genes (P < .001). Knockdown of representative variant genes in HCT116 CRC cells increased γH2AX. A detailed analysis of immortalized patient-derived B cells that contained variants in the Werner syndrome, RecQ helicase-like gene (WRN, encoding T705I), and excision repair cross-complementation group 6 (ERCC6, encoding N180Y) showed reduced levels of these proteins and increased DSBs, compared with B cells from controls. This phenotype was rescued by exogenous expression of WRN or ERCC6. Direct analysis of the recombinant variant proteins confirmed defective enzymatic activities.
CONCLUSIONS: These results provide evidence that defects in suppression of DSBs underlie some cases of UFCRC; these can be identified by assays of circulating lymphocytes. We specifically associated UFCRC with variants in WRN and ERCC6 that reduce the capacity for repair of DNA DSBs. These observations could lead to a simple screening strategy for UFCRC, and provide insight into the pathogenic mechanisms of colorectal carcinogenesis.

Ellingson MS, Hart SN, Kalari KR, et al.
Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.
Breast Cancer Res Treat. 2015; 153(2):435-43 [PubMed] Free Access to Full Article Related Publications
When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

Yang L, Wang G, Zhao X, et al.
A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer.
PLoS One. 2015; 10(8):e0133020 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance.

Li Z, Guo X, Wu Y, et al.
Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients.
Breast Cancer Res Treat. 2015; 149(3):767-79 [PubMed] Related Publications
Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer.

Sokolenko AP, Preobrazhenskaya EV, Aleksakhina SN, et al.
Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients.
Cancer Lett. 2015; 359(2):259-61 [PubMed] Related Publications
Twenty one DNA repair genes were analyzed in a group of 95 BC patients, who displayed clinical features of hereditary disease predisposition but turned out to be negative for mutations in BRCA1 and BRCA2 entire coding region as well as for founder disease-predisposing alleles in CHEK2, NBN/NBS1 and ATM genes. Full-length sequencing of CHEK2 and NBN/NBS1 failed to identify non-founder mutations. The analysis of TP53 revealed a woman carrying the R282W allele; further testing of additional 108 BC patients characterized by a very young age at onset (35 years or earlier) detected one more carrier of the TP53 germ-line defect. In addition, this study confirmed non-random occurrence of PALB2 truncating mutations in Russian hereditary BC patients. None of the studied cases carried germ-line defects in recently discovered hereditary BC genes, BRIP1, FANCC, MRE11A and RAD51C. The analysis of genes with yet unproven BC-predisposing significance (BARD1, BRD7, CHEK1, DDB2, ERCC1, EXO1, FANCG, PARP1, PARP2, RAD51, RNF8, WRN) identified single women carrying a protein-truncating allele, WRN R1406X. DNA sequencing of another set of 95 hereditary BC cases failed to reveal additional WRN heterozygous genotypes. Since WRN is functionally similar to the known BC-predisposing gene, BLM, it deserves to be analyzed in future hereditary BC studies. Furthermore, this investigation revealed a number of rare missense germ-line variants, which are classified as probably protein-damaging by online in silico tools and therefore may require further consideration.

Wang B, Li G, Sun F, et al.
Association Between WRN Cys1367Arg (T>C) and Cancer Risk: A Meta-analysis.
Technol Cancer Res Treat. 2016; 15(1):20-7 [PubMed] Related Publications
Growing evidence suggests that aberration of the DNA repair pathway significantly contributes to tumorigenesis. Single-nucleotide polymorphisms in DNA repair-related genes such as WRN have been implicated in cancer risk. However, the results of published studies remain inconclusive. Therefore, we performed a meta-analysis of all available and relevant published studies to clarify the role of this polymorphism in cancer. We performed a computerized search of PubMed for publications on WRN Cys1367Arg (T>C) polymorphism and cancer risk and analyzed the genotype data. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, heterogeneity test, cumulative meta-analysis, and bias assessment were performed using STATA software 11.0. No association was found between WRN Cys1367Arg (T>C) polymorphism and cancer risk in all genetic models. When stratified by cancer type, results showed that this polymorphism increased the risk of breast cancer (2CC+CT vs 2TT+CT: perallele OR = 1.14, 95% CI = 1.03-1.26, P trend = .012; CC vs TT: OR = 1.43, 95% CI = 1.04-1.95, P value = .026; CC+CT vs TT: OR = 1.14, 95% CI = 1.02-1.28, P value = .027). In another analysis stratified by ethnicity, WRN Cys1367Arg (T>C) polymorphism was significantly associated with cancer susceptibility in Europeans (2CC+CT vs 2TT+CT: perallele OR = 1.09, 95% CI = 1.00-1.19, P trend = .042; CT vs TT: OR = 1.13, 95% CI = 1.01-1.27, P value = .032; and CC+CT vs TT: OR = 1.13, 95% CI = 1.02-1.26, P value = .025). Our study suggests that WRN Cys1367Arg (T>C) polymorphism is not associated with overall cancer risk, although subgroup analyses suggested an association with breast cancer and overall cancer specifically in European populations.

