Gene Summary

Gene:DUSP4; dual specificity phosphatase 4
Aliases: TYP, HVH2, MKP2, MKP-2
Summary:The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK1, ERK2 and JNK, is expressed in a variety of tissues, and is localized in the nucleus. Two alternatively spliced transcript variants, encoding distinct isoforms, have been observed for this gene. In addition, multiple polyadenylation sites have been reported. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:dual specificity protein phosphatase 4
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcriptional Activation
  • Drug Resistance
  • MAP Kinase Signaling System
  • Mutation
  • Cell Proliferation
  • Chromosome 8
  • Proto-Oncogene Proteins p21(ras)
  • Enzyme Activation
  • Genome-Wide Association Study
  • ras Proteins
  • Case-Control Studies
  • Smoking
  • Stomach Cancer
  • Mitogen-Activated Protein Kinases
  • Biomarkers, Tumor
  • Spain
  • Epidermal Growth Factor Receptor
  • Signal Transduction
  • Dual Specificity Phosphatase 6
  • Apoptosis
  • Epigenetics
  • Mitogen-Activated Protein Kinase Phosphatases
  • Up-Regulation
  • Lung Cancer
  • Transfection
  • Genotype
  • Single Nucleotide Polymorphism
  • Gene Expression Profiling
  • Transcription
  • Vanadates
  • DNA Methylation
  • Promoter Regions
  • Xenograft Models
  • RAS Genes
  • Tumor Suppressor Gene
  • Protein Tyrosine Phosphatases
  • Breast Cancer
  • Messenger RNA
  • Dual-Specificity Phosphatases
  • Colorectal Cancer
  • Cancer Gene Expression Regulation
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DUSP4 (cancer-related)

Boulding T, Wu F, McCuaig R, et al.
Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer.
PLoS One. 2016; 11(2):e0148065 [PubMed] Free Access to Full Article Related Publications
Dual-specificity phosphatases (DUSPs) dephosphorylate threonine/serine and tyrosine residues on their substrates. Here we show that DUSP1, DUSP4, and DUSP6 are involved in epithelial-to-mesenchymal transition (EMT) and breast cancer stem cell (CSC) regulation. DUSP1, DUSP4, and DUSP6 are induced during EMT in a PKC pathway signal-mediated EMT model. We show for the first time that the key chromatin-associated kinase PKC-θ directly regulates a subset of DUSP family members. DUSP1, DUSP4, and DUSP6 globally but differentially co-exist with enhancer and permissive active histone post-translational modifications, suggesting that they play distinct roles in gene regulation in EMT/CSCs. We show that nuclear DUSP4 associates with the key acetyltransferase p300 in the context of the chromatin template and dynamically regulates the interplay between two key phosphorylation marks: the 1834 (active) and 89 (inhibitory) residues central to p300's acetyltransferase activity. Furthermore, knockdown with small-interfering RNAs (siRNAs) shows that DUSP4 is required for maintaining H3K27ac, a mark mediated by p300. DUSP1, DUSP4, and DUSP6 knockdown with siRNAs shows that they participate in the formation of CD44hi/CD24lo/EpCAM+ breast CSCs: DUSP1 knockdown reduces CSC formation, while DUSP4 and DUSP6 knockdown enhance CSC formation. Moreover, DUSP6 is overexpressed in patient-derived HER2+ breast carcinomas compared to benign mammary tissue. Taken together, these findings illustrate novel pleiotropic roles for DUSP family members in EMT and CSC regulation in breast cancer.

Malouf GG, Tahara T, Paradis V, et al.
Methylome sequencing for fibrolamellar hepatocellular carcinoma depicts distinctive features.
Epigenetics. 2015; 10(9):872-81 [PubMed] Free Access to Full Article Related Publications
With the goal of studying epigenetic alterations in fibrolamellar hepatocellular carcinoma (FLC) and establish an associated DNA methylation signature, we analyzed LINE-1 methylation in a cohort of FLC and performed next-generation sequencing of DNA methylation in a training set of pure-FLCs and non-cirrhotic hepatocellular carcinomas (nc-HCC). DNA methylation was correlated with gene expression. Furthermore, we established and validated an epigenetic signature differentiating pure-FLC from other HCCs. LINE-1 methylation correlated with shorter recurrence-free survival and overall survival in resected pure-FLC patients. Unsupervised clustering using CG sites located in islands distinguished pure-FLC from nc-HCC. Major DNA methylation changes occurred outside promoters, mainly in gene bodies and intergenic regions located in the vicinity of liver developmental genes (i.e., SMARCA4 and RXRA). Partially methylated domains were more prone to DNA methylation changes. Furthermore, we identified several putative tumor suppressor genes (e.g., DLEU7) and oncogenes (e.g., DUSP4). While ∼ 70% of identified gene promoters gaining methylation were marked by bivalent histone marks (H3K4me3/H3K27me3) in embryonic stem cells, ∼ 70% of those losing methylation were marked by H3K4me3. Finally, we established a pure FLC DNA methylation signature and validated it in an independent dataset. Our analysis reveals a distinct epigenetic signature of pure FLC as compared to nc-HCC, with DNA methylation changes occurring in the vicinity of liver developmental genes. These data suggest new options for targeting FLC based on cancer epigenome aberrations.

