Gene Summary

Gene:SRSF2; serine and arginine rich splicing factor 2
Aliases: SC35, PR264, SC-35, SFRS2, SFRS2A, SRp30b
Summary:The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors, which constitute part of the spliceosome. Each of these factors contains an RNA recognition motif (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in serine and arginine residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation. Two transcript variants encoding the same protein and one non-coding transcript variant have been found for this gene. In addition, a pseudogene of this gene has been found on chromosome 11. [provided by RefSeq, Sep 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/arginine-rich splicing factor 2
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (18)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Up-Regulation
  • DNA Methylation
  • Spliceosomes
  • DNA Sequence Analysis
  • Mast Cells
  • Adolescents
  • Young Adult
  • Myeloproliferative Disorders
  • Neoplastic Cell Transformation
  • DNA Mutational Analysis
  • Neoplasm Proteins
  • Haematological Malignancies
  • SRSF2
  • Chromosome 17
  • Disease Progression
  • RNA Splicing
  • Disease-Free Survival
  • Cervical Cancer
  • Phosphoproteins
  • Messenger RNA
  • Splicing Factor U2AF
  • Genetic Predisposition
  • p53 Protein
  • Cancer Gene Expression Regulation
  • Transcription
  • Mutation
  • Proto-Oncogene Proteins
  • DNA-Binding Proteins
  • Ribonucleoprotein, U2 Small Nuclear
  • Acute Myeloid Leukaemia
  • Serine-Arginine Splicing Factors
  • Proto-Oncogene Proteins c-kit
  • Chronic Myelogenous Leukemia
  • Signal Transduction
  • Chronic Myelomonocytic Leukemia
  • Repressor Proteins
  • Myelodysplastic Syndromes
  • Ribonucleoproteins
  • RNA Splicing Factors
  • Gene Expression Profiling
  • Nuclear Proteins
  • Epigenetics
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SRSF2 (cancer-related)

Rouet A, Aouba A, Damaj G, et al.
Mastocytosis among elderly patients: A multicenter retrospective French study on 53 patients.
Medicine (Baltimore). 2016; 95(24):e3901 [PubMed] Free Access to Full Article Related Publications
Mastocytosis is a heterogeneous group of diseases with a young median age at diagnosis. Usually indolent and self-limited in childhood, the disease can exhibit aggressive progression in mid-adulthood. Our objectives were to describe the characteristics of the disease when diagnosed among elderly patients, for which rare data are available.The French Reference Center conducted a retrospective multicenter study on 53 patients with mastocytosis >69 years of age, to describe their clinical, biological, and genetic features.The median age of our cohort of patients was 75 years. Mastocytosis variants included were cutaneous (n = 1), indolent systemic (n = 5), aggressive systemic (n = 11), associated with a hematological non-mast cell disease (n = 34), and mast cell leukemia (n = 2). Clinical manifestations were predominantly mast cell activation symptoms (75.5%), poor performance status (50.9%), hepatosplenomegaly (50.9%), skin involvement (49.1%), osteoporosis (47.2%), and portal hypertension and ascites (26.4%). The main biological features were anemia (79.2%), thrombocytopenia (50.9%), leucopenia (20.8%), and liver enzyme abnormalities (32.1%). Of the 40 patients tested, 34 (85%), 2 (5%), and 4 (10%) exhibited the KIT D816V mutant, other KIT mutations and the wild-type form of the KIT gene, respectively. Additional sequencing detected significant genetic defects in 17 of 26 (65.3%) of the patients with associated hematological non-mast cell disease, including TET2, SRSF2, IDH2, and ASLX1 mutations. Death occurred in 19 (35.8%) patients, within a median delay of 9 months, despite the different treatment options available.Mastocytosis among elderly patients has a challenging early detection, rare skin involvement, and/or limited skin disease; it is heterogeneous and has often an aggressive presentation with nonfortuitous associated myeloid lineage malignant clones, and thus a poor overall prognosis.

Butkytė S, Čiupas L, Jakubauskienė E, et al.
Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.
Clin Epigenetics. 2016; 8:33 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: An abundant class of intronic microRNAs (miRNAs) undergoes atypical Drosha-independent biogenesis in which the spliceosome governs the excision of hairpin miRNA precursors, called mirtrons. Although nearly 500 splicing-dependent miRNA candidates have been recently predicted via bioinformatic analysis of human RNA-Seq datasets, only a few of them have been experimentally validated. The detailed mechanism of miRNA processing by the splicing machinery and the roles of mirtronic miRNAs in cancer are yet to be uncovered.
METHODS: We experimentally examined whether biogenesis of certain miRNAs is under a splicing control by analyzing their expression levels in response to alterations in the 5'- and 3'-splice sites of a series of intron-containing minigenes carrying appropriate miRNAs. The expression levels of the miRNAs processed from mirtrons were determined by quantitative real-time PCR in five digestive tract (pancreas PANC-1, SU.86.86, T3M4, stomach KATOIII, colon HCT116) and two excretory system (kidney CaKi-1, 786-O) carcinoma cell lines as well as in pancreatic, stomach, and colorectal tumors. Transiently expressed SRSF1 and SRSF2 splicing factors were quantified by western blotting in the nuclear fractions of HCT116 cells.
RESULTS: We found that biogenesis of the human hsa-miR-1227-3p, hsa-miR-1229-3p, and hsa-miR-1236-3p is splicing-dependent; therefore, these miRNAs can be assigned to the class of miRNAs processed by a non-canonical mirtron pathway. The expression analysis revealed a differential regulation of human mirtronic miRNAs in various cancer cell lines and tumors. In particular, hsa-miR-1229-3p is selectively upregulated in the pancreatic and stomach cancer cell lines derived from metastatic sites. Compared with the healthy controls, the expression of hsa-miR-1226-3p was significantly higher in stomach tumors but extensively downregulated in colorectal tumors. Furthermore, we provided evidence that overexpression of SRSF1 or SRSF2 can upregulate the processing of individual mirtronic miRNAs in HCT116 cells.
CONCLUSIONS: An interplay of different splicing factors, such as SRSF1 or SRSF2, may alter the levels of miRNAs of mirtron origin in a cell. Our findings underline the specific expression profiles of mirtronic miRNAs in colorectal, stomach, and pancreatic cancer.

