Gene Summary

Gene:PLAAT3; phospholipase A and acyltransferase 3
Aliases: AdPLA, HRSL3, HRASLS3, HREV107, PLA2G16, PLAAT-3, H-REV107, HREV107-1, HREV107-3, H-REV107-1
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:phospholipase A and acyltransferase 3
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (20)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Pla2g16 protein, mouse
  • MAP Kinase Signaling System
  • Gene Expression Regulation
  • Cancer DNA
  • Ovarian Cancer
  • Intracellular Signaling Peptides and Proteins
  • beta-Galactosidase
  • Enzyme Activation
  • Neoplasm Metastasis
  • Cell Proliferation
  • Response Elements
  • Tsc2 protein, mouse
  • Lymphatic Metastasis
  • Base Sequence
  • Cell Cycle
  • Tumor Suppressor Gene
  • Chromosome 11
  • Loss of Heterozygosity
  • Tissue Distribution
  • Down-Regulation
  • Bone Cancer
  • Cancer Gene Expression Regulation
  • Transcription Factors
  • Osteosarcoma
  • Phospholipases A2, Calcium-Independent
  • Up-Regulation
  • Drug Resistance
  • Signal Transduction
  • Cleft Palate
  • Young Adult
  • CCNA1
  • Adipocytes
  • Apoptosis
  • Genome-Wide Association Study
  • Angiomyolipoma
  • Polymerase Chain Reaction
  • Gene Expression Profiling
  • DNA Primers
  • Heterografts
  • Nasopharyngeal Cancer
  • Prostate Cancer
  • Tumor Suppressor Proteins
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PLA2G16 (cancer-related)

Xie XN, Yu J, Zhang LH, et al.
Relationship between polymorphisms of the lipid metabolism-related gene PLA2G16 and risk of colorectal cancer in the Chinese population.
Funct Integr Genomics. 2019; 19(2):227-236 [PubMed] Related Publications
This study aimed to investigate the relationship between polymorphisms in the lipid metabolism-related gene PLA2G16 encoding Group XVI phospholipase A2 and the risk of colorectal cancer (CRC) in the Chinese population. A total of 185 patients with CRC and 313 healthy controls were enrolled. Thirteen single nucleotide polymorphisms (SNPs) of PLA2G16 were genotyped with SNPscan™. Linkage disequilibrium and haplotypes were analysed using Haploview software. Multivariate logistic regression was used to determine the association between the various genotypes and CRC risk. We identified five PLA2G16 SNPs (rs11600655, rs3809072, rs3809073, rs640908 and rs66475048) that were associated with CRC risk after adjusting for age, sex and body mass index. Two haplotypes (CTC and GGA) of rs11600655, rs3809073 and rs3809072, were relevant to CRC risk. The rs11600655 polymorphism was also associated with lymph node metastasis and CRC staging, while rs3809073 and rs3809072 may affect transcriptional regulation of PLA2G16 by altering transcription factor binding. These findings suggest that PLA2G16 polymorphisms-especially CTC and GGA haplotypes-increase CRC susceptibility. Importantly, we showed that the rs11600655 CC, rs640908 CT and rs66475048 GA genotypes are independent risk factors for CRC in the Chinese population.

Wang H, Qiu T, Shi J, et al.
Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer.
Mol Med Rep. 2016; 13(3):2110-6 [PubMed] Free Access to Full Article Related Publications
The present study aimed to investigate the molecular mechanisms underlying non‑syndromic cleft lip, with or without cleft palate (NSCL/P), and the association between this disease and cancer. The GSE42589 data set was downloaded from the Gene Expression Omnibus database, and contained seven dental pulp stem cell samples from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and construction of a pathway interaction network. Subsequently, cancer genes were obtained from six cancer databases, and the cancer‑associated protein‑protein interaction network for the DEGs was visualized using Cytoscape. In total, 452 upregulated and 1,288 downregulated DEGs were screened. The upregulated DEGs were significantly enriched in the arachidonic acid metabolism pathway, including PTGDS, CYP4F2 and PLA2G16; and transforming growth factor (TGF)‑β signaling pathway, including SMAD3 and TGFB2. The downregulated DEGs were distinctly involved in the pathways of DNA replication, including MCM2 and POLA1; cell cycle, including CDK1 and STAG1; and viral carcinogenesis, including PIK3CA and HIST1H2BF. Furthermore, the pathways of cell cycle and viral carcinogenesis, with higher degrees of interaction were found to interact with other pathways, including DNA replication, transcriptional misregulation in cancer, and the TGF‑β signaling pathway. Additionally, TP53, CDK1, SMAD3, PIK3R1 and CASP3, with higher degrees, interacted with the cancer genes. In conclusion, the DEGs for NSCL/P were implicated predominantly in the TGF‑β signaling pathway, the cell cycle and in viral carcinogenesis. The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were found to be associated, not only with NSCL/P, but also with cancer. These results may contribute to a better understanding of the molecular mechanisms of NSCL/P.