Qiao HP, Zhang CY, Yu ZL, et al.
Genetic variants identified by GWAS was associated with colorectal cancer in the Han Chinese population.
J Cancer Res Ther. 2015 Apr-Jun; 11(2):468-70 [PubMed] Related Publications
AIM OF STUDY: Colorectal cancer (CRC), now the third most common cancer across the world, is known to aggregate in families. Recently, genome-wide association studies have identified two single nucleotide polymorphisms (SNP) associated with CRC in Caucasians.
MATERIALS AND METHODS: To validate whether the same variations conferred risk to CRC in the Han Chinese population, we genotyped 760 individuals (380 controls and 380 cases samples) recruited from the Han Chinese origin.
RESULTS: We found rs11987193 in 8p12 (P = 0.0472 after correction, OR = 0.751) was significantly associated with CRC but rs12080929 in 1p33 (P = 0.0650 after correction, OR = 0.750) was not.
CONCLUSION: Our findings supported that rs11987193 is a susceptibility locus for CRC, and gene DUSP4 was possible to play a role in the pathology of CRC.

Gleize V, Alentorn A, Connen de Kérillis L, et al.
CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas.
Ann Neurol. 2015; 78(3):355-74 [PubMed] Related Publications
OBJECTIVE: CIC gene is frequently mutated in oligodendroglial tumors with 1p19q codeletion. However, clinical and biological impact remain poorly understood.
METHODS: We sequenced the CIC gene on 127 oligodendroglial tumors (109 with the 1p19q codeletion) and analyzed patients' outcome. We compared magnetic resonance imaging, transcriptomic profile, and CIC protein expression of CIC wild-type (WT) and mutant gliomas. We compared the level of expression of CIC target genes on Hs683-IDH1(R132H) cells transfected with lentivirus encoding mutant and WT CIC.
RESULTS: We found 63 mutations affecting 60 of 127 patients, virtually all 1p19q codeleted and IDH mutated (59 of 60). In the 1p19q codeleted gliomas, CIC mutations were associated with a poorer outcome by uni- (p = 0.001) and multivariate analysis (p < 0.016). CIC mutation prognostic impact was validated on the TCGA cohort. CIC mutant grade II codeleted gliomas spontaneously grew faster than WTs. Transcriptomic analysis revealed an enrichment of proliferative pathways and oligodendrocyte precursor cell gene expression profile in CIC mutant gliomas, with upregulation of normally CIC repressed genes ETV1, ETV4, ETV5, and CCND1. Various missense mutations resulted in CIC protein expression loss. Moreover, a truncating CIC mutation resulted in a defect of nuclear targeting of CIC protein to the nucleus in a human glioma cell line expressing IDH1(R132H) and overexpression of CCND1 and other new target genes of CIC, such as DUSP4 and SPRED1.
INTERPRETATION: CIC mutations result in protein inactivation with upregulation of CIC target genes, activation of proliferative pathways, inhibition of differentiation, and poorer outcome in patients with a 1p19q codeleted glioma.

Schmid CA, Robinson MD, Scheifinger NA, et al.
DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma.
J Exp Med. 2015; 212(5):775-92 [PubMed] Free Access to Full Article Related Publications
The epigenetic dysregulation of tumor suppressor genes is an important driver of human carcinogenesis. We have combined genome-wide DNA methylation analyses and gene expression profiling after pharmacological DNA demethylation with functional screening to identify novel tumor suppressors in diffuse large B cell lymphoma (DLBCL). We find that a CpG island in the promoter of the dual-specificity phosphatase DUSP4 is aberrantly methylated in nodal and extranodal DLBCL, irrespective of ABC or GCB subtype, resulting in loss of DUSP4 expression in 75% of >200 examined cases. The DUSP4 genomic locus is further deleted in up to 13% of aggressive B cell lymphomas, and the lack of DUSP4 is a negative prognostic factor in three independent cohorts of DLBCL patients. Ectopic expression of wild-type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. Pharmacological or dominant-negative JNK inhibition restricts DLBCL survival in vitro and in vivo and synergizes strongly with the Bruton's tyrosine kinase inhibitor ibrutinib. Our results indicate that DLBCL cells depend on JNK signaling for survival. This finding provides a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, ideally in synthetic lethal combinations with inhibitors of chronic active B cell receptor signaling.

Slattery ML, Lundgreen A, John EM, et al.
MAPK genes interact with diet and lifestyle factors to alter risk of breast cancer: the Breast Cancer Health Disparities Study.
Nutr Cancer. 2015; 67(2):292-304 [PubMed] Free Access to Full Article Related Publications
Mitogen-activated protein kinases (MAPK) are integration points for multiple biochemical signals. We evaluated 13 MAPK genes with breast cancer risk and determined if diet and lifestyle factors mediated risk. Data from 3 population-based case-control studies conducted in Southwestern United States, California, and Mexico included 4183 controls and 3592 cases. Percent Indigenous American (IA) ancestry was determined from 104 ancestry informative markers. The adaptive rank truncated product (ARTP) was used to determine the significance of each gene and the pathway with breast cancer risk, by menopausal status, genetic ancestry level, and estrogen receptor (ER)/progesterone receptor (PR) strata. MAP3K9 was associated with breast cancer overall (P(ARTP) = 0.02) with strongest association among women with the highest IA ancestry (P(ARTP) = 0.04). Several SNPs in MAP3K9 were associated with ER+/PR+ tumors and interacted with dietary oxidative balance score (DOBS), dietary folate, body mass index (BMI), alcohol consumption, cigarette smoking, and a history of diabetes. DUSP4 and MAPK8 interacted with calories to alter breast cancer risk; MAPK1 interacted with DOBS, dietary fiber, folate, and BMI; MAP3K2 interacted with dietary fat; and MAPK14 interacted with dietary folate and BMI. The patterns of association across diet and lifestyle factors with similar biological properties for the same SNPs within genes provide support for associations.