Patnaik MM, Tefferi A
Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia.
Blood Cancer J. 2016; 6:e393 [PubMed] Free Access to Full Article Related Publications
Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder associated with peripheral blood monocytosis and an inherent tendency to transform to acute myeloid leukemia. CMML has overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms. Clonal cytogenetic changes are seen in ~30%, whereas gene mutations are seen in >90% of patients. Common cytogenetic abnormalities include; trisomy 8, -Y, -7/del(7q), trisomy 21 and del(20q), with the Mayo-French risk stratification effectively risk stratifying patients based on cytogenetic abnormalities. Gene mutations frequently involve epigenetic regulators (TET2 ~60%), modulators of chromatin (ASXL1 ~40%), spliceosome components (SRSF2 ~50%), transcription factors (RUNX1 ~15%) and signal pathways (RAS ~30%, CBL ~15%). Of these, thus far, only nonsense and frameshift ASXL1 mutations have been shown to negatively impact overall survival. This has resulted in the development of contemporary, molecularly integrated (inclusive of ASXL1 mutations) CMML prognostic models, including Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Better understanding of the prevalent genetic and epigenetic dysregulation has resulted in emerging targeted treatment options for some patients. The development of an integrated (cytogenetic and molecular) prognostic model along with CMML-specific response assessment criteria are much needed future goals.

Patnaik MM, Tefferi A
Chronic Myelomonocytic Leukemia: Focus on Clinical Practice.
Mayo Clin Proc. 2016; 91(2):259-72 [PubMed] Related Publications
Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder with features that overlap those of myelodysplastic syndromes (MDSs) and myeloproliferative neoplasms (MPNs). Chronic myelomonocytic leukemia often results in peripheral blood monocytosis and has an inherent tendency to transform to acute myeloid leukemia. Clonal cytogenetic changes are seen in approximately 30% of patients, and molecular abnormalities are seen in more than 90%. Gene mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%), and RAS (∼30%) are frequent, with nonsense and frameshift ASXL1 mutations being the only mutations identified thus far to have an independent negative prognostic effect on overall survival. Contemporary molecularly integrated prognostic models (inclusive of ASXL1 mutations) include the Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Given the lack of formal treatment and response criteria, management of CMML is often extrapolated from MDS and MPN, with allogeneic stem cell transplant being the only curative option. Hydroxyurea and other cytoreductive agents have been used to control MPN-like features, while epigenetic modifiers such as hypomethylating agents have been used for MDS-like features. Given the relatively poor response to these agents and the inherent risks associated with hematopoietic stem cell transplant, newer drugs exploiting molecular and epigenetic abnormalities in CMML are being developed. The creation of CMML-specific response criteria is a much needed step in order to improve clinical outcomes.

Yang J, Yao DM, Ma JC, et al.
The prognostic implication of SRSF2 mutations in Chinese patients with acute myeloid leukemia.
Tumour Biol. 2016; 37(8):10107-14 [PubMed] Related Publications
Recently, somatic mutations in SRSF2 gene have been discovered in a proportion of hematologic malignancies including acute myeloid leukemia (AML). This study was aimed to investigate SRSF2 mutations in Chinese AML patients. High-resolution melting analysis (HRMA) was developed to screen SRSF2 mutations in 249 cases with AML, and then direct DNA sequencing was used to verify the results of HRMA. In this study, 3.6 % (9/249) of Chinese AML patients were found with heterozygous SRSF2 mutations. Patients with SRSF2 mutations were older than those with wild-type SRSF2 (P = 0.014). No differences in the sex, blood parameters, French-American-British classification (FAB) subtypes, and karyotypes were observed between AML patients with and without SRSF2 mutations. Although the overall survival (OS) of SRSF2-mutated patients was inferior to those without mutations in both whole AML patients (median 4 vs. 11 months, respectively; P = 0.006) and cytogenetically normal patients (median 2 vs. 12 months, respectively; P = 0.008), multiple analysis disclosed that SRSF2 mutation was not an independent prognostic factor in AML patients. These results suggest that SRSF2 mutation occurs at a low frequency in aged AML patients and might not be associated with adverse prognosis in Chinese AML patients.