Liang S, Ren Z, Han X, et al.
PLA2G16 Expression in Human Osteosarcoma Is Associated with Pulmonary Metastasis and Poor Prognosis.
PLoS One. 2015; 10(5):e0127236 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Osteosarcoma is the most frequent type of malignant bone tumor in children and adolescents and is associated with a high propensity for lung metastasis. Recent experiments have indicated that PLA2G16 contributes to osteosarcoma progression and metastasis in both mouse and human osteosarcoma cell lines. The aim of this study was to compare the expression of PLA2G16 in non-metastatic and metastatic osteosarcomas to determine whether PLA2G16 expression can serve as a biomarker of osteosarcoma prognosis and metastasis.
METHODS: Quantitative real-time PCR was used to examine PLA2G16 mRNA in primary osteosarcoma patients (18 patients without metastases and 17 patients with metastases), and immunohistochemistry (IHC) staining of PLA2G16 was performed on tissue microarrays from 119 osteosarcoma patients. Tumor metastatic behavior and survival of the patients were followed up for a minimum of 36 months and a maximum of 171 months. The prognostic value of PLA2G16 expression was evaluated by the Kaplan-Meier method and a log-rank test. Multivariate Cox regression analysis was used to identify significant independent prognostic factors.
RESULTS: Osteosarcoma patients with metastasis showed a higher expression of PLA2G16 at both the mRNA and protein levels (both at P values< 0.05) than did patients without metastasis. Osteosarcoma patients with positive IHC staining of PLA2G16 expression at primary sites had shorter overall survival and metastasis-free survival (both at P values <0.02). Moreover, multivariate Cox analysis identified PLA2G16 expression as an independent prognostic factor to predict poor overall survival and metastasis-free survival (both P values < 0.03).
CONCLUSIONS: This study indicated that PLA2G16 expression is a significant prognostic factor in primary osteosarcoma patients for predicting the development of metastases and poor survival.

Li C, Zhang E, Sun Y, et al.
Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis.
PLoS One. 2014; 9(10):e104809 [PubMed] Free Access to Full Article Related Publications
Tuberous sclerosis syndrome (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR), and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2) is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16) in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2) and prostacyclin (PGI2) in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs), rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP), a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an important role in promoting tumorigenesis and disease progression by modulating the production of prostaglandins and may serve as a potential therapeutic target in TSC and LAM.

Xiong S, Tu H, Kollareddy M, et al.
Pla2g16 phospholipase mediates gain-of-function activities of mutant p53.
Proc Natl Acad Sci U S A. 2014; 111(30):11145-50 [PubMed] Free Access to Full Article Related Publications
p53(R172H/+) mice inherit a p53 mutation found in Li-Fraumeni syndrome and develop metastatic tumors at much higher frequency than p53(+/-) mice. To explore the mutant p53 metastatic phenotype, we used expression arrays to compare primary osteosarcomas from p53(R172H/+) mice with metastasis to osteosarcomas from p53(+/-) mice lacking metastasis. For this study, 213 genes were differentially expressed with a P value <0.05. Of particular interest, Pla2g16, which encodes a phospholipase that catalyzes phosphatidic acid into lysophosphatidic acid and free fatty acid (both implicated in metastasis), was increased in p53(R172H/+) osteosarcomas. Functional analyses showed that Pla2g16 knockdown decreased migration and invasion in mutant p53-expressing cells, and vice versa: overexpression of Pla2g16 increased the invasion of p53-null cells. Furthermore, Pla2g16 levels were increased upon expression of mutant p53 in both mouse and human osteosarcoma cell lines, indicating that Pla2g16 is a downstream target of the mutant p53 protein. ChIP analysis revealed that several mutant p53 proteins bind the Pla2g16 promoter at E26 transformation-specific (ETS) binding motifs and knockdown of ETS2 suppressed mutant p53 induction of Pla2g16. Thus, our study identifies a phospholipase as a transcriptional target of mutant p53 that is required for metastasis.

Su B, Gao L, Baranowski C, et al.
A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer.
PLoS One. 2014; 9(7):e101411 [PubMed] Free Access to Full Article Related Publications
Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.

