Cancer Overview
Research Indicators
Graph generated 31 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (3)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
PBX3
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
PBX3
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
PBX3
Cancer Genome Anatomy Project, NCI
Gene Summary
PBX3
COSMIC, Sanger Institute
Somatic mutation information and related details
PBX3
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: PBX3 (cancer-related)
Ye J, Luo D, Yu J, Zhu S
Transcriptome analysis identifies key regulators and networks in Acute myeloid leukemia.Hematology. 2019; 24(1):487-491 [
PubMed]
Related Publications
OBJECTIVES: Acute myeloid leukemia (AML) is a heterogeneous and highly recurrent hematological malignancy. Studies have shown an association between microRNAs and drive genes in AMLs. However, the regulatory roles of miRNAs in AML and how they act on downstream targets and the signaling pathway has been little studied.
METHODS: As to understand the mechanism of mRNA-miRNA interaction in the blood malignancy from a large scale of transcriptomic sequencing studies, we applied a comprehensive miRNA-mRNA association, co-expression gene network and ingenuity pathway analysis using TCGA AML datasets.
RESULTS: Our results showed that his-mir-335 was a critical regulatory of homeobox A gene family. PBX3, KAT6A, MEIS1, and COMMD3-BMI1 were predicted as top transcription regulators in the regulatory network of the HOXA family. The most significantly enriched functions were cell growth, proliferation, and survival in the mRNA-miRNA network.
CONCLUSION: Our work revealed that regulation of the HOXA gene family and its regulation played an important role in the development of AML.
Yun S, Kim SH, Cho HS, et al.
EWSR1-PBX3 fused myoepithelioma arising in metatarsal bone: Case report and review of the literature.Pathol Int. 2019; 69(1):42-47 [
PubMed]
Related Publications
Intraosseous myoepithelial tumors are very rare. Due to the low incidence and diverse histologic features, accurate diagnosis is challenging, necessitating ancillary immunohistochemistry. Moreover, genetic abnormality in this tumor was not revealed until recently. Although EWSR1 translocation is involved in half of the cases of intraosseous myoepithelioma, only a few cases have indicated its counterpart gene. We herein describe a case of intraosseous myoepithelioma with a novel localization in the fourth metatarsal bone of a 36-year-old female. Cytogenetic analysis using next generation sequencing detected a rare EWSR1-PBX3 fusion. Next generation sequencing could be useful in understanding the cytogenetic characteristics of intraosseous myoepithelioma, and in obtaining an accurate diagnosis of this rare condition.
BACKGROUND: Brain invasion by glioblastoma (GBM) determines recurrence and prognosis in patients, which is, in part, attributed to increased mesenchymal transition. Here, we report evidence favoring such a role for the Pre-B-cell leukemia homebox (PBX) family member PBX3.
METHODS: Western blot, immunohistochemistry, qRT-PCR and datasets mining were used to determined proteins or genes expression levels. Wound-healing and transwell assays were used to examine the invasive abilities of GBM cells. Dual-luciferase reporter assays were used to determine how let-7b regulates PBX3. Chromatin-immunoprecipitation (ChIP) and rescue experiments were performed to investigate the involved molecular mechanisms. Orthotopic mouse models were used to assess the role of PBX3 in vivo.
RESULTS: We found that PBX3 expression levels positively correlated with glioma mesenchymal markers. Ectopic expression of PBX3 promoted invasive phenotypes and triggered the expression of mesenchymal markers, whereas depletion of PBX3 reduced GBM cell invasive abilities and decreased the expression of mesenchymal markers. In addition, inhibition of PBX3 attenuated transforming growth factor-β (TGFβ)-induced GBM mesenchymal transition. Mechanistic studies revealed that PBX3 mediated GBM mesenchymal transition through activation of MEK/ERK1/2, leading to increased expression of LIN28 by c-myc. Increased LIN28 inhibited let-7b biogenesis, which then promoted the pro-invasive genes, such as HMGA2 and IL-6. Furthermore, let-7b suppressed PBX3 by directly targeting 3'-UTR of PBX3. Thus, repressed let-7b by PBX3 amplifies PBX3 signaling and forms a positive feedback loop to promote GBM mesenchymal transition.
CONCLUSIONS: These data highlight the importance of PBX3 as a key driver of mesenchymal transition and potential therapeutic target.
BACKGROUND: MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3.
METHODS: Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3' UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated.
RESULTS: MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3' UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation.
CONCLUSION: MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma.
Reikvam H, Hovland R, Forthun RB, et al.
Disease-stabilizing treatment based on all-trans retinoic acid and valproic acid in acute myeloid leukemia - identification of responders by gene expression profiling of pretreatment leukemic cells.BMC Cancer. 2017; 17(1):630 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Acute myeloid leukemia (AML) is an aggressive malignancy only cured by intensive therapy. However, many elderly and unfit patients cannot receive such treatment due to an unacceptable risk of treatment-related morbidity and mortality. Disease-stabilizing therapy is then the only possible strategy, one alternative being treatment based on all-trans retinoic acid (ATRA) combined with the histone deacetylase inhibitor valproic acid and possibly low-toxicity conventional chemotherapy.