Hou HA, Liu CY, Kuo YY, et al.
Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia.
Oncotarget. 2016; 7(8):9084-101 [PubMed] Free Access to Full Article Related Publications
Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but the prognostic relevance of these genes mutations in acute myeloid leukemia (AML) remains unclear. In this study, we investigated mutations of three SF genes, SF3B1, U2AF1 and SRSF2, by Sanger sequencing in 500 patients with de novo AML and analysed their clinical relevance. SF mutations were identified in 10.8% of total cohort and 13.2% of those with intermediate-risk cytogenetics. SF mutations were closely associated with RUNX1, ASXL1, IDH2 and TET2 mutations. SF-mutated AML patients had a significantly lower complete remission rate and shorter disease-free survival (DFS) and overall survival (OS) than those without the mutation. Multivariate analysis demonstrated that SFmutation was an independent poor prognostic factor for DFS and OS. A scoring system incorporating SF mutation and ten other prognostic factors was proved very useful to risk-stratify AML patients. Sequential study of paired samples showed that SF mutations were stable during AML evolution. In conclusion, SF mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression. These mutations may be potential targets for novel treatment and biomarkers for disease monitoring in AML.

Hamilton BK, Visconte V, Jia X, et al.
Impact of allogeneic hematopoietic cell transplant in patients with myeloid neoplasms carrying spliceosomal mutations.
Am J Hematol. 2016; 91(4):406-9 [PubMed] Related Publications
Molecular predictors of outcome are increasingly important in determining optimal therapy for myeloid neoplasms. Mutations in the spliceosomal genes (U2AF1 and SRSF2) predict for poor outcomes in myelodysplastic syndromes (MDS) and related diseases. We investigated the effect of hematopoietic cell transplant (HCT) on the negative prognostic impact of U2AF1 and SRSF2 mutations. In total, 122 patients with MDS (30%), acute myeloid leukemia (51%), myeloproliferative neoplasms (MPN) (11%), and MDS/MPN (8%) receiving a HCT from 2003 to 2012 were evaluated for mutations in U2AF1 and SRSF2 by direct sequencing. Median time of follow up was 24 months (range 0.46-110). SRSF2 mutations were detected in 11 (10%) patients and U2AF1 in 3 (3%) patients. There were no significant differences in baseline characteristics between mutated and wild-type (WT) patients. Patients carrying SRSF2 and U2AF1 mutations had similar overall survival (P = 0.84), relapse mortality (P = 0.50), and non-relapse mortality (P = 0.72) compared to WT patients. However, taking into account disease status and cytogenetics in a subset of AML patients, SRSF2 and U2AF1 mutations were associated with worse survival (HR 3.71, P = 0.035).

Patnaik MM, Lasho TL, Vijayvargiya P, et al.
Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia.
Blood Cancer J. 2016; 6:e385 [PubMed] Free Access to Full Article Related Publications
Mutations involving epigenetic regulators (TET2~60% and ASXL1~40%) and splicing components (SRSF2~50%) are frequent in chronic myelomonocytic leukemia (CMML). On a 27-gene targeted capture panel performed on 175 CMML patients (66% males, median age 70 years), common mutations included: TET2 46%, ASXL1 47%, SRSF2 45% and SETBP1 19%. A total of 172 (98%) patients had at least one mutation, 21 (12%) had 2, 24 (14%) had 3 and 30 (17%) had >3 mutations. In a univariate analysis, the presence of ASXL1 mutations (P=0.02) and the absence of TET2 mutations (P=0.03), adversely impacted survival; while the number of concurrent mutations had no impact (P=0.3). In a multivariable analysis that included hemoglobin, platelet count, absolute monocyte count and circulating immature myeloid cells (Mayo model), the presence of ASXL1 mutations (P=0.01) and absence of TET2 mutations (P=0.003) retained prognostic significance. Patients were stratified into four categories: ASXL1wt/TET2wt (n=56), ASXL1mut/TET2wt (n=31), ASXL1mut/TET2mut (n=50) and ASXL1wt/TET2mut (n=38). Survival data demonstrated a significant difference in favor of ASXL1wt/TET2mut (38 months; P=0.016), compared with those with ASXL1wt/TET2wt (19 months), ASXL1mut/TET2wt (21 months) and ASXL1mut/TET2mut (16 months) (P=0.3). We confirm the negative prognostic impact imparted by ASXL1 mutations and suggest a favorable impact from TET2 mutations in the absence of ASXL1 mutations.

Inoue D, Matsumoto M, Nagase R, et al.
Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels.
Exp Hematol. 2016; 44(3):172-6.e1 [PubMed] Related Publications
Recent progress in deep sequencing technologies has revealed many novel mutations in a variety of genes in patients with myelodysplastic syndromes (MDS). Most of these mutations are thought to be loss-of-function mutations, with some exceptions, such as the gain-of-function IDH1/2 and SRSF2 mutations. Among the mutations, ASXL1 mutations attract much attention; the ASXL1 mutations are identified in a variety of hematologic malignancies and always predicts poor prognosis. It was found that the C-terminal truncating mutants of the ASXL1 or ASXL1 deletion induced MDS-like diseases in mouse. In addition, it has recently been reported that ASXL1 mutations are frequently found in clonal hematopoiesis in healthy elderly people, who frequently progress to hematologic malignancies. However, the underlying molecular mechanisms by which ASXL1 mutations induce hematologic malignancies are not fully understood. Moreover, whether ASXL1 mutations are loss-of-function mutations or dominant-negative or gain-of-function mutations remains a matter of controversy. We here present solid evidence indicating that the C-terminal truncating ASXL1 protein is indeed expressed in cells harboring homozygous mutations of ASXL1, indicating the ASXL1 mutations are dominant-negative or gain-of-function mutations; for the first time, we detected the truncated ASXL1 proteins in two cell lines lacking the intact ASXL1 gene by mass spectrometry and Western blot analyses. Thus, together with our previous results, the present results indicate that the truncating ASXL1 mutant is indeed expressed in MDS cells and may play a role in MDS pathogenesis not previously considered.