Cushman SM, Jiang C, Hatch AJ, et al.
Gene expression markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from CALGB 80203 (Alliance).
Clin Cancer Res. 2015; 21(5):1078-86 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Formalin-fixed, paraffin-embedded tumor samples from CALGB 80203 were analyzed for expression of EGFR axis-related genes to identify prognostic or predictive biomarkers for cetuximab treatment.
PATIENTS AND METHODS: Patients (238 total) with first-line metastatic colorectal cancer (mCRC) were randomized to FOLFOX or FOLFIRI chemotherapy ± cetuximab. qRT-PCR analyses were conducted on tissues from 103 patients at baseline to measure gene expression levels of HER-related genes, including amphiregulin (AREG), betacellulin (BTC), NT5E (CD73), DUSP4, EGF, EGFR, epigen (EPGN), epiregulin (EREG), HBEGF, ERBB2 (HER2), ERBB3 (HER3), ERBB4 (HER4), PHLDA1, and TGFA. The interactions between expression levels and treatment with respect to progression-free survival (PFS) and overall survival (OS) were modeled using multiplicative Cox proportional hazards models.
RESULTS: High tumor mRNA levels of HER2 [hazard ratio (HR), 0.64; P = 0.002] and EREG (HR, 0.89; P = 0.016) were prognostic markers associated with longer PFS across all patients. HER3 and CD73 expression levels were identified as potential predictive markers of benefit from cetuximab. In KRAS wild-type (WT) tumors, low HER3 expression was associated with longer OS from cetuximab treatment, whereas high HER3 expression was associated with shorter OS from cetuximab treatment (chemo + cetuximab: HR, 1.15; chemo-only: HR, 0.48; Pinteraction = 0.029). High CD73 expression was associated with longer PFS from cetuximab treatment in patients with KRAS-WT (chemo + cetuximab: HR, 0.91; chemo-only: HR, 1.57; Pinteraction = 0.026) and KRAS-mutant (Mut) tumors (chemo + cetuximab: HR, 0.80; chemo-only: HR, 1.29; P = 0.025).
CONCLUSIONS: Gene expression of HER3 and CD73 was identified as a potential predictive marker for cetuximab. These data implicate HER axis signaling and immune modulation as potential mechanisms of cetuximab action and sensitivity.

Guan G, Zhang D, Zheng Y, et al.
microRNA-423-3p promotes tumor progression via modulation of AdipoR2 in laryngeal carcinoma.
Int J Clin Exp Pathol. 2014; 7(9):5683-91 [PubMed] Free Access to Full Article Related Publications
Despite of the variety of combined modality treatments for laryngeal carcinoma have been introduced, the distance recurrence rate and 5-year overall survival rate over the past decades are still the major issues, underlining the importance to better understand the biological bases that contribute to disease progression. Here, we reported that miR-423-3p overexpressed in primary laryngeal carcinoma cell line where it plays a critical role in tumor progression. Suppression of miR-423-3p expression resulted in decreasing cell proliferation, clonogenicity, cell migration and invasion. By using in silico prediction algorithms for target identification, AdipoR2 (adiponectin receptor 2) and DUSP4 (MAP kinase phosphatase 2) were identified to be potential targets of miR-423-3p. Overexpression of miR-423-3p was associated with epigenetic silencing of AdipoR2 in human laryngeal carcinoma samples, which have been previously implicated in suppression of tumor proliferation and angiogenesis. Luciferase reporter assays and western blot further confirmed the direct interaction of miR-423-3p with AdipoR2. Our findings have demonstrated that miR-423-3p plays an important oncogenic role in laryngeal carcinoma progression, and further suggest that suppression of miR-423-3p expression might be useful for its clinical management.

Plotnik JP, Budka JA, Ferris MW, Hollenhorst PC
ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells.
Nucleic Acids Res. 2014; 42(19):11928-40 [PubMed] Free Access to Full Article Related Publications
The RAS/ERK pathway is commonly activated in carcinomas and promotes oncogenesis by altering transcriptional programs. However, the array of cis-regulatory elements and trans-acting factors that mediate these transcriptional changes is still unclear. Our genome-wide analysis determined that a sequence consisting of neighboring ETS and AP-1 transcription factor binding sites is enriched near cell migration genes activated by RAS/ERK signaling in epithelial cells. In vivo screening of candidate ETS proteins revealed that ETS1 is specifically required for migration of RAS/ERK activated cells. Furthermore, both migration and transcriptional activation through ETS/AP-1 required ERK phosphorylation of ETS1. Genome-wide mapping of multiple ETS proteins demonstrated that ETS1 binds specifically to enhancer ETS/AP-1 sequences. ETS1 occupancy, and its role in cell migration, was conserved in epithelial cells derived from multiple tissues, consistent with a chromatin organization common to epithelial cell lines. Genome-wide expression analysis showed that ETS1 was required for activation of RAS-regulated cell migration genes, but also identified a surprising role for ETS1 in the repression of genes such as DUSP4, DUSP6 and SPRY4 that provide negative feedback to the RAS/ERK pathway. Consistently, ETS1 was required for robust RAS/ERK pathway activation. Therefore, ETS1 has dual roles in mediating epithelial-specific RAS/ERK transcriptional functions.