Matsushita Y, Yokoyama Y, Yoshida H, et al.
The level of RECQL1 expression is a prognostic factor for epithelial ovarian cancer.
J Ovarian Res. 2014; 7:107 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The human RECQ DNA helicase family is involved in genomic stability. Gene mutations of RECQL2, RECQL3, and RECQL4 are associated with genetic disorders and induce early aging and carcinogenesis. Although previous studies have reported that the level of RECQL1 expression is correlated with the prognosis of some of malignancies, the function of RECQL1 is not yet clarified. The present study aimed to examine the relationship between prognosis and the level of RECQL1 expression in epithelial ovarian cancer (EOC), and to identify the role of RECQL1 in EOC cells.
METHODS: The level of RECQL1 expression was determined immunohistochemically in 111 patients with EOC who received initial treatment at Hirosaki University hospital between 2006 and 2011. Effects of RECQL1 on cell growth or apoptosis were examined in vitro using wild-type and OVCAR-3 cells (RECQL1(+) cells) and similar cells transfected with RECQL1 siRNA transfected (RECQL1(-) cells).
RESULTS: The level of RECQL1 expression was not related to histological type, clinical stage, or retroperitoneal lymph node metastasis, but the expression level was significantly higher (P = 0.002) in patients with recurrence than those without recurrence, and progression-free survival and complete response rate to chemotherapy were also improved in patients with RECQL1-low expression (n = 39) stage III/IV EOC (P = 0.02 and P <0.05 vs RECQL1-high expression patients (n = ), respectively). A cell proliferation and colony formation assays revealed significantly less growth of RECQL1(-) cells compared to RECQL1(+) cells. A flow cytometry using annexin V -FITC and propidium iodide (PI) staining revealed a significant increase in apoptotic RECQL1(-) cells. Cell cycle analysis showed a significantly greater distribution in subG1 phase indicating apoptotic cells in RECQL1(-) cells than in RECQL1(+) cells.
CONCLUSIONS: These results suggest that RECQL1 is a prognostic factor for EOC and that RECQL1 contributes to potential malignancy by inhibiting apoptosis.

Shimamoto A, Kagawa H, Zensho K, et al.
Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.
PLoS One. 2014; 9(11):e112900 [PubMed] Free Access to Full Article Related Publications
Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs). In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