Li XW, Shi BY, Yang QL, et al.
Epigenetic regulation of CDH1 exon 8 alternative splicing in gastric cancer.
BMC Cancer. 2015; 15:954 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tumor suppressor gene CDH1 is critical for intercellular adhesion. In our previous work, we reported a nonfunctional CDH1 transcript that lacks the final 83 base pairs of exon 8 (1054del83). In this work, we probed the role of histone epigenetic modifications as well as DNA methylation in selection of this isoform.
METHODS: RT-qPCR was used to detect CDH1 RNA expression. Methylation of CDH1 was analyzed by bisulphite sequencing PCR. ChIP assay was performed to show histones level. Cell lines were treated with DNA methyltransferase inhibitor AZA, HDAC inhibitor TSA, or siRNA oligonucleotides to test regulation of CDH1 splicing.
RESULTS: Greater CDH1 1054del83 transcripts were observed in gastric cancer (GC) cell lines than human gastric mucosal epithelial cell line GES-1. All the cell lines showed significant methylation pattern at the CpG sites of CDH1 exon 8. AZA treatment did not influence selection of 1054del83 transcripts. A significant decrease in acetylation for histones H3 and H4K16Ac in an internal region of the CDH1 gene surrounding the alternative exon 8 were detected in GC cell lines. Treatment with TSA preferentially expressed the correctly spliced transcript and not the exon 8 skipped aberrant transcripts, showing that histone acetylation was involved in the splicing regulation. SiRNA-mediated knockdown of SETD2 (The specific methyltransferase of H3K36) decreased exclusion of exon 8, suggesting that the presence of this mark correlates with increased skipping of the final 83 base pairs of CDH1 exon 8. However, CDH1 splicing was not affected by SRSF2 knockdown.
CONCLUSIONS: H3K36me3 correlates with increased skipping of the final 83 base pairs of CDH1 exon 8. Histone acetylation was involved in the splicing regulation as well.

Mason CC, Khorashad JS, Tantravahi SK, et al.
Age-related mutations and chronic myelomonocytic leukemia.
Leukemia. 2016; 30(4):906-13 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾2 ARCH genes and 52% had ⩾7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system.

Valent P
Diagnosis and management of mastocytosis: an emerging challenge in applied hematology.
Hematology Am Soc Hematol Educ Program. 2015; 2015:98-105 [PubMed] Related Publications
Mastocytosis is a unique and rare neoplasm defined by abnormal expansion and accumulation of clonal mast cells (MCs) in one or multiple organ systems. Most adult patients are diagnosed to have systemic mastocytosis (SM). Based on histological findings and disease-related organ damage, SM is classified into indolent SM (ISM), smoldering SM (SSM), SM with an associated hematologic non-MC-lineage disease (SM-AHNMD), aggressive SM (ASM), and MC leukemia (MCL). The clinical picture, course, and prognosis vary profoundly among these patients. Nonetheless, independent of the category of SM, neoplastic cells usually exhibit the KIT point-mutation D816V. However, in advanced SM, additional molecular defects are often detected and are considered to contribute to disease progression and drug resistance. These lesions include, among others, somatic mutations in TET2, SRSF2, ASXL1, CBL, RUNX1, and RAS. In SM-AHNMD, such mutations are often found in the "AHNMD component" of the disease. Clinical symptoms in mastocytosis result from (1) the release of proinflammatory and vasoactive mediators from MCs, and (2) SM-induced organ damage. Therapy of SM has to be adjusted to the individual patient and the SM category: in those with ISM and SSM, the goal is to control mediator secretion and/or mediator effects, to keep concomitant allergies under control, and to counteract osteoporosis, whereas in advanced SM (ASM, MCL, and SM-AHNMD) anti-neoplastic drugs are prescribed to suppress MC expansion and/or to keep AHNMD cells under control. Novel drugs directed against mutated KIT and/or other oncogenic kinase targets are tested currently in these patients. In rapidly progressing and drug-resistant cases, high-dose polychemotherapy and stem cell transplantation have to be considered.