Baglia ML, Cai Q, Zheng Y, et al.
Dual specificity phosphatase 4 gene expression in association with triple-negative breast cancer outcome.
Breast Cancer Res Treat. 2014; 148(1):211-20 [PubMed] Free Access to Full Article Related Publications
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited treatment options. Dual specificity phosphatase 4 (DUSP4) has recently been suggested as a potential marker of chemotherapy resistance for TNBC. DUSP4 gene expression levels were measured in breast cancer tissue from 469 TNBC patients aged 20-75 years who participated in the Shanghai Breast Cancer Survival Study, and their association with recurrence/breast cancer mortality and total mortality was evaluated. Information on breast cancer diagnosis, treatment, and disease progression was collected via medical chart review and multiple in-person follow-up surveys. A Cox regression model was applied in the data analyses. Over a median follow-up of 5.3 years (range: 0.7-8.9 years), 100 deaths and 92 recurrences/breast cancer deaths were documented. Expression levels of transcript variant 1 (NM_001394) and transcript variant 2 (NM_057158) of the DUSP4 gene were studied and were highly correlated (r = 0.76). Low DUSP4 expression levels, particularly of variant 1, were associated with both increased recurrence/breast cancer mortality and increased overall mortality. Hazard ratios with adjustment for age at diagnosis and TNM stage associated with below versus above the median expression level were 1.97 (95 % confidence interval (CI): 1.27-3.05) for recurrence/breast cancer mortality and 2.09 (95 % CI: 1.38-3.17) for overall mortality. Additional adjustment for expression levels of MKI67 and TP53, common treatment types, breast cancer subtype, and grade did not materially alter the observed associations. Low DUSP4 expression levels predict recurrence and mortality in TNBC patients independently from known clinical and molecular predictors.

Bethge N, Honne H, Andresen K, et al.
A gene panel, including LRP12, is frequently hypermethylated in major types of B-cell lymphoma.
PLoS One. 2014; 9(9):e104249 [PubMed] Free Access to Full Article Related Publications
Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt's lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB) and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12), which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL). The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively). BMPER (58%), DUSP4 (32%) and BMP7 (22%), were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils) as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma.

Manzano RG, Martinez-Navarro EM, Forteza J, Brugarolas A
Microarray phosphatome profiling of breast cancer patients unveils a complex phosphatase regulatory role of the MAPK and PI3K pathways in estrogen receptor-negative breast cancers.
Int J Oncol. 2014; 45(6):2250-66 [PubMed] Free Access to Full Article Related Publications
Phosphatases are proteins with the ability to dephosphorylate different substrates and are involved in critical cellular processes such as proliferation, tumor suppression, motility and survival. Little is known about their role in the different breast cancer (BC) phenotypes. We carried out microarray phosphatome profiling in 41 estrogen receptor-negative (ER-) BC patients, as determined by immunohistochemistry (IHC), containing both ERBB2+ and ERBB2- in order to characterize the differences between these two groups. We characterized and confirmed the distinct phosphatome of the two main ER- BC subgroups (in two independent microarrays series) and that of ER+ BC (in three large independent series). Our findings point to the importance of the MAPK and PI3K pathways in ER- BCs as some of the most differentially expressed phosphatases (like DUSP4 and DUSP6) sharing ERK as substrate, or regulating the PI3K pathway (INPP4B, PTEN). It was possible to identify a selective group of phosphatases upregulated only in the ER- ERBB2+ subgroup and not in ER+ (like DUSP6, DUSP10 and PPAPDC1A among others), suggesting a role of these phosphatases in specific BC subtypes, unlike other differentially expressed phosphatases (DUSP4 and ENPP1) that seemed to have a role in multiple BC subtypes. Significant correlation was found at the protein level by IHC between the expression of DUSP6 and phospho-ERK (p=0.04) but not of phospho-ERK with DUSP4. To show the potential prognostic relevance of phosphatases as a functional group of genes, we derived and validated in two large independent BC microarray series a multiphosphatase signature enriched in differentially expressed phosphatases, to predict distant metastasis-free survival (DMFS). ER- ERBB2+, ER- ERBB2- and ER+ BC patients have a distinct pattern of phosphatase RNA expression with a potential prognostic relevance. Further studies of the most relevant phosphatases found in this study are warranted.

Li KC, Hua KT, Lin YS, et al.
Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma.
Mol Cancer. 2014; 13:172 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide. Emerging evidence indicates that alteration of epigenetics might be a key event in HNSCC progression. Abnormal expression of histone methyltransferase G9a, which contributes to transcriptional repression of tumor suppressors, has been implicated in promoting cancerous malignancies. However, its role in HNSCC has not been previously characterized. In this study, we elucidate the function of G9a and its downstream mechanism in HNSCC.
METHODS: We investigated the clinical relevance of G9a in HNSCC using immunohistochemistry (IHC) staining. In vitro cell proliferation and tumorigenesis ability of G9a-manipulated HNSCC cells were examined with MTT assays, clonogenic assays, and soft agar assays. We examined different routes of cell death in HNSCC cells induced by G9a-depletion or enzymatic inhibition by immunoblot, flow cytometry, fluorescent and transmission electron microscopy analysis. Specific targets of G9a were identified by affymetrix microarray and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Lastly, functions of G9a in vivo were confirmed with a xenograft tumor model.
RESULTS: G9a expression is positively correlated to proliferation marker Ki-67 and to poor prognosis in HNSCC patients. Genetic or pharmacological inhibition of G9a reduced cell proliferation without inducing necrosis or apoptosis. Instead, autophagic cell death was the major consequence, and our investigation of mechanisms suggested it is mediated via the dual specificity phosphatase-4 (DUSP4) dependent ERK inactivation pathway. An orthotopic tumor model further confirmed the growth inhibiting effect and induction of autophagy that followed suppression of G9a.
CONCLUSIONS: In this study, we provide evidence that G9a confers the survival advantage of HNSCC. Genetic or pharmacological inhibition of G9a induces autophagic cell death; this finding provides a basis for new therapeutic targets for treating HNSCC.