Sun K, Gong A, Liang P
Predictive impact of genetic polymorphisms in DNA repair genes on susceptibility and therapeutic outcomes to colorectal cancer patients.
Tumour Biol. 2015; 36(3):1549-59 [PubMed] Related Publications
Several hereditary syndromes characterized by defective DNA repair are associated with high risk of colorectal cancer (CRC). To explore whether common polymorphisms in DNA repair genes affect risk and prognosis of CRC, we evaluated the association between single nucleotide polymorphisms (SNPs) in XPG, XPC, and WRN gene and susceptibility of CRC, and clinical outcomes in a population-based case-control study. A total of 890 CRC cases and 910 controls recruited into the study provided a biologic sample. Individuals with variant genotypes of XPC Ala499Val appeared to be associated with the increased risk of CRC. WRN Cys1367Arg variants carriers showed an increased susceptibility for CRC. More importantly, the risk of CRC increased further in a combined analysis of multiple polymorphisms. Furthermore, stratified analyses revealed that XPG Arg1104His polymorphism was associated with tumor differentiation of CRC patients (P = 0.043). Log-rank test and adjusted multivariate Cox regression analysis verified that XPG Arg1104His variants were associated with a longer disease-free survival (DFS) [CG genotype: adjusted HR (95% confidence interval (CI)) = 0.163 (0.107-0.248), P < 0.001; CC genotype: adjusted HR (95% CI) = 0.333 (0.235-0.470), P < 0.001; CG/CC genotype: adjusted HR (95% CI) = 0.333 (0.235-0.470)] in patients with oxaliplatin-based chemotherapy (N = 718). Moreover, XPC Ala499Val CT genotype showed a significant impact on DFS [CC genotype: adjusted HR (95% CI) = 0.691 (0.528-0.904), P = 0.007; CT/CC genotype: adjusted HR (95% CI) = 0.602 (0.389-0.934), P = 0.024]. However, no correlation was found between WRN Cys1367Arg polymorphism and prognosis in CRC patients. Our findings will add to the literature on the impact of genetic variation in DNA repair genes involved in susceptibility for CRC and therapeutic outcomes in response to oxaliplatin-based chemotherapy.

Guo H, Bassig BA, Lan Q, et al.
Polymorphisms in DNA repair genes, hair dye use, and the risk of non-Hodgkin lymphoma.
Cancer Causes Control. 2014; 25(10):1261-70 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Genetic polymorphisms in DNA repair genes and hair dye use may both have a role in the development of non-Hodgkin lymphoma (NHL). We aimed to examine the interaction between variants in DNA repair genes and hair dye use with risk of NHL in a population-based case-control study of Connecticut women.
METHODS: We examined 24 single nucleotide polymorphisms in 16 DNA repair genes among 518 NHL cases and 597 controls and evaluated the associations between hair dye use and risk of overall NHL and common NHL subtypes, stratified by genotype, using unconditional logistic regression.
RESULTS: Women who used hair dye before 1980 had a significantly increased risk of NHL, particularly for the follicular lymphoma (FL) subtype, but not for diffuse large B-cell lymphoma. The following genotypes in combination with hair dye use before 1980 were associated with FL risk: BRCA2 rs144848 AC+CC [odds ratio (OR) (95% confidence interval (CI)) 3.28(1.27-8.50)], WRN rs1346044 TT [OR(95% CI) 2.70(1.30-5.65)], XRCC3 rs861539 CT+TT [OR(95% CI) 2.76(1.32-5.77)], XRCC4 rs1805377 GG [OR(95% CI) 2.07(1.10-3.90)] and rs1056503 TT [OR(95% CI) 2.17(1.16-4.07)], ERCC1 rs3212961 CC [OR(95% CI) 1.93(1.00-3.72)], RAD23B rs1805329 CC [OR(95% CI) 2.28(1.12-4.64)], and MGMT rs12917 CC, rs2308321 AA, and rs2308327 AA genotypes [OR(95% CI) 1.96(1.06-3.63), 2.02(1.09-3.75), and 2.23(1.16-4.29), respectively]. In addition, a significant interaction with risk of overall NHL was observed between WRN rs1346044 and hair dye use before 1980 (p(interaction) = 0.032).
CONCLUSIONS: Our results indicated that genetic variation in DNA repair genes modifies susceptibility to NHL in relation to hair dye use, particularly for the FL subtype and in women who began using hair dye before 1980. Further studies are needed to confirm these observations.

Lu L, Jin W, Liu H, Wang LL
RECQ DNA helicases and osteosarcoma.
Adv Exp Med Biol. 2014; 804:129-45 [PubMed] Related Publications
The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them-BLM, WRN, and RECQL4-are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The "tumor suppressor" role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.