Abou Faycal C, Gazzeri S, Eymin B
RNA splicing, cell signaling, and response to therapies.
Curr Opin Oncol. 2016; 28(1):58-64 [PubMed] Related Publications
PURPOSE OF REVIEW: PremRNA alternative splicing is more a rule than an exception as it affects more than 90% of multiexons genes and plays a key role in proteome diversity. Here, we discuss some recent studies published in the extensively growing field linking RNA splicing and cancer.
RECENT FINDINGS: These last years, the development of high-throughput studies together with appropriate bioinformatic tools have led to the identification of new cancer-specific splicing patterns that allow to distinguish various cancer types, and provide new prognosis biomarkers. In addition, the functional consequences of hot spot mutations affecting various components of the spliceosome machinery in cancers have been described. As an example, missplicing of the enhancer of zeste homolog 2 histone methyltransferase premRNA in response to hot spot mutation of the splicing factor SRSF2 was found to participate to the pathogenesis of myelodysplastic syndrome. Moreover, proofs of principle that targeting the RNA splicing machinery can be used to correct aberrant missplicing, kill oncogene-driven cancer cells, or reverse resistance of tumor cells to targeted therapies have been done. As another example, the core spliceosomal function was recently found to be critical for the survival of Myc-driven breast cancer cells, rendering them hypersensitive to spliceosome inhibitors.
SUMMARY: Dysregulation of premRNA alternative splicing appears to be one of the hallmarks of cancer. The characterization of novel splicing signatures in cancer as well as the identification of original signaling networks involving RNA splicing regulators should allow to decipher novel oncogenic mechanisms and to develop new therapeutic strategies.

Zorzan E, Hanssens K, Giantin M, et al.
Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors.
PLoS One. 2015; 10(11):e0142450 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
INTRODUCTION: Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10-30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs.
METHODS: Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the "human-like" hot spot mutations of listed genes.
RESULTS: No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples.
CONCLUSION: Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM.

Gao L, Liu F, Zhang H, et al.
CHFR hypermethylation, a frequent event in acute myeloid leukemia, is independently associated with an adverse outcome.
Genes Chromosomes Cancer. 2016; 55(2):158-68 [PubMed] Related Publications
The CpG island of the promoter region of the checkpoint with fork-head associated and ring finger gene (CHFR), a mitotic checkpoint gene with tumor-suppressor functions, is hypermethylated in various human cancers. The objective of this study was to evaluate the frequency of aberrant CHFR promoter methylation in acute myeloid leukemia (AML) patients in an attempt to improve prognostication. CHFR promoter methylation levels were analyzed in 358 newly diagnosed AML cases and 30 healthy donors by the use of quantitative methylation-specific polymerase chain reaction. In addition, we analyzed possible association between CHFR hypermethylation and hematological characteristics, chromosome abnormalities, genetic mutations, and survival. Hypermethylation of the CHFR promoter was observed in 24% (85 of 358) AML patients, but not in healthy individuals. CHFR hypermethylation correlated significantly with SRSF2 and DNMT3A mutations. Patients with hypermethylation exhibited lower overall survival and shorter relapse-free survival than nonmethylated cases. In multivariate analysis, CHFR hypermethylation was an independent factor predicting poor overall survival but not relapse-free survival. In conclusion, hypermethylation of the CHFR promoter, frequent in AML, is associated with adverse outcome, and can thus be used for risk stratification.

Sallman DA, Komrokji R, Vaupel C, et al.
Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes.
Leukemia. 2016; 30(3):666-73 [PubMed] Related Publications
Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P<0.0001). MDS patients with a TP53 VAF > 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF <20% (hazard ratio (HR), 3.52; P=0.01) with validation in an independent cohort (HR, 4.94, P=0.01). TP53 VAF further stratified distinct prognostic groups independent of clinical prognostic scoring systems (P=0.0005). In multivariate analysis, only a TP53 VAF >40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS.

Tian J, Liu Y, Zhu B, et al.
SF3A1 and pancreatic cancer: new evidence for the association of the spliceosome and cancer.
Oncotarget. 2015; 6(35):37750-7 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
A two-stage case-control study was conducted to examine the association between six candidate U2-depedent spliceosome genes (SRSF1, SRSF2, SF3A1, SF3B1, SF1 and PRPF40B) and pancreatic cancer (PC). Subjects with one or two T alleles at rs2074733 in SF3A1 had a lower risk of PC compared to those with two C alleles in combined two populations (OR: 0.59, 95% confidence interval: 0.48-0.73, False discovery rate (FDR)-P = 1.5E-05). Moreover, the presence of the higher-risk genotype at rs2074733 plus smoking or drinking had synergic effects on PC risk. These findings illustrate that RNA splicing-related genes appear to be associated with the occurrence of PC, and show synergic interactions with smoking and drinking in the additive model. In the future, our novel findings should be further confirmed by functional studies and independent large-scale population studies.

Jawhar M, Schwaab J, Schnittger S, et al.
Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis.
Leukemia. 2016; 30(1):136-43 [PubMed] Related Publications
Most patients with KIT D816V(+) advanced systemic mastocytosis (SM) are characterized by somatic mutations in additional genes. We sought to clarify the prognostic impact of such mutations. Genotype and clinical characteristics of 70 multi-mutated KIT D816V(+) advanced SM patients were included in univariate and multivariate analyses. The most frequently identified mutated genes were TET2 (n=33 of 70 patients), SRSF2 (n=30), ASXL1 (n=20), RUNX1 (n=16) and JAK2 (n=11). In univariate analysis, overall survival (OS) was adversely influenced by mutations in SRSF2 (P<0.0001), ASXL1 (P=0.002) and RUNX1 (P=0.03), but was not influenced by mutations in TET2 or JAK2. In multivariate analysis, SRSF2 and ASXL1 remained the most predictive adverse indicators concerning OS. Furthermore, we found that inferior OS and adverse clinical characteristics were significantly influenced by the number of mutated genes in the SRSF2/ASXL1/RUNX1 (S/A/R) panel (P<0.0001). In conclusion, the presence and number of mutated genes within the S/A/R panel are adversely associated with advanced disease and poor survival in KIT D816V(+) SM. On the basis of these findings, inclusion of molecular markers should be considered in upcoming prognostic scoring systems for patients with SM.