Lai AZ, Cory S, Zhao H, et al.
Dynamic reprogramming of signaling upon met inhibition reveals a mechanism of drug resistance in gastric cancer.
Sci Signal. 2014; 7(322):ra38 [PubMed] Related Publications
The Met receptor tyrosine kinase is activated or genetically amplified in some gastric cancers, but resistance to small-molecule inhibitors of Met often emerges in patients. We found that Met abundance correlated with a proliferation marker in patient gastric tumor sections, and gastric cancer cell lines that have MET amplifications depended on Met for proliferation and anchorage-independent growth in culture. Inhibition of Met induced temporal changes in gene expression in the cell lines, initiated by a rapid decrease in the expression of genes encoding transcription factors, followed by those encoding proteins involved in epithelial-mesenchymal transition, and finally those encoding cell cycle-related proteins. In the gastric cancer cell lines, microarray and chromatin immunoprecipitation analysis revealed considerable overlap between genes regulated in response to Met stimulation and those regulated by signal transducer and activator of transcription 3 (STAT3). The activity of STAT3, extracellular signal-regulated kinase (ERK), and the kinase Akt was decreased by Met inhibition, but only inhibitors of STAT3 were as effective as the Met inhibitor in decreasing tumor cell proliferation in culture and in xenografts, suggesting that STAT3 mediates the pro-proliferative program induced by Met. However, the phosphorylation of ERK increased after prolonged Met inhibition in culture, correlating with decreased abundance of the phosphatases DUSP4 and DUSP6, which inhibit ERK. Combined inhibition of Met and the mitogen-activated protein kinase kinase (MEK)-ERK pathway induced greater cell death in cultured gastric cancer cells than did either inhibitor alone. These findings indicate combination therapies that may counteract resistance to Met inhibitors.

Fancy SP, Harrington EP, Baranzini SE, et al.
Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer.
Nat Neurosci. 2014; 17(4):506-12 [PubMed] Free Access to Full Article Related Publications
In colon cancer, mutation of the Wnt repressor APC (encoding adenomatous polyposis coli) leads to a state of aberrant and unrestricted high-activity signaling. However, the relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct functional states of Wnt activity determine oligodendrocyte precursor cell (OPC) differentiation and myelination. Mouse OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer, including Lef1, Sp5, Ets2, Rnf43 and Dusp4. Surprisingly, we found that OPCs in lesions of hypoxic human neonatal white matter injury upregulated markers of high Wnt activity and lacked expression of APC. We also found that lack of Wnt repressor tone promoted permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack predisposing genetic mutation.

Lee EK, Chung KW, Yang SK, et al.
DNA methylation of MAPK signal-inhibiting genes in papillary thyroid carcinoma.
Anticancer Res. 2013; 33(11):4833-9 [PubMed] Related Publications
BACKGROUND: The purpose of this study was to identify the DNA methylation status of the mitogen-activated protein kinase (MAPK) signal-inhibiting genes dual-specificity phosphatase 4 (DUSP4) and 6 (DUSP6); and serpin peptidase inhibitor A member 5 (SERPINA5) in thyroid cancer.
MATERIALS AND METHODS: Using 76 papillary thyroid cancer(PTC) tissues and three thyroid cancer cell lines (TPC1, WRO82-1 and XTC), the expression of three genes and DNA methylation were determined by reverse transcription-PCR and methylation-specific PCR.
RESULTS: In all cell lines, the expression of DUSP4 and DUSP6 increased; the corresponding gene promoters were unmethylated. However, SERPINA5 gene expression decreased and SERPINA5 DNA was methylated in the TPC1 cell line. With the de-methylating agent 5'-aza-2'-deoxycytidine, SERPINA5 gene expression was restored. In 82.9% of PTC tissues (63/76), the SERPINA5 DNA promoter was methylated, which was associated with a higher v-raf murine sarcoma viral oncogene homolog B1(BRAF) mutation rate in PTC tissues based on multivariate regression (odds ratio=3.573; 95% confidence interval=1.122-11.379; p=0.031).
CONCLUSION: The expression of the MAPK signal-inhibiting gene SERPINA5 decreased in the TPC1 cell line, SERPINA5 expression was regulated by DNA methylation, which was associated with a higher BRAF mutation rate in PTC.

Saigusa S, Inoue Y, Tanaka K, et al.
Decreased expression of DUSP4 is associated with liver and lung metastases in colorectal cancer.
Med Oncol. 2013; 30(3):620 [PubMed] Related Publications
Dual-specificity protein phosphatase 4 (DUSP4), a negative regulator of extracellular-regulated kinase activity, is a potential mediator of resistance to chemotherapy and a tumor suppressor. The aim of this study is to clarify the association between DUSP4 gene expression and clinical outcome in patients with colorectal cancer. Patients who underwent surgery for colorectal cancer were enrolled in this study (n = 212). We investigated DUSP4 gene expression by real-time reverse transcription polymerase chain reaction in colorectal cancer tissue and paired normal mucosa. Immunohistochemical analyses of DUSP4 and ERK1/2 were also conducted. Additionally, we examined the relationship between gene expression and KRAS mutation in 74 of the 212 patients. DUSP4 expression in tumor tissues was significantly higher than that in matched normal mucosa (P < 0.0001). Decreased DUSP4 expression was significantly associated with advanced T classification, lymphatic invasion, vascular invasion, advanced stage, and liver and lung metastases. Logistic regression analysis revealed that decreased DUSP4 expression was an independent risk factor for synchronous distant metastases (P = 0.006). Increased DUSP4 expression was significantly associated with better prognosis (P = 0.0162). Immunohistochemical examination showed DUSP4 expression in the nucleus and cytoplasm of cancer cells, and no correlation was observed between DUSP4 and ERK1/2 expression. There was no significant correlation between DUSP4 expression and KRAS mutation. In conclusion, DUSP4 expression in colorectal cancer was negatively correlated with factors reflecting tumor progression, including distant metastases. Our data suggest that DUSP4 may act as a tumor suppressor in colorectal cancer.