Wu CC, Shyu RY, Wang CH, et al.
Involvement of the prostaglandin D2 signal pathway in retinoid-inducible gene 1 (RIG1)-mediated suppression of cell invasion in testis cancer cells.
Biochim Biophys Acta. 2012; 1823(12):2227-36 [PubMed] Related Publications
Retinoid-inducible gene 1 (RIG1), also called tazarotene-induced gene 3, belongs to the HREV107 gene family, which contains five members in humans. RIG1 is expressed in high levels in well-differentiated tissues, but its expression is decreased in cancer tissues and cancer cell lines. We found RIG1 to be highly expressed in testicular cells. When RIG1 was expressed in NT2/D1 testicular cancer cells, neither cell death nor cell viability was affected. However, RIG1 significantly inhibited cell migration and invasion in NT2/D1 cells. We found that prostaglandin D2 synthase (PTGDS) interacted with RIG1 using yeast two-hybrid screens. Further, we found PTGDS to be co-localized with RIG1 in NT2/D1 testis cells. In RIG1-expressing cells, elevated levels of prostaglandin D2 (PGD2), cAMP, and SRY-related high-mobility group box 9 (SOX9) were observed. This indicated that RIG1 can enhance PTGDS activity. Silencing of PTGDS expression significantly decreased RIG1-mediated cAMP and PGD2 production. Furthermore, silencing of PTGDS or SOX9 alleviated RIG1-mediated suppression of migration and invasion. These results suggest that RIG1 will suppress cell migration/invasion through the PGD2 signaling pathway. In conclusion, RIG1 can interact with PTGDS to enhance its function and to further suppress NT2/D1 cell migration and invasion. Our study suggests that RIG1-PGD2 signaling might play an important role in cancer cell suppression in the testis.

Mason SA, Cozzi SJ, Pierce CJ, et al.
The induction of senescence-like growth arrest by protein kinase C-activating diterpene esters in solid tumor cells.
Invest New Drugs. 2010; 28(5):575-86 [PubMed] Related Publications
We previously identified the induction of senescence in melanoma cell lines sensitive to diterpene esters, indicating a therapeutic potential. Here we compared the cytostatic effects of two diterpene esters: the prototypic PKC-activating drug TPA (12-O-tetradecanoylphorbol-13-acetate), and the novel compound PEP008 (20-O-acetyl-ingenol-3-angelate) in cell lines derived from melanoma, breast cancer and colon cancer. The diterpene esters induced permanent growth arrest with characteristics of senescence in a subset of cell lines in all three solid tumor models at 100-1000 ng/ml. Use of the PKC inhibitor bisindolylmaleimide-l demonstrated that activation of PKC was required for growth arrest. Full genome expression profiling identified pivotal genes involved in DNA synthesis and cell cycle control down-regulated by treatment in all three sensitive tumor models. At the protein level, prolonged down-regulation of E2F-1 and proliferating cell nuclear antigen (PCNA), sustained expression of p21(WAF1/CIP1) and dephosphorylation of retinoblastoma (Rb) occurred in the sensitive cells. Additionally, the type II tumor suppressor HRASLS3, which has a role in mitogen-activated protein kinase (MAPK) pathway suppression, was constitutively elevated in cell lines resistant to the senescence effects compared to their sensitive counterparts. Together, these results demonstrate that both TPA and the novel PKC-activating drug PEP008 induce growth arrest with characteristics of senescence in solid tumor cell lines derived from a variety of tissue types, and by a similar mechanism. PKC-activating diterpene esters may therefore have therapeutic potential in a subset of breast cancer, colon cancer and melanoma tumors.

Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, et al.
Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma.
Oral Oncol. 2008; 44(4):400-6 [PubMed] Related Publications
In search for putative tumor suppressor genes critical of nasopharyngeal carcinoma (NPC), we analyzed the available information from the expression profiling in conjunction with the comprehensive alleotyping published data relevant to this malignancy. Integration of this information suggested eight potential candidate tumor suppressor genes, CCNA1, HRASLS3, RARRES1, CLMN, EML1, TSC22, LOH11CR2A and MCC. However, to confirm the above observations, we chose to investigate if promoter hypermethylation of these candidate genes would be one of the mechanisms responsible for the de-regulation of gene expression in NPC in addition to the loss of genetic materials. In this study, we detected consistent hypermethylation of the 5' element of CCNA1, RARRES1, and HRASLS in NPC tissues with prevalence of 48%, 51%, and 17%, respectively. Moreover, we found a similar profile of promoter hypermethylation in primary cultured NPC cells but none in normal nasopharyngeal epithelium or leukocytes, which further substantiate our hypothesis. Our data indicate that CCNA1, RARRES1, and HRASLS3 may be the putative tumor suppressor genes in NPC.