Jakubauskienė E, Peciuliene I, Vilys L, et al.
Gastrointestinal tract tumors and cell lines possess differential splicing factor expression and tumor associated mRNA isoform formation profiles.
Cancer Biomark. 2015; 15(5):575-81 [PubMed] Related Publications
BACKGROUND: Cell lines derived from human tumors have been extensively used as experimental models of neoplastic disease. Although such cell lines differ from both normal and cancerous tissue.
OBJECTIVE: The data obtained used DNA and RNA microarray systems does not give full information about protein expression levels in cells and tissues. We present experimental evidence that splicing factor SRSF1, SRSF2, U2AF35, U2AF65 and KHSRP expression levels in gastrointestinal tract (colon, gastric and pancreatic) tumors differ compare to healthy tissues and in cell lines, derived from corresponding organs.
METHODS: Protein expression was analyzed using Western blots. RT-PCR method was used for Fas and Rac splicing analysis.
RESULTS: Obtained results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumors in vivo. Expression levels of individual splicing factors in tumors might serve as tumor markers. Not all experimental results obtained from cell lines reflect changes that occur in tumors. Also Fas and Rac, cancer associated genes, tumor associated sFas and Rac1b mRNA isoform profiles in cell lines do not correspond to profiles that are observed in tumors.
CONCLUSIONS: Not all experimental results obtained in cell lines reflect changes that occur in real tumors.

Kamburov A, Lawrence MS, Polak P, et al.
Comprehensive assessment of cancer missense mutation clustering in protein structures.
Proc Natl Acad Sci U S A. 2015; 112(40):E5486-95 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations.

Boiocchi L, Gianelli U, Iurlo A, et al.
Neutrophilic leukocytosis in advanced stage polycythemia vera: hematopathologic features and prognostic implications.
Mod Pathol. 2015; 28(11):1448-57 [PubMed] Related Publications
Polycythemia vera in 20-30% of cases progresses towards post-polycythemic myelofibrosis, an advanced phase characterized by decreased red blood cells counts and increasing splenomegaly with extramedullary hematopoiesis. There is evidence that the presence of neutrophilic leukocytosis at polycythemia vera disease outset is associated with an increased risk of recurrent thrombosis. However, its clinical significance when developing later in the course of the disease is not well defined. Over a period of 8 years we identified from the files of two reference centers 10 patients (7M/3F, median age: 68 years) who developed persistent absolute leukocytosis ≥ 13 × 10⁹/l (median: 25.1 × 10⁹/l; range: 16.1-89.7 × 10⁹/l) at or around the time of diagnosis of post-polycythemic myelofibrosis (median interval from diagnosis:0 months; range: -6/31) and persisted for a median period of 13 months. Peripheral blood smears showed numerous neutrophils without dysplastic features and, in four, ≥ 10% immature myeloid precursors. In five cases, corresponding marrow specimens obtained at or immediately after the onset of leukocytosis showed a markedly increased myeloid:erythroid ratio due to granulocytic proliferation. No change in JAK2 and BCR-ABL1 status or cytogenetic evolution was associated with the development of leukocytosis. The mutational status of CSF3R, SETBP1, and SRSF2, genes associated with other chronic myeloid neoplasms where neutrophilic leukocytosis occurs, was investigated but all cases showed wild-type only alleles. Four patients died after developing leukocytosis and one experienced worsening disease. Compared with a control group of post-polycythemic myelofibrosis patients (n=23) who never developed persistent leukocytosis, patients with leukocytosis showed higher white blood cells counts and a shorter overall survival. This is the first study describing the development of significant neutrophilic leukocytosis during advanced stages of polycythemia vera; it includes comprehensive hematologic, marrow morphological, molecular, and clinical data. Our findings suggest that persistent leukocytosis occurring at or around the time of progression to post-polycythemic myelofibrosis is associated with an overall more aggressive course of the disease.

McCullough KB, Patnaik MM
Chronic Myelomonocytic Leukemia: a Genetic and Clinical Update.
Curr Hematol Malig Rep. 2015; 10(3):292-302 [PubMed] Related Publications
Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder, characterized by peripheral blood monocytosis and overlapping features between myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs). Clonal cytogenetic changes are seen in up to 30 % patients, while approximately 90 % have detectable molecular abnormalities. Most patients are diagnosed in the seventh decade of life. Gene mutations in ten-eleven translocation (TET) oncogene family member 2 (TET2) (60 %), SRSF2 (50 %), ASXL1 (40 %), and RAS (20-30 %) are frequent, with only frame shift and nonsense ASXL1 mutations negatively impacting overall survival. With the lack of formal guidelines, management and response criteria are often extrapolated from MDS and MPN. Contemporary molecularly integrated CMML-specific prognostic models include the Groupe Francais des Myelodysplasies (GFM) model and the Molecular Mayo Model, both incorporating ASXL1 mutational status. Hypomethylating agents and allogeneic stem cell transplant remain the two most commonly used treatment strategies, with suboptimal results. Clinical trials exploiting epigenetic and signal pathway abnormalities, frequent in CMML, offer hope and promise.