METHODS: Primary AML cells were derived from 43 patients included in two clinical studies of treatment based on ATRA, valproic acid and theophyllamine; low toxicity chemotherapy (low-dose cytarabine, hydroxyurea, 6-mercaptopurin) was also allowed. Pretreatment leukemic cells were analyzed by mutation profiling of 54 genes frequently mutated in myeloid malignancies and by global gene expression profiling before and during in vivo treatment.
RESULTS: Patients were classified as responders and non-responders to the treatment, however response to treatment showed no significant associations with karyotype or mutational profiles. Significance analysis of microarray (SAM) showed that responders and non-responders significantly differed with regard to the expression of 179 different genes. The differentially expressed genes encoding proteins with a known function were further classified based on the PANTHER (protein annotation through evolutionary relationship) classification system. The identified genes encoded proteins that are involved in several important biological functions, but a main subset of the genes were important for transcriptional regulation. These pretherapy differences in gene expression were largely maintained during treatment. Our analyses of primary AML cells during in vivo treatment suggest that ATRA modulates HOX activity (i.e. decreased expression of HOXA3, HOXA4 and HOXA5 and their regulator PBX3), but altered function of DNA methyl transferase 3A (DNMT3A) and G-protein coupled receptor signaling may also contribute to the effect of the overall treatment.
CONCLUSIONS: Responders and non-responders to AML stabilizing treatment based on ATRA and valproic acid differ in the pretreatment transcriptional regulation of their leukemic cells, and these differences may be important for the clinical effect of this treatment.
TRIAL REGISTRATIONS: ClinicalTrials.gov no. NCT00175812 ; EudraCT no. 2004-001663-22, registered September 9, 2005 and ClinicalTrials.gov no. NCT00995332 ; EudraCT no. 2007-2007-001995-36, registered October 14, 2009.
Xu X, Cai N, Bao Z, et al.
Silencing Pre-B-cell leukemia homeobox 3 decreases the proliferation of human glioma cells in vitro and in vivo.J Neurooncol. 2017; 135(3):453-463 [
PubMed]
Related Publications
Among primary brain tumors, gliomas are the most common and most aggressive, with a poor prognosis and limited treatment options. Thus, it is essential to determine the mechanisms involved in glioma development to develop effective therapies for glioma patients. Pre-B-cell leukemia homeobox 3 (PBX3), a critical member of the PBX family, is frequently overexpressed in multiple human malignancies. However, the expression patterns and biological functions, as well as the involved molecular functions of PBX3 in human gliomas remain largely unknown. In this study, we demonstrate that PBX3 expression is increased in both human glioma tissues and cell lines compared with their normal counterparts. These results suggested that PBX3 might be involved in glioma progression. Thus, the role of PBX3 in glioma cell proliferation was investigated using genetic knockdown and overexpression methods. The results showed that PBX3 knockdown inhibited glioma cell proliferation and induced apoptosis, while PBX3 overexpression significantly promoted glioma cell proliferation. Mechanistically, we found that PBX3 promoted cell proliferation by modulating cell cycle progression. A xenograft LN229 model was used to confirm that PBX3 depletion decreased tumor growth in vivo. In summary, our findings reveal that PBX3 may be a potential therapeutic target in gliomas.
Metastasis is the main cause of breast cancer‑related mortalities. The present study aimed to uncover the relevant molecular mechanisms of breast cancer metastasis and to explore potential biomarkers that may be used for prognosis. Expression profile microarray data GSE8977, which contained 22 stroma samples (15 were from normal breast and 7 were from invasive ductal carcinoma tumor samples), were obtained from the Gene Expression Omnibus database. Following data preprocessing, differentially expressed genes (DEGs) were selected based on analyses conducted using the linear models for microarray analysis package from R and Bioconductor software. The resulting data were used in subsequent function and pathway enrichment analyses, as well as protein‑protein interaction (PPI) network and subnetwork analyses. Transcription factors (TFs) and tumor‑associated genes were also identified among the DEGs. A total of 234 DEGs were identified, which were enriched in immune response, cell differentiation and cell adhesion‑related functions and pathways. Downregulated DEGs included TFs, such as the proto‑oncogene SPI1, pre‑B‑cell leukemia homeobox 3 (PBX3) and lymphoid enhancer‑binding factor 1 (LEF1), as well as tumor suppressors (TSs), such as capping actin protein, gelsolin like (CAPG) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1). Upregulated DEGs also included TFs and tumor suppressors, consisting of transcription factor 7‑like 2 (TCF7L2) and pleiomorphic adenoma gene‑like 1 (PLAGL1). DEGs that were identified at the hub nodes in the PPI network and the subnetwork were epidermal growth factor receptor (EGFR) and spleen‑associated tyrosine kinase (SYK), respectively. Several genes crucial in the metastasis of breast cancer were identified, which may serve as potential biomarkers, many of which were associated with cell adhesion, proliferation or immune response, and may influence breast cancer metastasis by regulating these function or pathways.