Li B, Iglesias-Pedraz JM, Chen LY, et al.
Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells.
Aging Cell. 2014; 13(2):367-78 [PubMed] Free Access to Full Article Related Publications
The Werner syndrome protein (WRN) is a nuclear protein required for cell growth and proliferation. Loss-of-function mutations in the Werner syndrome gene are associated with the premature onset of age-related diseases. How loss of WRN limits cell proliferation and induces replicative senescence is poorly understood. Here, we show that WRN depletion leads to a striking metabolic shift that coordinately weakens the pathways that generate reducing equivalents for detoxification of reactive oxygen species and increases mitochondrial respiration. In cancer cells, this metabolic shift counteracts the Warburg effect, a defining characteristic of many malignant cells, resulting in altered redox balance and accumulation of oxidative DNA damage that inhibits cell proliferation and induces a senescence-like phenotype. Consistent with these findings, supplementation with antioxidant rescues at least in part cell proliferation and decreases senescence in WRN-knockdown cancer cells. These results demonstrate that WRN plays a critical role in cancer cell proliferation by contributing to the Warburg effect and preventing metabolic stress.

Kim HN, Kim NY, Yu L, et al.
Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma.
Int J Mol Sci. 2014; 15(4):6703-16 [PubMed] Free Access to Full Article Related Publications
The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

Wang L, Xie L, Wang J, et al.
Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer.
BMC Gastroenterol. 2013; 13:173 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: At present, no study has compared the correlation between SULF2, WRN promoter methylation and clinicopathological parameters of patients with gastric cancer and the sensitivity to irinotecan (CPT-11).
METHODS: We collected 102 fresh tumor tissues from pathologically diagnosed gastric carcinoma patients. Methylation specific PCR was used to detect the promoter methylation of SULF2 and WRN. The chemosensitivity of irinotecan to gastric tumor was tested by MTT. Then we compared the chemosensitivity difference of the methylated group with unmethylated group.
RESULTS: The rates of SULF2, WRN methylation were 28.3% (29/102) and 23.6% (24/102), separately. Patients with SULF2 methylation were more sensitive to CPT-11 than those without SULF2 methylation (P < 0.01). Patients with both SULF2 and WRN methylation were also more sensitive to CPT-11 than others (P < 0.05).
CONCLUSION: SULF2 and WRN promoter methylation detection indicates potential predictive biomarkers to identify and target the most sensitive gastric cancer subpopulation for personalized CPT-11 therapy.

Sugimoto M
A cascade leading to premature aging phenotypes including abnormal tumor profiles in Werner syndrome (review).
Int J Mol Med. 2014; 33(2):247-53 [PubMed] Related Publications
This perspective review focused on the Werner syndrome (WS) by addressing the issue of how a single mutation in a WRN gene encoding WRN DNA helicase induces a wide range of premature aging phenotypes accompanied by an abnormal pattern of tumors. The key event caused by WRN gene mutation is the dysfunction of telomeres. Studies on normal aging have identified a molecular circuit in which the dysfunction of telomeres caused by cellular aging activates the TP53 gene. The resultant p53 suppresses cell growth and induces a shorter cellular lifespan, and also compromises mitochondrial biogenesis leading to the overproduction of reactive oxygen species (ROS) causing multiple aging phenotypes. As an analogy of the mechanism in natural aging, we described a hypothetical mechanism of premature aging in WS: telomere dysfunction induced by WRN mutation causes multiple premature aging phenotypes of WS, including shortened cellular lifespan and inflammation induced by ROS, such as diabetes mellitus. This model also explains the relatively late onset of the disorder, at approximately age 20. Telomere dysfunction in WS is closely correlated with abnormality in tumorigenesis. Thus, the majority of wide and complex pathological phenotypes of WS may be explained in a unified manner by the cascade beginning with telomere dysfunction initiated by WRN gene mutation.

Lee H, Flaherty P, Ji HP
Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis.
BMC Med Genomics. 2013; 6:54 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis.
METHODS: We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities.
RESULTS: A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis.
CONCLUSIONS: We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression.