Nazarenko I, Schäfer R, Sers C
Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells.
J Cell Sci. 2007; 120(Pt 8):1393-404 [PubMed] Related Publications
HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the alpha-isoform of the regulatory subunit A of protein phosphatase 2A (PR65alpha) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65alpha was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65alpha, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65alpha and induction of programmed cell death. This suggests that the negative impact of HRSL3 onto PP2A activity is important for the HRSL3 pro-apoptotic function and indicates a role of PP2A in survival of human ovarian carcinomas. The analysis of distinct PP2A target molecules revealed PKCzeta as being involved in HRSL3 action. These data implicate HRSL3 as a signaling regulatory molecule, which is functionally involved in the oncogenic network mediating growth and survival of ovarian cancer cells.

Cozzi SJ, Parsons PG, Ogbourne SM, et al.
Induction of senescence in diterpene ester-treated melanoma cells via protein kinase C-dependent hyperactivation of the mitogen-activated protein kinase pathway.
Cancer Res. 2006; 66(20):10083-91 [PubMed] Related Publications
The diterpene ester PEP005 is a novel anticancer agent that activates protein kinase C (PKC) and induces cell death in melanoma at high doses. We now describe the in vitro cytostatic effects of PEP005 and the diterpene ester phorbol 12-myristate 13-acetate, observed in 20% of human melanoma cell lines. Primary cultures of normal human neonatal fibroblasts were resistant to growth arrest, indicating a potential for tumor selectivity. Sensitive cell lines were induced to senesce and exhibited a G(1) and G(2)-M arrest. There was sustained expression of p21(WAF1/CIP1), irreversible dephosphorylation of the retinoblastoma protein, and transcriptional silencing of E2F-responsive genes in sensitive cell lines. Activation of mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) 1/2 by PKC was required for diterpene ester-induced senescence. Expression profiling revealed that the MAP kinase inhibitor HREV107 was expressed at a higher transcript level in resistant compared with sensitive cell lines. We propose that activation of PKC overstimulates the RAS/RAF/MEK/ERK pathway, resulting in molecular changes leading to the senescent phenotype.

Nazarenko I, Kristiansen G, Fonfara S, et al.
H-REV107-1 stimulates growth in non-small cell lung carcinomas via the activation of mitogenic signaling.
Am J Pathol. 2006; 169(4):1427-39 [PubMed] Free Access to Full Article Related Publications
H-REV107-1, a known member of the class II tumor suppressor gene family, is involved in the regulation of differentiation and survival. We analyzed H-REV107-1 in non-small cell lung carcinomas, in normal lung, and in immortalized and tumor-derived cell lines. Sixty-eight percent of lung tumors revealed positive H-REV107-1-specific staining. Furthermore, survival analysis demonstrated a significant association of cytoplasmic H-REV107-1 with decreased patient survival. This suggested that H-REV107-1, known as a tumor suppressor, plays a different role in non-small cell lung carcinomas. Knock-down of H-REV107-1 expression in lung carcinoma cells inhibited anchorage-dependent and anchorage-independent growth whereas overexpression of H-REV107-1 induced tumor cell proliferation. Consistent with results of the survival analysis, cytoplasmic localization of the protein was essential for this growth-inducing function. Analysis of signaling pathways potentially involved in this process demonstrated that overexpression of H-REV107-1 stimulated RAS-GTPase activity, ERK1,2 phosphorylation, and caveolin-1 expression in the cell lines analyzed. These results indicate that H-REV107-1 is deficient in its function as a tumor suppressor in non-small cell lung carcinomas and is required for proliferation and anchorage-independent growth in cells expressing high levels of the protein, thus contributing to tumor progression in a subset of non-small cell lung carcinomas.