Li D, Li H, Yang Y, Kang L
Long Noncoding RNA Urothelial Carcinoma-Associated 1 Promotes the Proliferation and Metastasis of Human Lung Tumor Cells by Regulating MicroRNA-144.Oncol Res. 2018; 26(4):537-546 [
PubMed]
Related Publications
Long noncoding RNA urothelial carcinoma-associated 1 (lncRNA UCA1) has gained more attention in recent years due to its oncogenic roles in various cancers. MicroRNA-144 (miR-144) participates in the regulation of the growth of many cancer cells. This study investigated the interaction between lncRNA UCA1 and miR-144 in lung cancer cells. The potential downstream protein of miR-144 was also assessed. Our results found that lncRNA UCA1 was highly expressed in human lung cancer A549, H517, H4006, H1299, and H1650 cells compared to normal embryonic lung WI-38 and HEL-1 cells. Knockdown of lncRNA UCA1 significantly inhibited lung cancer A549 cell viability, migration, invasion, and cell cycle progression, but promoted cell apoptosis. Besides, we found that lncRNA UCA1 was bound to miR-144. miR-144 participated in the regulation effects of lncRNA UCA1 on A549 cell viability, migration, invasion, cell cycle transition, and cell apoptosis. In addition, Pre-B-cell leukemia homeobox 3 (PBX3) was found to be a direct target gene of miR-144. Overexpression of PBX3 promoted A549 cell proliferation and metastasis. Suppression of PBX3 had an opposite effect.
Leiomyoma of deep soft tissue is a rare type of benign smooth muscle tumor that mostly occurs in the retroperitoneum or abdominal cavity of women, and about which very little genetic information exists. In the present study, eight leiomyomas of deep soft tissue were genetically analyzed. G-banding showed that three tumors carried rearrangements of the long arm of chromosome 12, three others had 8q rearrangements, the 7th tumor had deletion of the long arm of chromosome 7, del(7)(q22), and the 8th had aberrations of chromosome bands 3q21~23 and 11q21~22. The target genes of the 12q and 8q aberrations were HMGA2 and PLAG1, respectively. In the leiomyomas with 12q rearrangements, both HMGA2 and PLAG1 were expressed whereas in the tumors with 8q aberrations, only PLAG1 was expressed. In the cases without 12q or 8q aberrations, the expression of HMGA2 was very low and PLAG1 was expressed only in the case with del(7)(q22). All eight leiomyomas of deep soft tissue expressed MED12 but none of them had mutation in exon 2 of that gene. In two tumors with 12q rearrangements, RPSAP52 on 12q14.3 was fused with non-coding RNA (accession number XR_944195) from 14q32.2 or ZFP36L1 from14q24.1. In a tumor with inv(12), exon 3 of HMGA2 was fused to a sequence in intron 1 of the CRADD gene from 12q22. The present data together with those of our two previous studies in which the fusions KAT6B-KANSL1 and EWSR1-PBX3 were described in two retroperitoneal leiomyomas carrying a t(10;17)(q22;q21) and a t(9;22)(q33;q12) translocation, respectively, show that leiomyomas of deep soft tissue are genetically heterogenous but have marked similarities to uterine leiomyomas.
Guo H, Chu Y, Wang L, et al.
PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia.Int J Cancer. 2017; 141(2):324-335 [
PubMed]
Related Publications
Interaction of HOXA9/MEIS1/PBX3 is responsible for hematopoietic system transformation in MLL-rearranged (MLL-r) leukemia. Of these genes, HOXA9 has been shown to be critical for leukemia cell survival, while MEIS1 has been identified as an essential regulator for leukemia stem cell (LSC) maintenance. Although significantly high expression of PBX3 was observed in clinical acute myeloid leukemia (AML) samples, the individual role of PBX3 in leukemia development is still largely unknown. In this study, we explored the specific role of PBX3 and its associated regulatory network in leukemia progression. By analyzing the clinical database, we found that the high expression of PBX3 is significantly correlated with a poor prognosis in AML patients. ChIP-Seq/qPCR analysis in MLL-r mouse models revealed aberrant epigenetic modifications with increased H3K79me2, and decreased H3K9me3 and H3K27me3 levels in LSCs, which may account for the high expression levels of Pbx3. To further examine the role of Pbx3 in AML maintenance and progression, we used the CRISPR/Cas9 system to delete Pbx3 in leukemic cells in the MLL-AF9 induced AML mouse model. We found that Pbx3 deletion significantly prolonged the survival of leukemic mice and decreased the leukemia burden by decreasing the capacity of LSCs and promoting LSC apoptosis. In conclusion, we found that PBX3 is epigenetically aberrant in the LSCs of MLL-r AML and is essential for leukemia development. Significantly, the differential expression of PBX3 in normal and malignant hematopoietic cells suggests PBX3 as a potential prognostic marker and therapeutic target for MLL-r leukemia.
Zhang Z, Li X, Sun W, et al.
Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis.Cancer Lett. 2017; 397:33-42 [
PubMed]
Related Publications
Cancer-associated fibroblasts (CAFs) play a pivotal role in regulating tumour progression. Therefore, understanding how CAFs communicate with hepatocellular carcinoma (HCC) is crucial for HCC therapy. Recently, exosomes have been considered an important "messenger" between cells. In this study, we performed microRNA (miRNA) sequencing of exosomes derived from CAFs and corresponding para-cancer fibroblasts (PAFs) of HCC patients. We found a significant reduction in the miR-320a level in CAF-derived exosomes. Using exogenous miRNAs, we demonstrated that stromal cells could transfer miRNA to HCC cells. In vitro and in vivo studies further revealed that miR-320a could function as an antitumour miRNA by binding to its direct downstream target PBX3 to suppress HCC cell proliferation, migration and metastasis. The miR-320a-PBX3 pathway inhibited tumour progression by suppressing the activation of the MAPK pathway, which could induce the epithelial-mesenchymal transition and upregulate cyclin-dependent kinase 2 (CDK2) and MMP2 expression to promote cell proliferation and metastasis. In xenograft experiments involving CAFs mixed with MHCC97-H cells, miR-320a overexpression in CAFs could inhibit tumourigenesis. Therefore, these data suggest that CAF-mediated HCC tumour progression is partially related to the loss of antitumour miR-320a in the exosomes of CAFs and that promoting the transfer of stromal cell-derived miR-320a might be a potential treatment option to overcome HCC progression.