Grohar PJ, Segars LE, Yeung C, et al.
Dual targeting of EWS-FLI1 activity and the associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing sarcoma cell growth.
Clin Cancer Res. 2014; 20(5):1190-203 [PubMed] Related Publications
PURPOSE: The goal of this study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy.
EXPERIMENTAL DESIGN: We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppression that also targets the drug-associated DNA damage to Ewing sarcoma cells.
RESULTS: We demonstrate by siRNA experiments that EWS-FLI1 drives the expression of the Werner syndrome protein (WRN) in Ewing sarcoma cells. Because WRN-deficient cells are known to be hypersensitive to camptothecins, we utilize trabectedin to block EWS-FLI1 activity, suppress WRN expression, and selectively sensitize Ewing sarcoma cells to the DNA-damaging effects of SN38. We show that trabectedin and SN38 are synergistic, demonstrate an increase in DNA double-strand breaks, an accumulation of cells in S-phase and a low picomolar IC50. In addition, SN38 cooperates with trabectedin to augment the suppression of EWS-FLI1 downstream targets, leading to an improved therapeutic index in vivo. These effects translate into the marked regression of two Ewing sarcoma xenografts at a fraction of the dose of camptothecin used in other xenograft studies.
CONCLUSIONS: These results provide the basis and rationale for translating this drug combination to the clinic. In addition, the study highlights an approach that utilizes a targeted agent to interfere with an oncogenic transcription factor and then exploits the resulting changes in gene expression to develop a molecularly targeted combination therapy.

Chen Y, Zheng T, Lan Q, et al.
Polymorphisms in DNA repair pathway genes, body mass index, and risk of non-Hodgkin lymphoma.
Am J Hematol. 2013; 88(7):606-11 [PubMed] Free Access to Full Article Related Publications
We conducted a population-based case-control study in Connecticut women to test the hypothesis that genetic variations in DNA repair pathway genes may modify the relationship between body mass index (BMI) and risk of non-Hodgkin lymphoma (NHL). Compared to those with BMI <25, women with BMI ≥25 had significantly increased risk of NHL among women who carried BRCA1 (rs799917) CT/TT, ERCC2 (rs13181) AA, XRCC1 (rs1799782) CC, and WRN (rs1801195) GG genotypes, but no increase in NHL risk among women who carried BRCA1 CC, ERCC2 AC/CC, XRCC1 CT/TT, and WRN GT/TT genotypes. A significant interaction with BMI was only observed for WRN (rs1801195; P = 0.004) for T-cell lymphoma and ERCC2 (rs13181; P = 0.002) for diffuse large B-cell lymphoma. The results suggest that common genetic variation in DNA repair pathway genes may modify the association between BMI and NHL risk.

Gaymes TJ, Mohamedali AM, Patterson M, et al.
Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies.
Haematologica. 2013; 98(9):1397-406 [PubMed] Free Access to Full Article Related Publications
Inactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction. PARP inhibitor sensitivity was performed using cell survival, annexin V staining and cell cycle analysis. Homologous recombination was studied using immunocytochemical analysis. SNP karyotyping was used to study chromosomal instability. RNA silencing, Western blotting and gene expression analysis was used to study the functional consequences of mutations. Acute myeloid leukemia cell lines (4 of 12, 33%) and primary samples (2 of 18, 11%) exhibited microsatellite instability with mono-allelic mutations in CtIP and MRE11. These changes were associated with reduced expression of mismatch repair pathway components, MSH2, MSH6 and MLH1. Both microsatellite instability positive primary acute myeloid leukemia samples and cell lines demonstrated a downregulation of homologous recombination DNA repair conferring marked sensitivity to PARP inhibitors. Similarly, bone marrow mononuclear cells from 11 of 56 (20%) patients with de novo high-risk myelodysplastic syndrome exhibited microsatellite instability. Significantly, all 11 patients with microsatellite instability had cytogenetic abnormalities with 4 of them (36%) possessing a mono-allelic microsatellite mutation in CtIP. Furthermore, 50% reduction in CtIP expression by RNA silencing also down-regulated homologous recombination DNA repair responses conferring PARP inhibitor sensitivity, whilst CtIP differentially regulated the expression of homologous recombination modulating RecQ helicases, WRN and BLM. In conclusion, microsatellite instability dependent mutations in DNA repair genes, CtIP and MRE11 are detected in myeloid malignancies conferring hypersensitivity to PARP inhibitors. Microsatellite instability is significantly correlated with chromosomal instability in myeloid malignancies.