Slattery ML, Lundgreen A, Wolff RK
MAP kinase genes and colon and rectal cancer.
Carcinogenesis. 2012; 33(12):2398-408 [PubMed] Free Access to Full Article Related Publications
Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation, differentiation, migration and apoptosis. We evaluate genetic variation in the c-Jun-N-terminal kinases, p38, and extracellular regulated kinases 1/2 MAPK-signaling pathways and colon and rectal cancer risk using data from population-based case-control studies (colon: n = 1555 cases, 1956 controls; rectal: n = 754 cases, 959 controls). We assess 19 genes (DUSP1, DUSP2, DUSP4, DUSP6, DUSP7, MAP2K1, MAP3K1, MAP3K2, MAP3K3, MAP3K7, MAP3K9, MAP3K10, MAP3K11, MAPK1, MAPK3, MAPK8, MAPK12, MAPK14 and RAF1). MAP2K1 rs8039880 [odds ratio (OR) = 0.57, 95% confidence interval (CI) = 0.38, 0.83; GG versus AA genotype] and MAP3K9 rs11625206 (OR = 1.41, 95% CI = 1.14, 1.76; recessive model) were associated with colon cancer (P (adj) value < 0.05). DUSP1 rs322351 (OR = 1.43, 95% CI = 1.09, 1.88; TT versus CC) and MAPK8 rs10857561 (OR = 1.48, 95% CI 1.08, 2.03; AA versus GG/GA) were associated with rectal cancer (P (adj) < 0.05). Aspirin/non-steroidal anti-inflammatory drug, cigarette smoking and body mass index interacted with several genes to alter cancer risk. Genetic variants had unique associations with KRAS, TP53 and CIMP+ tumors. DUSP2 rs1724120 [hazard rate ratio (HRR) = 0.72, 95%CI = 0.54, 0.96; AA versus GG/GA), MAP3K10 rs112956 (HRR = 1.40, 95% CI = 1.10, 1.76; CT/TT versus CC) and MAP3K11 (HRR = 1.76, 95% CI 1.18, 2.62 TT versus GG/GT) influenced survival after diagnosis with colon cancer; MAP2K1 rs8039880 (HRR = 2.53, 95% CI 1.34, 4.79 GG versus AG/GG) and Raf1 rs11923427 (HRR = 0.59 95% CI = 0.40, 0.86; AA versus TT/TA) were associated with rectal cancer survival. These data suggest that genetic variation in the MAPK-signaling pathway influences colorectal cancer risk and survival after diagnosis. Associations may be modified by lifestyle factors that influence inflammation and oxidative stress.

Gröschl B, Bettstetter M, Giedl C, et al.
Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.
Int J Cancer. 2013; 132(7):1537-46 [PubMed] Related Publications
DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p < 0.001). Consistently, MSI-H CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC.

Müller T, Gessi M, Waha A, et al.
Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas.
Am J Pathol. 2012; 181(2):675-83 [PubMed] Related Publications
The recent identification of isocitrate dehydrogenase 1 (IDH1) gene mutations in gliomas stimulated various studies to explore the molecular consequences and the clinical implications of such alterations. The Cancer Genome Atlas Research Network showed evidence for a CpG island methylator phenotype in glioblastomas that was associated with IDH1 mutations. These alterations were associated with the production of the oncometabolite, 2-hydroxyglutarate, that inhibits oxygenases [ie, ten-eleven translocation (TET) enzymes involved in the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC)]. We investigated 60 gliomas for 5hmC presence, 5-methylcytosine content, TET1 expression, and IDH1 mutation to gain insight into their relationships on a histological level. Of gliomas, 61% revealed no immunoreactivity for 5hmC, and no correlation was observed between IDH1 mutations and loss of 5hmC. Interestingly, expression of TET1 showed remarkable differences regarding overall protein levels and subcellular localization. We found a highly significant (P = 0.0007) correlation between IDH1 mutations and nuclear accumulation of TET1, but not with loss of 5hmC. Of 5hmC-negative gliomas, 70% showed either exclusive or dominant cytoplasmic expression, or no detectable TET1 protein (P = 0.0122). Our data suggest that the loss of 5hmC is a frequent event in gliomas, independent of IDH1 mutation, and may be influenced by the nuclear exclusion of TET1 from the nuclei of glioma cells.

Balko JM, Cook RS, Vaught DB, et al.
Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance.
Nat Med. 2012; 18(7):1052-9 [PubMed] Free Access to Full Article Related Publications
Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ~30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.