Xu X, Bao Z, Liu Y, et al.
MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3.Cell Mol Neurobiol. 2017; 37(8):1359-1371 [
PubMed]
Related Publications
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The extraordinary invasion of human GBM into adjacent normal brain tissues contributes to treatment failure. However, the mechanisms that control this process remain poorly understood. Increasing evidence has demonstrated that microRNAs are strongly implicated in the migration and invasion of GBM. In this study, we found that microRNA-98 (miR-98) was markedly downregulated in human glioma tissues and cell lines. Functional experiments indicated that restored expression of miR-98 attenuated glioma cell invasion and migration, whereas depletion of miR-98 promoted glioma cell invasion and migration. Subsequent investigation showed that pre-B-cell leukemia homeobox 3 (PBX3), an important transcription factor that controls tumor invasion, was a direct and functional target of miR-98 in GBM cells. Consistently, an orthotopic mouse model also demonstrated the suppressive effects of miR-98 overexpression on tumor invasion and PBX3 expression. Silencing of PBX3 using small interfering RNA inhibited the migratory and invasive capacities of glioma cells, whereas reintroduction of PBX3 into glioma cells reversed the anti-invasive function of miR-98. Furthermore, depletion of PBX3 phenocopied the effects of miR-98 overexpression in vivo. Finally, quantitative real-time polymerase chain reaction results showed that miR-98 was negatively correlated with PBX3 expression in 24 glioma tissues. Thus, we propose that PBX3 modulation by miR-98 has an important role in regulating GBM invasion and may serve as therapeutic target for GBM.
Li B, Zhang S, Shen H, Li C
MicroRNA-144-3p suppresses gastric cancer progression by inhibiting epithelial-to-mesenchymal transition through targeting PBX3.Biochem Biophys Res Commun. 2017; 484(2):241-247 [
PubMed]
Related Publications
MicroRNAs are aberrantly expressed in a wide variety of human cancers. The present study aims to elucidate the effects and molecular mechanisms of miR-144-3p that underlie gastric cancer (GC) development. It was observed that miR-144-3p expression was significantly decreased in GC tissues compared to that in paired non-tumor tissues; moreover, its expression was lower in tissues of advanced stage and larger tumor size, as well as in lymph node metastasis tissues compared to that in control groups. miR-144-3p expression was associated with depth of invasion (P = 0.030), tumor size (P = 0.047), lymph node metastasis (P = 0.047), and TNM stage (P = 0.048). Additionally, miR-144-3p significantly inhibited proliferation, migration, and invasion in GC cells. It also reduced F-actin expression and suppressed epithelial-to-mesenchymal transition (EMT) in GC cells. Furthermore, pre-leukemia transcription factor 3 (PBX3) was a direct target gene of miR-144-3p. PBX3 was overexpressed in GC tissues and promoted EMT in GC cells. The effects of miR-144-3p mimics or inhibitors on cell migration, invasion, and proliferation were reversed by PBX3 overexpression or downregulation respectively. These results suggest that miR-144-3p suppresses GC progression by inhibiting EMT through targeting PBX3.
Acute myeloid leukemia (AML) is a heterogeneous disease comprising a large number of subtypes defined by specific chromosome abnormalities. One such subtype carries the t(6;9)(p22;q34) chromosome rearrangement, which leads to expression of the DEK-NUP214 chimeric gene, and has a particularly poor outcome. To provide a better understanding of the molecular etiology of these relatively rare individual AML variants, it is necessary to generate in vivo models, which can also serve as a means to evaluate targeted therapies based on their specific genetic abnormalities. Here, we describe the development of a human cell AML, generated in CD34+ human hematopoietic progenitor cells xenografted into immunocompromised mice that express human myeloid cell growth factors. Within 6 months, these mice develop a human cell AML with phenotypic characteristics of the primary t(6;9) disease and a CD45+CD13+CD34+CD38+ immunophenotype. Gene expression studies show that members of the HOX family of genes (HOXA9, 10, B3, B4 and PBX3) are highly upregulated in the AML from this mouse model as well as from primary human t(6;9) AML. Gene expression analysis also identified several other significantly disregulated pathways involving KRAS, BRCA1 and ALK, for example. This is the first report of a humanized model of the DEK-NUP214 disease and provides a means to study the development and treatment of this particular subtype of AML.