Sers C, Husmann K, Nazarenko I, et al.
The class II tumour suppressor gene H-REV107-1 is a target of interferon-regulatory factor-1 and is involved in IFNgamma-induced cell death in human ovarian carcinoma cells.
Oncogene. 2002; 21(18):2829-39 [PubMed] Related Publications
H-rev107-1 is a growth inhibitory RAS target gene capable of suppressing anchorage independent growth in vitro and in vivo. Using a tumour tissue array with 241 matched tumour and normal tissue cDNA pools, we found down-regulation of H-REV107-1 in 7 out of 14 ovary-derived cDNAs. RT-PCR analysis and immunohistochemical investigation confirmed expression of H-REV107-1 in normal ovarian epithelial cells but down-regulation in high grade ovarian carcinomas. H-REV107-1 is also strongly expressed in immortalized rat and human ovarian epithelial cells in vitro, but suppressed in transformed cells by two different mechanisms. KRAS-transformed rat ovarian cells and PA1 teratocarcinoma cells, reversibly repress H-REV107-1 via MAP/ERK signaling. In contrast, treatment of A27/80 and OVCAR-3 epithelial ovarian cancer cells with IFNgamma stimulated H-REV107-1 expression. In NIH3T3 cells harbouring an estrogen-inducible IRF-1, H-rev107-1 is directly induced after activation of IRF-1, indicating that H-rev107-1 is a target of IRF-1. Stimulation of H-REV107-1 expression was also observed in ovarian epithelial cells suggesting that IRF-1 is involved in H-REV107-1 regulation in human ovarian epithelium. In the IFNgamma-sensitive cell line A27/80, H-REV107-1 suppresses colony formation. A27/80 and OVCAR-3 cells overexpressing H-REV107-1 protein underwent apoptosis. These results demonstrate down-regulation of the class II tumour suppressor H-REV107-1 in human ovarian carcinomas and suggest an involvement of H-REV107-1 in interferon-dependent cell death.

Siegrist S, Féral C, Chami M, et al.
hH-Rev107, a class II tumor suppressor gene, is expressed by post-meiotic testicular germ cells and CIS cells but not by human testicular germ cell tumors.
Oncogene. 2001; 20(37):5155-63 [PubMed] Free Access to Full Article Related Publications
By systematic analysis of a human testis library, we have isolated the hH-Rev107-3 cDNA, identical to hH-Rev107-1 cDNA, which was previously described as a class II tumor suppressor gene. In this study, two transcripts (1 and 0.8 kb) were detected by Northern blot in all human tissues, excepted in thymus. The strongest expression was found in testis, skeletal muscle and heart. These two mRNA are probably transcribed from only one gene that we mapped to the q12-q13 region of the chromosome 11. In human testis, hH-Rev107 gene expression was localized, by in situ hybridization, within the round spermatids. To investigate a possible role for hH-Rev107 protein in testicular malignant growth, we examined the expression of this gene in germ cell tumors. A strong hH-Rev107 gene expression was observed in normal testis as well as in samples with preinvasive carcinoma in situ but was completely absent in overt tumors, both seminomas and non-seminomas. By in situ hybridization, CIS was found hH-Rev107 positive and tumor negative. A semi-quantitative assessment of hH-Rev107 mRNA level in testicular germ cell tumors, by RT-PCR, exhibited a ninefold decrease in the gene expression. No gross structural aberrations of hH-Rev107 gene were detected in these human primary tumors. The results suggest that down-regulation of hH-Rev107 may be associated with invasive progression of testicular germ cell tumors.

Huang SL, Shyu RY, Yeh MY, Jiang SY
Cloning and characterization of a novel retinoid-inducible gene 1(RIG1) deriving from human gastric cancer cells.
Mol Cell Endocrinol. 2000; 159(1-2):15-24 [PubMed] Related Publications
Retinoids exert wide-spectrum anti-tumor activities, which are mediated via the induction of growth arrest, differentiation or apoptosis. To determine whether the effects of retinoids are mediated by specific gene activation or repression, SC-M1 CL23 gastric cancer cells, pretreated with either vehicle alone or all-trans retinoic acid (10 microM) for 1 day, were analyzed using the technique of differential display. A novel retinoid-inducible gene 1 (RIG1) was isolated. The full-length RIG1 cDNA contained 768 base pairs and encoded a protein of 164 amino acids with a molecular weight of 18 kDa. The RIG1 gene was ubiquitously expressed in normal tissue, and its expression was positively associated with cellular density. Nucleotide sequence analysis demonstrated that the RIG1 gene was similar to a recently-isolated TIG3 gene, and displayed 54% nucleotide sequence homology with a type II tumor suppressor gene H-REV-107-1. RIG1 cDNA, however, contained an extra 32 base pairs located at its 5' end and revealed three base pair differences for the remaining sequences leading to two amino acids substitution between the two encoded proteins. All-trans retinoic acid increased the level of RIG1 mRNA in a time- and concentration-dependent manner in SC-M1 CL23 gastric cancer cells. This was not observed for the H-REV-107-1 gene. The RIG1 regulation was related to cellular retinoid sensitivity. Both retinoic acid receptor alpha- and retinoic acid receptor gamma-selective agonists increased RIG1 mRNA level, and the retinoid x receptor-selective agonist potentiated this regulation. In conclusion, the cDNA of a novel retinoid-inducible gene RIG1 has been cloned. This gene is regulated by retinoic acid through the heterodimer of retinoic acid receptor and retinoid x receptor.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PLA2G16, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999