Suhasini AN, Brosh RM
DNA helicases associated with genetic instability, cancer, and aging.
Adv Exp Med Biol. 2013; 767:123-44 [PubMed] Free Access to Full Article Related Publications
DNA helicases have essential roles in the maintenance of genomic -stability. They have achieved even greater prominence with the discovery that mutations in human helicase genes are responsible for a variety of genetic disorders and are associated with tumorigenesis. A number of missense mutations in human helicase genes are linked to chromosomal instability diseases characterized by age-related disease or associated with cancer, providing incentive for the characterization of molecular defects underlying aberrant cellular phenotypes. In this chapter, we discuss some examples of clinically relevant missense mutations in various human DNA helicases, particularly those of the Iron-Sulfur cluster and RecQ families. Clinically relevant mutations in the XPD helicase can lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome. FANCJ mutations are associated with Fanconi anemia or breast cancer. Mutations of the Fe-S helicase ChlR1 (DDX11) are linked to Warsaw Breakage syndrome. Mutations in the RecQ helicases BLM and WRN are linked to the cancer-prone disorder Bloom's syndrome and premature aging condition Werner syndrome, respectively. RECQL4 mutations can lead to Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Mutations in the Twinkle mitochondrial helicase are responsible for several neuromuscular degenerative disorders. We will discuss some insights gained from biochemical and genetic studies of helicase variants, and highlight some hot areas of helicase research based on recent developments.

Takemoto M, Mori S, Kuzuya M, et al.
Diagnostic criteria for Werner syndrome based on Japanese nationwide epidemiological survey.
Geriatr Gerontol Int. 2013; 13(2):475-81 [PubMed] Related Publications
AIM: Werner syndrome (WS) is an autosomal recessive disorder of progeroid symptoms and signs. It is caused by mutations in the WRN gene, which encodes a RecQ DNA helicase. The aim of this study was to revise the diagnostic criteria for Japanese Werner syndrome.
METHODS: A nationwide epidemiological study was carried out from 2009 to 2011, involving 6921 surveys sent to hospitals with more than 200 beds to assess existing WS diagnostic criteria, as well as additional signs of high incidence on the basis of clinical experience with WS.
RESULTS: The existing diagnostic criteria were reviewed, and signs with >90% incidence were listed as cardinal signs. Several criteria were added, including genetic testing and calcification of the Achilles tendon, whereas criteria that are practically difficult to obtain, such as measurement of urinary hyaluronic acid, were omitted.
CONCLUSION: The 26-year-old diagnostic criteria for WS were revised on the basis of the results of a nationwide epidemiological study. The proposed revised criteria will facilitate simpler, faster and more robust diagnosis of WS in the Japanese population.

Masuda K, Banno K, Yanokura M, et al.
Association of epigenetic inactivation of the WRN gene with anticancer drug sensitivity in cervical cancer cells.
Oncol Rep. 2012; 28(4):1146-52 [PubMed] Free Access to Full Article Related Publications
The Werner (WRN) gene codes for a DNA helicase that contributes to genomic stability and has been identified as the gene responsible for progeria. Recent studies have shown reduced WRN expression due to aberrant DNA hypermethylation in cancer cells. Furthermore, WRN expression is thought to affect sensitivity to DNA topoisomerase I inhibitors in cancer therapy. In this study, we examined the relationship between aberrant DNA hypermethylation of WRN and the sensitivity of cervical cancer cells to anticancer drugs. DNA was extracted from samples from 22 patients with primary cervical cancer and 6 human cervical cancer-derived cell lines. Aberrant DNA hypermethylation was analyzed by methylation-specific PCR. WRN expression in cultured cells before and after addition of 5-aza-2-deoxycytidine, a demethylating agent, was examined using RT-PCR. The sensitivity of cells to anticancer drugs was determined using a collagen gel droplet embedded culture drug sensitivity test (CD-DST). siRNA against WRN was transfected into a cervical cancer-derived cell line with high WRN expression. Changes in drug sensitivity after silencing WRN were determined by CD-DST. Aberrant DNA hypermethylation and decreased expression of WRN were detected in 7/21 cases of primary cervical cancer and in two cervical cancer-derived cell lines. These two cell lines showed high sensitivity to CPT-11, a topoisomerase I inhibitor, but became resistant to CPT-11 after treatment with 5-aza-2-deoxycytidine. Transfection of siRNA against WRN increased the sensitivity of the cells to CPT-11. Aberrant DNA hypermethylation of WRN also increased the sensitivity of cervical cancer cells to CPT-11. Therefore, epigenetic inactivation of this gene may be a biomarker for selection of drugs for the treatment of cervical cancer. This is the first report to show a relationship between the methylation of the WRN gene and sensitivity to CPT-11 in gynecological cancers.