MicroRNAs (miRNAs) have been shown to function as either oncogenes or tumor suppressors by negatively regulating target genes involved in tumor initiation and progression. In this study, we demonstrated that down-regulation of miR-33a-3p in human primary hepatocellular cancer (HCC) specimens was significantly associated with metastases and poor survival. Over-expression of miR-33a-3p in HepG2 cells remarkably suppressed not only cell growth, migration and invasion, but also tumor growth and metastases in the chick embryo chorioallantoic membrane (CAM) assay, and down-regulated Pre-B-Cell Leukemia Homeobox 3 (PBX3) expression. Conversely, inhibition of miR-33a-3p in Bel-7402 cells resulted in increased of cell growth, spreading and invasion. Furthermore, rescue experiments by over-expression PBX3 completely eliminated the inhibitory effects of miR-33a-3p on tumor growth and metastasis, both in vitro and in vivo. The luciferase assay showed that 3'-untranslated regions (3'-UTRs) of PBX3 were inhibited significantly by miR-33a-3p, while mutations in the miR-33a-3p pairing residues rescued the luciferase expression. Taken together, our findings suggest that miR-33a-3p suppressed the malignant phenotype while also inhibiting PBX3 expression in hepatocellular cancer, implying that miR-33a-3p may be a promising biomarkers and therapy target for HCC intervention.
Ramberg H, Grytli HH, Nygård S, et al.
PBX3 is a putative biomarker of aggressive prostate cancer.Int J Cancer. 2016; 139(8):1810-20 [
PubMed]
Related Publications
There is a great need to identify new and better prognostic and predictive biomarkers to stratify prostate cancer patients for optimal treatment. The aims of this study were to characterize the expression profile of pre-B cell leukemia homeobox (PBX) transcription factors in prostate cancer with an emphasis on investigating whether PBX3 harbours any prognostic value. The expression profile of PBX3 and PBX1 in prostate tissue was determined by immunohistochemical and immunoblot analysis. Furthermore, the expression of PBX3 transcript variants was analyzed by RT-PCR, NanoString Technologies®, and by analyzing RNA sequence data. The potential of PBX3 to predict prognosis, either at mRNA or protein level, was studied in four independent cohorts. PBX3 was mainly expressed in the nucleus of normal prostate basal cells, while it showed cytosolic expression in prostatic intraepithelial neoplasia and cancer cells. We detected four PBX3 transcript variants in prostate tissue. Competing risk regression analysis revealed that high PBX3 expression was associated with slower progression to castration resistant prostate cancer (sub-hazard ratio (SHR) 0.18, 95% CI: 0.081-0.42, p values < 0.001). PBX3 expression had a high predictive accuracy (area under the curve (AUC) = 0.82) when combined with Gleason score and age. Patients undergoing radical prostatectomy, with high levels of PBX3 mRNA, had improved prostate cancer specific survival compared to patients expressing low levels (SHR 0.21, 95% CI: 0.46-0.93, p values < 0.001, and AUC = 0.75). Our findings strongly indicate that PBX3 has potential as a biomarker, both as part of a larger gene panel and as an immunohistochemical marker, for aggressive prostate cancer.
Lu Y, Wu D, Wang J, et al.
miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3.Biochem Biophys Res Commun. 2016; 473(4):1315-1320 [
PubMed]
Related Publications
Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibited tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy.
Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their coexpression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to function as cofactors of HOXA9. However, in this study, we demonstrate that coexpression of PBX3 and MEIS1 (PBX3/MEIS1), without ectopic expression of a HOX gene, is sufficient for transformation of normal mouse hematopoietic stem/progenitor cells in vitro. Moreover, PBX3/MEIS1 overexpression also caused AML in vivo, with a leukemic latency similar to that caused by forced expression of MLL-AF9, the most common form of MLL fusions. Furthermore, gene expression profiling of hematopoietic cells demonstrated that PBX3/MEIS1 overexpression, but not HOXA9/MEIS1, HOXA9/PBX3, or HOXA9 overexpression, recapitulated the MLL-fusion-mediated core transcriptome, particularly upregulation of the endogenous Hoxa genes. Disruption of the binding between MEIS1 and PBX3 diminished PBX3/MEIS1-mediated cell transformation and HOX gene upregulation. Collectively, our studies strongly implicate the PBX3/MEIS1 interaction as a driver of cell transformation and leukemogenesis, and suggest that this axis may play a critical role in the regulation of the core transcriptional programs activated in MLL-rearranged and HOX-overexpressing AML. Therefore, targeting the MEIS1/PBX3 interaction may represent a promising therapeutic strategy to treat these AML subtypes.
Han H, Du Y, Zhao W, et al.
PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells.Nat Commun. 2015; 6:8271 [
PubMed]
Related Publications
Tumour-initiating cells (TICs) are advocated to constitute the sustaining force to maintain and renew fully established malignancy; however, the molecular mechanisms responsible for these properties are elusive. We previously demonstrated that voltage-gated calcium channel α2δ1 subunit marks hepatocellular carcinoma (HCC) TICs. Here we confirm directly that α2δ1 is a HCC TIC surface marker, and identify let-7c, miR-200b, miR-222 and miR-424 as suppressors of α2δ1(+) HCC TICs. Interestingly, all the four miRNAs synergistically target PBX3, which is sufficient and necessary for the acquisition and maintenance of TIC properties. Moreover, PBX3 drives an essential transcriptional programme, activating the expression of genes critical for HCC TIC stemness including CACNA2D1, EpCAM, SOX2 and NOTCH3. In addition, the expression of CACNA2D1 and PBX3 mRNA is predictive of poor prognosis for HCC patients. Collectively, our study identifies an essential signalling pathway that controls the switch of HCC TIC phenotypes.