Kang MG, Kim HR, Seo BY, et al.
The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts.
BMC Cancer. 2015; 15:484 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Mutations in genes that are part of the splicing machinery for myelodysplastic syndromes (MDS), including MDS without ring sideroblasts (RS), have been widely investigated. The effects of these mutations on clinical outcomes have been diverse and contrasting.
METHODS: We examined a cohort of 129 de novo MDS patients, who did not harbor RS, for mutations affecting three spliceosomal genes (SF3B1, U2AF1, and SRSF2).
RESULTS: The mutation rates of SF3B1, U2AF1, and SRSF2 were 7.0 %, 7.8 %, and 10.1 %, respectively. Compared with previously reported results, these rates were relatively infrequent. The SRSF2 mutation strongly correlated with old age (P < 0.001), while the mutation status of SF3B1 did not affect overall survival (OS), progression-free survival (PFS), or acute myeloid leukemia (AML) transformation. In contrast, MDS patients with mutations in U2AF1 or SRSF2 exhibited inferior PFS. The U2AF1 mutation was associated with inferior OS in low-risk MDS patients (P = 0.035). The SRSF2 mutation was somewhat associated with AML transformation (P = 0.083).
CONCLUSION: Our findings suggest that the frequencies of the SF3B1, U2AF1, and SRSF2 splicing gene mutations in MDS without RS were relatively low. We also demonstrated that the U2AF1 and SRSF2 mutations were associated with an unfavorable prognostic impact in MDS patients without RS.

Schwaab J, Umbach R, Metzgeroth G, et al.
KIT D816V and JAK2 V617F mutations are seen recurrently in hypereosinophilia of unknown significance.
Am J Hematol. 2015; 90(9):774-7 [PubMed] Related Publications
Myeloproliferative neoplasms with eosinophilia are commonly characterized by a normal karyotype and remain poorly defined at the molecular level. We therefore investigated 426 samples from patients with hypereosinophilia of unknown significance initially referred for screening of the FIP1L1-PDGFRA (FP) fusion gene also for KIT D816V and JAK2 V617F mutations. Overall, 86 (20%) patients tested positive: FP+ in 55 (12%), KIT D816V+ in 14 (3%), and JAK2 V617F+ in 17 (4%) patients, respectively. To gain better insight into clinical characteristics, we compared these cases with 31 additional and well-characterized KIT D816V+ eosinophilia-associated systemic mastocytosis (SM-eo) patients enrolled within the "German Registry on Disorders of Eosinophils and Mast cells." Significant differences included younger age, male predominance, and higher eosinophil counts for FP+ cases while abdominal lymphadenopathy, ascites, and serum tryptase levels >100 μg/l were characteristic for those with KIT D816V. Leukocytes, hemoglobin, and splenomegaly did not differ significantly. A median of three additional mutations, most frequently TET2 and SRSF2, were identified in 12/13 KIT D816V+ SM-eo patients with available material indicating a more complex molecular pathogenesis. Median survival was not reached for FP+ cases but was only 26 and 41 months for KIT D816V+ SM and JAK2 V617F+ MPN-eo, respectively. Eosinophilia of ≥2 × 10(9) /l was identified as discriminator for inferior survival in KIT D816V+ and/or JAK2 V617F+ patients (median survival 20 months vs. not reached, P = 0.002). Thus, there is a clear prognostic and therapeutic rationale for detection of KIT D816V and JAK2 V617F in the diagnostic work up of eosinophilia.

Boucas J, Fritz C, Schmitt A, et al.
Label-Free Protein-RNA Interactome Analysis Identifies Khsrp Signaling Downstream of the p38/Mk2 Kinase Complex as a Critical Modulator of Cell Cycle Progression.
PLoS One. 2015; 10(5):e0125745 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G(1/)S transition through the suppression of Cdkn1a(P21) transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme.

Wen J, Toomer KH, Chen Z, Cai X
Genome-wide analysis of alternative transcripts in human breast cancer.
Breast Cancer Res Treat. 2015; 151(2):295-307 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients' tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve "hub" genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the "hub" genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome.

McKerrell T, Park N, Moreno T, et al.
Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis.
Cell Rep. 2015; 10(8):1239-45 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Clonal hemopoiesis driven by leukemia-associated gene mutations can occur without evidence of a blood disorder. To investigate this phenomenon, we interrogated 15 mutation hot spots in blood DNA from 4,219 individuals using ultra-deep sequencing. Using only the hot spots studied, we identified clonal hemopoiesis in 0.8% of individuals under 60, rising to 19.5% of those ≥90 years, thus predicting that clonal hemopoiesis is much more prevalent than previously realized. DNMT3A-R882 mutations were most common and, although their prevalence increased with age, were found in individuals as young as 25 years. By contrast, mutations affecting spliceosome genes SF3B1 and SRSF2, closely associated with the myelodysplastic syndromes, were identified only in those aged >70 years, with several individuals harboring more than one such mutation. This indicates that spliceosome gene mutations drive clonal expansion under selection pressures particular to the aging hemopoietic system and explains the high incidence of clonal disorders associated with these mutations in advanced old age.