Cagnol S, Rivard N
Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition.
Oncogene. 2013; 32(5):564-76 [PubMed] Related Publications
Gain-of-function mutations in KRAS and BRAF genes are found in up to 50% of colorectal cancers. These mutations result in the activation of the BRAF/MEK signaling pathway culminating in the stimulation of ERK1/2 mitogen-activated protein kinases. Upon activation, ERK1/2 translocate from the cytoplasm to the nucleus. This process has been shown to be required for the induction of many cellular responses, although the molecular mechanisms regulating ERK nuclear function, especially under oncogenic stimulation, remain to be explored. Herein, we examined the spatiotemporal regulation of ERK1/2 activity upon oncogenic activation of KRAS(G12V) and BRAF(V600E) in normal intestinal epithelial crypt cells (IECs). Results demonstrate that expression of these oncogenes markedly stimulated ERK1/2 activities and morphologically transformed IECs. Importantly however, ERK phosphorylation was not observed in the nucleus, but restricted to the cytoplasm of KRAS(G12V)- and BRAF(V600E)-transformed IECs. The absence of nuclear ERK phosphorylation was due to a vanadate-sensitive phosphatase activity. Nuclear ERK dephosphorylation was found to be tightly correlated with the rapid expression of DUSP4 phosphatase induced in an MEK-dependent manner. In addition, MEK-dependent phosphorylation of T361, T363, S390 and S395 residues highly stabilized DUSP4 protein. Finally, in human colorectal cancer cells, ERK1/2 activities were also confined to the cytoplasm and treatment with pervanadate reactivated ERK1/2 in the nucleus. Accordingly, DUSP4 mRNAs were found to be highly expressed, in an MEK-dependent manner, in all colorectal cancer cells analyzed. These findings indicate that DUSP4 functions as part of a negative feedback mechanism in the control of the duration and magnitude of nuclear ERK activation during intestinal tumorigenesis.

Toriseva M, Ala-aho R, Peltonen S, et al.
Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.
PLoS One. 2012; 7(3):e33041 [PubMed] Free Access to Full Article Related Publications
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.

Shuib S, Wei W, Sur H, et al.
Copy number profiling in von Hippel-Lindau disease renal cell carcinoma.
Genes Chromosomes Cancer. 2011; 50(7):479-88 [PubMed] Related Publications
Germline mutations in the VHL tumor suppressor gene cause von Hippel-Lindau (VHL) disease and somatic VHL mutations occur in the majority of clear cell renal cell carcinoma (cRCC). To compare copy number abnormalities (CNAs) between cRCC from VHL patients and sporadic cRCC cases without detectable somatic VHL mutations, we analyzed 34 cRCC with Affymetrix 250K arrays. To increase the power of the study, we then combined our results with those of a previously published study and compared CNAs in VHL and non-VHL related cRCC using the genomic identification of significant targets in cancer (GISTIC) program. In VHL, cRCC GISTIC analysis identified four statistically significant regions of copy number gain and four statistically significant regions of deletion that occurred in >10% of tumors analyzed. Sporadic cRCC without detectable VHL mutations had, on average, more copy number abnormalities than VHL cRCC though the most common regions of loss/gain (e.g., 3p and 14q loss and 5q gain) were present in both tumor sets. However, CNAs on chromosome arms 7p (gain) and 8p (loss) were only detected in VHL RCC. Although individual copy number abnormality peaks contained clear candidate cancer genes in some cases (e.g., the 3p loss peak in VHL cRCC contained only six genes including VHL), most peaks contained many genes. To date, only a minority of the candidate genes included in these peaks have been analyzed for mutation or epigenetic inactivation in cRCC but TNFRSF10C and DUSP4 map to the 8p region deleted in VHL cRCC and TP53 and HIF2A (EPAS1) mapped to CNA loss and gain peaks (chromosomes 17 and 2, respectively) detected in sporadic VHL wild-type cRCC.

Pigazzi M, Manara E, Beghin A, et al.
ICER evokes Dusp1-p38 pathway enhancing chemotherapy sensitivity in myeloid leukemia.
Clin Cancer Res. 2011; 17(4):742-52 [PubMed] Related Publications
PURPOSE: The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is found downregulated in acute myeloid leukemia (AML), failing to control cAMP response element binding protein (CREB) transcriptional activity, recently demonstrated to mediate AML progression. We aimed to characterize ICER's role in drug sensitivity by treating myeloid cell lines and primary AML with chemotherapics.
EXPERIMENTAL DESIGN: The effects on CREB target genes induced by ICER restoration and drug treatment were studied by quantitative real-time PCR (qRT-PCR) and western blot. Cell cycle and apoptosis analysis were performed. Possible ICER-evoked pathways were investigated in vitro. The mechanism involved in enhanced drug sensitivity was described in primary AML cultures by silencing ICER main target genes.
RESULTS: AML cell lines reduced cell growth and enhanced apoptotic behavior after chemotherapy treatment if ICER was expressed. A significantly lowered expression of CREB target genes involved in cell cycle control (CyA1, B1, D1), and in the mitogen-activated protein kinase signaling pathway (ERK, AKT, DUSP1/4), was found after Etoposide treatment. The dual-specificity phosphatases DUSP1 and DUSP4, directly repressed by ICER, activated the p38 pathway, which triggered enhanced caspase-dependent apoptosis. The silencing of DUSP1/4 in HL60 confirmed the same enhanced drug sensitivity induced by ICER. Primary AML cultures, silenced for DUSP1 as well as restored of ICER expression, showed DUSP1 downregulation and p38 activation.
CONCLUSION: ICER mediates chemotherapy anticancer activity through DUSP1-p38 pathway activation and drives the cell program from survival to apoptosis. ICER restoration or DUSP1 inhibition might be possible strategies to sensitize AML cancer cells to conventional chemotherapy and to inhibit tumor growth.