Hox homeobox transcription factors drive leukemogenesis efficiently only in the presence of Meis or Pbx proteins. Here we show that Pbx3 and Meis1 need to dimerize to support Hox-induced leukemia and we analyze the molecular details of this cooperation. In the absence of Pbx3, Meis1 was highly unstable. As shown by a deletion analysis Meis1 degradation was contingent on a motif coinciding with the Pbx-binding domain. Either deletion of this sequence or binding to Pbx3 prolonged the half-life of Meis1 by preventing its ubiquitination. Meis1 break-down could also be blocked by inhibition of the ubiquitin proteasome system, indicating tight post-transcriptional control. In addition, Meis1 and Pbx3 cooperated genetically as overexpression of Pbx3 induced endogenous Meis1 transcription. These functional interactions translated into in vivo activity. Blocking Meis1/Pbx3 dimerization abrogated the ability to enhance proliferation and colony-forming cell numbers in primary cells transformed by Hoxa9. Furthermore, expression of Meis1 target genes Flt3 and Trib2 was dependent on Pbx3/Meis1 dimerization. This correlated with the requirement of Meis1 to bind Pbx3 in order to form high affinity DNA/Hoxa9/Meis1/Pbx3 complexes in vitro. Finally, kinetics and severity of disease in transplantation assays indicated that Pbx3/Meis1 dimers are rate-limiting factors for Hoxa9-induced leukemia.
Retroperitoneal leiomyoma is a rare benign smooth muscle tumor almost exclusively found in women and with histopathological features similar to uterine leiomyomas. The pathogenesis of retroperitoneal leiomyoma is unclear and next to nothing is known about the cytogenetics and molecular genetics of the tumor. We present here a retroperitoneal leiomyoma with a t(9;22)(q33;q12) as the sole karyotypic aberration. The translocation resulted in an EWSR1-PBX3 fusion gene in which exon 9 of EWSR1 (nucleotide 1320 accession number NM_013986 version 3) was in-frame fused to exon 5 of PBX3 (nucleotide 824 accession number NM_006195 version 5). The EWSR1-PBX3 fusion transcript codes for a 529 amino acids long chimeric EWSR1-PBX3 protein which contains the N-terminal transactivation part of EWSR1 and the homeodomain of PBX3. The present study, together with our previous finding of a retroperitoneal leiomyoma with t(10;17)(q22;q21) as the sole karyotypic aberration and a KAT6B-KANSL1 fusion gene, indicates that retroperitoneal leiomyomas may be characterized by fusion genes coding for chimeric proteins. However, cytogenetic and molecular heterogeneity exists in these tumors and it is too early to tell how many and which different pathways lead to retroperitoneal leiomyomagenesis.
Hájková H, Fritz MH, Haškovec C, et al.
CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients with acute myeloid leukemia.J Hematol Oncol. 2014; 7:66 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Studying DNA methylation changes in the context of structural rearrangements and point mutations as well as gene expression changes enables the identification of genes that are important for disease onset and progression in different subtypes of acute myeloid leukemia (AML) patients. The aim of this study was to identify differentially methylated genes with potential impact on AML pathogenesis based on the correlation of methylation and expression data.
METHODS: The primary method of studying DNA methylation changes was targeted bisulfite sequencing capturing approximately 84 megabases (Mb) of the genome in 14 diagnostic AML patients and a healthy donors' CD34+ pool. Subsequently, selected DNA methylation changes were confirmed by 454 bisulfite pyrosequencing in a larger cohort of samples. Furthermore, we addressed gene expression by microarray profiling and correlated methylation of regions adjacent to transcription start sites with expression of corresponding genes.
RESULTS: Here, we report a novel hypomethylation pattern, specific to CBFB-MYH11 fusion resulting from inv(16) rearrangement that is associated with genes previously described as upregulated in inv(16) AML. We assume that this hypomethylation and corresponding overexpresion occurs in the genes whose function is important in inv(16) leukemogenesis. Further, by comparing all targeted methylation and microarray expression data, PBX3 differential methylation was found to correlate with its gene expression. PBX3 has been recently shown to be a key interaction partner of HOX genes during leukemogenesis and we revealed higher incidence of relapses in PBX3-overexpressing patients.
CONCLUSIONS: We discovered new genomic regions with aberrant DNA methylation that are associated with expression of genes involved in leukemogenesis. Our results demonstrate the potential of the targeted approach for DNA methylation studies to reveal new regulatory regions.