McFarlane M, MacDonald AI, Stevenson A, Graham SV
Human Papillomavirus 16 Oncoprotein Expression Is Controlled by the Cellular Splicing Factor SRSF2 (SC35).
J Virol. 2015; 89(10):5276-87 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
UNLABELLED: High-risk human papillomaviruses (HR-HPV) cause anogenital cancers, including cervical cancer, and head and neck cancers. Human papillomavirus 16 (HPV16) is the most prevalent HR-HPV. HPV oncogenesis is driven by two viral oncoproteins, E6 and E7, which are expressed through alternative splicing of a polycistronic RNA to yield four major splice isoforms (E6 full length, E6*I, E6*II, E6*X). The production of multiple mRNA isoforms from a single gene is controlled by serine/arginine-rich splicing factors (SRSFs), and HPV16 infection induces overexpression of a subset of these, SRSFs 1, 2, and 3. In this study, we examined whether these proteins could control HPV16 oncoprotein expression. Small interfering RNA (siRNA) depletion experiments revealed that SRSF1 did not affect oncoprotein RNA levels. While SRSF3 knockdown caused some reduction in E6E7 expression, depletion of SRSF2 resulted in a significant loss of E6E7 RNAs, resulting in reduced levels of the E6-regulated p53 proteins and E7 oncoprotein itself. SRSF2 contributed to the tumor phenotype of HPV16-positive cervical cancer cells, as its depletion resulted in decreased cell proliferation, reduced colony formation, and increased apoptosis. SRSF2 did not affect transcription from the P97 promoter that controls viral oncoprotein expression. Rather, RNA decay experiments showed that SRSF2 is required to maintain stability of E6E7 mRNAs. These data show that SRSF2 is a key regulator of HPV16 oncoprotein expression and cervical tumor maintenance.
IMPORTANCE: Expression of the HPV16 oncoproteins E7 and E6 drives HPV-associated tumor formation. Although increased transcription may yield increased levels of E6E7 mRNAs, it is known that the RNAs can have increased stability upon integration into the host genome. SR splicing factors (SRSFs) control splicing but can also control other events in the RNA life cycle, including RNA stability. Previously, we demonstrated increased levels of SRSFs 1, 2, and 3 during cervical tumor progression. Now we show that SRSF2 is required for expression of E6E7 mRNAs in cervical tumor but not nontumor cells and may act by inhibiting their decay. SRSF2 depletion in W12 tumor cells resulted in increased apoptosis, decreased proliferation, and decreased colony formation, suggesting that SRSF2 has oncogenic functions in cervical tumor progression. SRSF function can be targeted by known drugs that inhibit SRSF phosphorylation, suggesting a possible new avenue in abrogating HPV oncoprotein activity.

Patnaik MM, Wassie EA, Lasho TL, et al.
Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome.
Am J Hematol. 2015; 90(5):411-6 [PubMed] Related Publications
Among 274 patients with chronic myelomonocytic leukemia (CMML) and followed for a median of 17.1 months, blast transformation (BT) occurred in 36 (13%). On multivariable analysis, risk factors for BT were presence of circulating blasts (HR 5.7; 95% CI 2.8-11.9) and female gender (HR 2.6; 95% CI 1.3-5.1); the results remained unchanged when analysis was restricted to CMML-1. ASXL1/SRSF2/SF3B1/U2AF1/SETBP1 mutational frequencies were not significantly different between time of CMML diagnosis and BT. Median survival post-BT was 4.7 months (5-year survival 6%) and better with allogeneic stem cell transplant (SCT) (14.3 months vs. 4.3 months for chemotherapy vs. 0.9 months for supportive care; P = 0.03). Neither karyotype nor mutational status was independently associated with risk of BT or post-BT survival. We conclude that female patients with CMML and those with circulating blasts are at a higher risk of BT. Post-BT survival is dismal and our observations suggest consideration of allogeneic SCT prior to BT.

Jawhar M, Schwaab J, Schnittger S, et al.
Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event.
Leukemia. 2015; 29(5):1115-22 [PubMed] Related Publications
To explore the molecular profile and its prognostic implication in systemic mastocytosis (SM), we analyzed the mutation status of granulocyte-macrophage colony-forming progenitor cells (CFU-GM) in patients with KIT D816V(+) indolent SM (ISM, n=4), smoldering SM (SSM, n=2), aggressive SM (ASM, n=1), SM with associated clonal hematologic non-mast cell lineage disorder (SM-AHNMD, n=5) and ASM-AHNMD (n=7). All patients with (A)SM-AHNMD (n=12) carried 1-4 (median 3) additional mutations in 11 genes tested, most frequently TET2, SRSF2, ASXL1, CBL and EZH2. In multi-mutated (A)SM-AHNMD, KIT D816V(+) single-cell-derived CFU-GM colonies were identified in 8/12 patients (median 60%, range 0-95). Additional mutations were identified in CFU-GM colonies in all patients, and logical hierarchy analysis indicated that mutations in TET2, SRSF2 and ASXL1 preceded KIT D816V. In ISM/SSM, no additional mutations were detected and CFU-GM colonies were exclusively KIT D816V(-). These data indicate that (a) (A)SM-AHNMD is a multi-mutated neoplasm, (b) mutations in TET2, SRSF2 or ASXL1 precede KIT D816V in ASM-AHNMD,

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SRSF2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999