Gaedcke J, Grade M, Jung K, et al.
Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas.
Genes Chromosomes Cancer. 2010; 49(11):1024-34 [PubMed] Free Access to Full Article Related Publications
Mutations of the KRAS oncogene are predictive for resistance to treatment with antibodies against the epithelial growth factor receptor in patients with colorectal cancer. Overcoming this therapeutic dilemma could potentially be achieved by the introduction of drugs that inhibit signaling pathways that are activated by KRAS mutations. To identify comprehensively such signaling pathways, we profiled pretreatment biopsies and normal mucosa from 65 patients with locally advanced rectal cancer-30 of which carried mutated KRAS-using global gene expression microarrays. By comparing all tumor tissues exclusively to matched normal mucosa, we could improve assay sensitivity, and identified a total of 22,297 features that were differentially expressed (adjusted P-value <0.05) between normal mucosa and cancer, including several novel potential rectal cancer genes. We then used this comprehensive description of the rectal cancer transcriptome as the baseline for identifying KRAS-dependent alterations. The presence of activating KRAS mutations is significantly correlated to an upregulation of 13 genes (adjusted P-value <0.05), among them DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase. Inhibition of the expression of both genes has previously been shown using the MEK1-inhibitor PD98059 and the antibacterial compound Novobiocin, respectively. These findings suggest a potential approach to overcome resistance to treatment with antibodies against the epithelial growth factor receptor in patients with KRAS-mutant rectal carcinomas.

Teutschbein J, Haydn JM, Samans B, et al.
Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins.
BMC Cancer. 2010; 10:386 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.
METHODS: Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.
RESULTS: Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration.
CONCLUSION: Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.

Deng YB, Nagae G, Midorikawa Y, et al.
Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma.
Cancer Sci. 2010; 101(6):1501-10 [PubMed] Related Publications
Chronic infections by hepatitis B virus (HBV) and hepatitis C virus (HCV) appear to be the most significant causes of hepatocellular carcinoma (HCC). Aberrant promoter methylation is known to be deeply involved in cancer, including in HCC. In this study, we analyzed aberrant promoter methylation by methylated DNA immunoprecipitation-on-chip analysis on a genome-wide scale in six HCCs including three HBV-related and three HCV-related HCCs, six matched noncancerous liver tissues, and three normal liver tissues. Candidate genes with promoter methylation were detected more frequently in HCV-related HCC. Candidate genes methylated preferentially to HBV-related or HCV-related HCCs were detected and selected, and methylation levels of the selected genes were validated by quantitative methylation analysis using MALDI-TOF mass spectrometry using 125 liver tissue samples, including 61 HCCs (28 HBV-related HCCs and 33 HCV-related HCCs) and 59 matched noncancerous livers, and five normal livers. Among analyzed genes, preferential methylation in HBV-related HCC was validated in one gene only. However, 15 genes were found to be methylated preferentially in HCV-related HCC, which was independent from age. Hierarchical clustering of HCC using these genes stratified HCV-related HCC as a cluster of frequently methylated samples. The 15 genes included genes inhibitory to cancer-related signaling such as RAS/RAF/ERK and Wnt/beta-catenin pathways. Methylation of dual specificity phosphatase 4 (DUSP4), cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), and natriuretic peptide receptor A (NPR1) significantly correlated with recurrence-free survival. It was indicated that genes methylated preferentially in HCV-related HCC exist, and that DNA methylation might play an important role in HCV-related HCC by silencing cancer-related pathway inhibitors, and might perhaps be useful as a prognostic marker.

Waha A, Felsberg J, Hartmann W, et al.
Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells.
Cancer Res. 2010; 70(4):1689-99 [PubMed] Related Publications
Critical tumor suppression pathways in brain tumors have yet to be fully defined. Along with mutational analyses, genome-wide epigenetic investigations may reveal novel suppressor elements. Using differential methylation hybridization, we identified a CpG-rich region of the promoter of the dual-specificity mitogen-activated protein kinase phosphatase-2 gene (DUSP4/MKP-2) that is hypermethylated in gliomas. In 83 astrocytic gliomas and 5 glioma cell lines examined, hypermethylation of the MKP-2 promoter was found to occur relatively more frequently in diffuse or anaplastic astrocytomas and secondary glioblastomas relative to primary glioblastomas. MKP-2 hypermethylation was associated with mutations in TP53 and IDH1, exclusive of EGFR amplification, and with prolonged survival of patients with primary glioblastoma. Expression analysis established that promoter hypermethylation correlated with reduced expression of MKP-2 mRNA and protein. Consistent with a regulatory role, reversing promoter hypermethylation by treating cells with 5-aza-2'-deoxycytidine increased MKP-2 mRNA levels. Furthermore, we found that glioblastoma cell growth was inhibited by overexpression of exogenous MKP-2. Our findings reveal MKP-2 as a common epigenetically silenced gene in glioma, the inactivation of which may play a significant role in glioma development.

Britson JS, Barton F, Balko JM, Black EP
Deregulation of DUSP activity in EGFR-mutant lung cancer cell lines contributes to sustained ERK1/2 signaling.
Biochem Biophys Res Commun. 2009; 390(3):849-54 [PubMed] Related Publications
Lung cancers demonstrate loss of cellular signaling control pathways. EGFR-mutant non-small cell lung cancer cell lines constitutively express active ERK1/2 and require ERK activity for survival. DUSP4 is a negative regulator of ERK activity and is up-regulated in EGFR-mutant lung cancer cell lines relative to K-ras mutant cells. Both DUSP4 and family member, DUSP1, can bind ERK in vitro. However, only DUSP1 has detectable binding to ERK in vivo in cell lines of either genotype. Depletion of DUSP4 in EGFR-mutant cells unexpectedly results in loss of pERK whereas loss of DUSP4 in K-ras mutant cells predictably yields increased pERK. These data support a role for DUSP4, and perhaps DUSP1, as a positive activator of ERK in EGFR-mutant lung cancer cell lines independent of the ability to bind to ERK.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DUSP4, Cancer Genetics Web: http://www.cancer-genetics.org/DUSP4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999