The genetics of myoepithelial tumors (ME) of soft tissue and bone have recently been investigated, with EWSR1-related gene fusions being seen in approximately half of the tumors. The fusion partners of EWSR1 so far described include POU5F1, PBX1, ZNF444 and, in a rare case, ATF1. We investigated by RNA sequencing an index case of EWSR1-rearranged ME of the tibia, lacking a known fusion partner, and identified a novel EWSR1-PBX3 fusion. The fusion was further validated by reverse transcriptase polymerase chain reaction and fluorescence in situ hybridization (FISH). To evaluate if this is a recurrent event, an additional cohort of 22 EWSR1-rearranged ME cases lacking a fusion partner were screened by FISH for abnormalities in PBX3 gene. Thus, two additional cases were identified showing an EWSR1-PBX3 gene fusion. One of them was also intraosseous involving the ankle, while the other occurred in the soft tissue of the index finger. The morphology of the EWSR1-PBX3 fusion positive cases showed similar findings, with nests or sheets of epithelioid to spindle cells in a partially myxoid to collagenous matrix. All three cases showed expression of S100 and EMA by immunohistochemistry. In summary, we report a novel EWSR1-PBX3 gene fusion in a small subset of ME, thereby expanding the spectrum of EWSR1-related gene fusions seen in these tumors. This gene fusion seems to occur preferentially in skeletal ME, with two of the three study cases occurring in intraosseous locations.
Mixed lineage leukemia (MLL) fusion proteins directly activate the expression of key downstream genes such as MEIS1, HOXA9 to drive an aggressive form of human leukemia. However, it is still poorly understood what additional transcriptional regulators, independent of the MLL fusion pathway, contribute to the development of MLL leukemia. Here we show that the transcription factor PU.1 is essential for MLL leukemia and is required for the growth of MLL leukemic cells via the promotion of cell-cycle progression and inhibition of apoptosis. Importantly, PU.1 expression is not under the control of MLL fusion proteins. We further identified a PU.1-governed 15-gene signature, which contains key regulators in the MEIS-HOX program (MEIS1, PBX3, FLT3, and c-KIT). PU.1 directly binds to the genomic loci of its target genes in vivo, and is required to maintain active expression of those genes in both normal hematopoietic stem and progenitor cells and in MLL leukemia. Finally, the clinical significance of the identified PU.1 signature was indicated by its ability to predict survival in acute myelogenous leukemia patients. Together, our findings demonstrate that PU.1 contributes to the development of MLL leukemia, partially via crosstalk with the MEIS/HOX pathway.
Li Y, Sun Z, Zhu Z, et al.
PBX3 is overexpressed in gastric cancer and regulates cell proliferation.Tumour Biol. 2014; 35(5):4363-8 [
PubMed]
Related Publications
The pre-leukemia transcription factor 3 (PBX3) is a member of the PBX family of transcription factors, which is known to increase DNA-binding/transcriptional activity of HOX proteins and regulate genes involved in development. Recently, PBX3 was reported to be involved in a variety of cancers, while its implication in gastric cancer is unclear. This study aimed to investigate its clinical significance and biological function in gastric cancer. PBX3 expression was analyzed in 90 gastric cancer specimens using immunohistochemistry. PBX3 was overexpressed in 30 cases (33.33%). Importantly, PBX3 overexpression positively correlated with advanced invasion depth (p = 0.0017), Clinical stage (p = 0.0127) and grade of tumor differentiation (p = 0.0158). PBX3 was also overexpressed in gastric cancer cell lines. Plasmid transfection was performed in AGS and SGC-7901 gastric cancer cell line with low endogenous PBX3 expression. MTT and colony formation assay were carried out to assess the role of PBX3 in proliferation. PBX3 overexpression in gastric cancer cell lines accelerated cell proliferation rate and colony formation ability, with upregulation of PCNA expression. In addition, matrigel invasion assay showed that PBX3 transfection also increased cell-invading ability. These results validate the role of PBX3 as a clinically relevant oncoprotein and establish PBX3 as a promising therapeutic target of gastric cancer.
The ten-eleven translocation 1 (TET1) gene is the founding member of the TET family of enzymes (TET1/2/3) that convert 5-methylcytosine to 5-hydroxymethylcytosine. Although TET1 was first identified as a fusion partner of the mixed lineage leukemia (MLL) gene in acute myeloid leukemia carrying t(10,11), its definitive role in leukemia is unclear. In contrast to the frequent down-regulation (or loss-of-function mutations) and critical tumor-suppressor roles of the three TET genes observed in various types of cancers, here we show that TET1 is a direct target of MLL-fusion proteins and is significantly up-regulated in MLL-rearranged leukemia, leading to a global increase of 5-hydroxymethylcytosine level. Furthermore, our both in vitro and in vivo functional studies demonstrate that Tet1 plays an indispensable oncogenic role in the development of MLL-rearranged leukemia, through coordination with MLL-fusion proteins in regulating their critical cotargets, including homeobox A9 (Hoxa9)/myeloid ecotropic viral integration 1 (Meis1)/pre-B-cell leukemia homeobox 3 (Pbx3) genes. Collectively, our data delineate an MLL-fusion/Tet1/Hoxa9/Meis1/Pbx3 signaling axis in MLL-rearranged leukemia and highlight TET1 as a potential therapeutic target in treating this presently therapy-resistant disease.