Nelson LD, Bender C, Mannsperger H, et al.
Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer.
Mol Cancer. 2012; 11:38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics.
METHODS: Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman's rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts.
RESULTS: Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p=0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts.
CONCLUSIONS: Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors.

Cheng WH, Wu RT, Wu M, et al.
Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death.
Biochem Biophys Res Commun. 2012; 420(1):24-8 [PubMed] Related Publications
Mutations in the Werner syndrome protein (WRN), a caretaker of the genome, result in Werner syndrome, which is characterized by premature aging phenotypes and cancer predisposition. Methylseleninic acid (MSeA) can activate DNA damage responses and is a superior compound to suppress tumorigenesis in mouse models of cancer. To test the hypothesis that targeting WRN can potentiate selenium toxicity in cancer cells, isogenic WRN small hairpin RNA (shRNA) and control shRNA U-2 OS osteosarcoma cells were treated with MSeA for 2d, followed by recovery for up to 7d. WRN deficiency sensitized U-2 OS cells to MSeA-induced necrotic death. Co-treatment with the ataxia-telangiectasia mutated (ATM) kinase inhibitor KU55933 desensitized the control shRNA cells, but not WRN shRNA cells, to MSeA treatment. WRN did not affect MSeA-induced ATM phosphorylation on Ser-1981 or H2A.X phosphorylation on Ser-139, but promoted recovery from the MSeA-induced DNA damage. Taken together, WRN protects U-2 OS osteosarcoma cells against MSeA-induced cytotoxicity, suggesting that oxidative DNA repair pathway is a promising target for improving the efficacy of selenium on tumor suppression.

Li T, Suo Q, He D, et al.
Esophageal cancer risk is associated with polymorphisms of DNA repair genes MSH2 and WRN in Chinese population.
J Thorac Oncol. 2012; 7(2):448-52 [PubMed] Related Publications
INTRODUCTION: Normal function of DNA repair system is essential for the removal of damage induced by many kinds of internal and environmental agents. Genetic polymorphisms in DNA repair genes associated with modified repair capacity may be related to the risk of developing esophageal cancer (EC). This article dealt whether single-nucleotide polymorphisms of DNA repair genes MSH2, WRN, and Ku70 potentially contributed to EC susceptibility.
METHODS: A hospital-based case-control study with 117 EC cases and 132 controls in a Chinese population was conducted. We genotyped three single-nucleotide polymorphisms MSH2 c.2063T>G, WRN c.4330T>C, and Ku70 c.-1310 C>G using polymerase chain reaction-based restriction fragment length polymorphism and then performed statistical analysis by calculating the adjusted odds ratios (OR) and 95% confidence intervals (95% CI).
RESULTS: Carriers of the MSH2 c.2063 G allele were at a higher risk of developing EC with the TT genotype as reference (OR = 4.53, 95% CI = 1.92-10.64, 33p = 0.001). Also for WRN c.4330T>C, individuals with at least one C allele (T/C or C/C) had a 2.21-fold increased risk for EC development compared with those who bore the T/T wild-type genotype (OR = 2.21, 95% CI = 1.06-4.59, 33p = 0.035). Moreover, statistically significant variant genotypic interaction was suggested between MSH2 and WRN as a result of a much increased predisposition to EC (33p = 0.016). No obvious correlation was observed between Ku70 c.-1310 CG and esophageal carcinogenesis (33p > 0.05).
CONCLUSIONS: Our findings indicated that genetic variants in DNA repair pathways may be involved in esophageal tumorigenesis. MSH2 c.2063 G allele and WRN c.4330 C allele, not Ku70 c.-1310 CG, conferred risk for the process of developing EC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. WRN, Cancer Genetics Web: http://www.cancer-genetics.org/WRN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999