The cytogenetically normal subtype of acute myeloid leukemia is associated with an intermediate risk which complicates therapeutic options. Lower overall HOX/TALE expression appears to correlate with more favorable prognosis/better response to treatment in some leukemias and solid cancer. The functional significance of the associated gene expression and response to chemotherapy is not known. Three independent microarray datasets obtained from large cohorts of patients along with quantitative polymerase chain reaction validation were used to identify a four-gene HOXA/TALE signature capable of prognostic stratification. Biochemical analysis was used to identify interactions between the four encoded proteins and targeted knockdown used to examine the functional importance of sustained expression of the signature in leukemia maintenance and response to chemotherapy. An 11 HOXA/TALE code identified in an intermediate-risk group of patients (n=315) compared to a group with a favorable risk (n=105) was reduced to a four-gene signature of HOXA6, HOXA9, PBX3 and MEIS1 by iterative analysis of independent platforms. This signature maintained the favorable/intermediate risk partition and where applicable, correlated with overall survival in cytogenetically normal acute myeloid leukemia. We further showed that cell growth and function are dependent on maintained levels of these core genes and that direct targeting of HOXA/PBX3 sensitizes cytogenetically normal acute myeloid leukemia cells to standard chemotherapy. Together the data support a key role for HOXA/TALE in cytogenetically normal acute myeloid leukemia and demonstrate that targeting of clinically significant HOXA/PBX3 elements may provide therapeutic benefit to patients with this subtype of leukemia.
Although PBX proteins are known to increase DNA-binding/transcriptional activity of HOX proteins through their direct binding, the functional importance of their interaction in leukemogenesis is unclear.We recently reported that overexpression of a 4-homeobox-gene signature (ie, PBX3/HOXA7/HOXA9/HOXA11) is an independent predictor of poor survival in patients with cytogenetically abnormal acute myeloid leukemia (CA-AML). Here we show that it is PBX3, but not PBX1 or PBX2, that is consistently coexpressed with HOXA9 in various subtypes of CA-AML, particularly MLL-rearranged AML, and thus appears as a potential pathologic cofactor of HOXA9 in CA-AML. We then show that depletion of endogenous Pbx3 expression by shRNA significantly inhibits MLL-fusion-mediated cell transformation, and coexpressed PBX3 exhibits a significantly synergistic effect with HOXA9 in promoting cell transformation in vitro and leukemogenesis in vivo. Furthermore, as a proof of concept, we show that a small peptide, namely HXR9, which was developed to specifically disrupt the interactions between HOX and PBX proteins, can selectively kill leukemic cells with overexpression of HOXA/PBX3 genes. Collectively, our data suggest that PBX3 is a critical cofactor of HOXA9 in leukemogenesis, and targeting their interaction is a feasible strategy to treat presently therapy resistant CA-AML (eg, MLL-rearranged leukemia) in which HOXA/PBX3 genes are overexpressed.
Pilocytic astrocytoma (PA) is a World Health Organization grade I glioma that occurs most commonly in children and young adults. Specific genetic alterations have been described in PA, but the pathogenesis remains poorly understood. We studied microRNA (miRNA) alterations in a large cohort of patients with PA. A total of 43 PA, including 35 sporadic grade I PA, 4 neurofibromatosis-1 (NF1)-associated PA, and 4 PA with pilomyxoid features, as well as 5 nonneoplastic brain controls were examined. BRAF fusion status was assessed in most cases. RNA was examined using the Agilent Human miRNA Microarray V3 platform. Expression of miRNA subsets was validated using quantitative real-time PCR (qRT-PCR) with Taqman probes. Validation of predicted protein targets was performed on tissue microarrays with the use of immunohistochemistry. We identified a subset of miRNAs that were differentially expressed in pediatric PAs versus normal brain tissue: 13 miRNAs were underexpressed, and 20 miRNAs were overexpressed in tumors. Differences were validated by qRT-PCR in a subset, with mean fold change in tumor versus brain of -17 (miR-124), -15 (miR-129), and 19.8 (miR-21). Searching for predicted protein targets in Targetscan, we identified a number of known and putative oncogenes that were predicted targets of miRNA sets relatively underexpressed in PA. Predicted targets with increased expression at the mRNA and/or protein level in PA included PBX3, METAP2, and NFIB. A unique miRNA profile exists in PA, compared with brain tissue. These miRNAs and their targets may play a role in the pathogenesis of PA.
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic malignancies with variable response to treatment. AMLs bearing MLL (mixed lineage leukemia) rearrangements are associated with intermediate or poor survival. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been postulated to be important gene expression regulators virtually in all biological processes, including leukemogenesis. Through a large-scale, genome-wide miRNA expression profiling assay of 85 human AML and 15 normal control samples, we show that among 48 miRNAs that are significantly differentially expressed between MLL- and non-MLL-rearranged AML samples, only one (miR-495) is expressed at a lower level in MLL-rearranged AML than in non-MLL-rearranged AML; meanwhile, miR-495 is also significantly down-regulated in MLL-rearranged AML samples compared with normal control samples. Through in vitro colony-forming/replating assays and in vivo bone marrow transplantation studies, we show that forced expression of miR-495 significantly inhibits MLL-fusion-mediated cell transformation in vitro and leukemogenesis in vivo. In human leukemic cells carrying MLL rearrangements, ectopic expression of miR-495 greatly inhibits cell viability and increases cell apoptosis. Furthermore, our studies demonstrate that PBX3 and MEIS1 are two direct target genes of miR-495, and forced expression of either of them can reverse the effects of miR-495 overexpression on inhibiting cell viability and promoting apoptosis of human MLL-rearranged leukemic cells. Thus, our data indicate that miR-495 likely functions as a tumor suppressor in AML with MLL rearrangements by targeting essential leukemia-related genes.