KIF5B

Gene Summary

Gene:KIF5B; kinesin family member 5B
Aliases: KNS, KINH, KNS1, UKHC, HEL-S-61
Location:10p11.22
Summary:-
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:kinesin-1 heavy chain
Source:NCBIAccessed: 14 March, 2017

Ontology:

What does this gene/protein do?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Proto-Oncogene Proteins p21(ras)
  • Kinesin
  • Neoplastic Cell Transformation
  • Protein Kinase Inhibitors
  • KIF5B
  • FISH
  • Immunohistochemistry
  • RTPCR
  • Proto-Oncogene Proteins
  • Mutation
  • BRAF
  • Cytoskeletal Proteins
  • Receptor Protein-Tyrosine Kinases
  • Oncogene Fusion Proteins
  • Recombinant Proteins
  • Non-Small Cell Lung Cancer
  • Base Sequence
  • Transcription Factors
  • Xenograft Models
  • Polymerase Chain Reaction
  • Gene Rearrangement
  • Cell Proliferation
  • Signal Transduction
  • Nuclear Proteins
  • Gene Fusion
  • Adenocarcinoma
  • Transcriptome
  • Skin Cancer
  • Asian Continental Ancestry Group
  • Antineoplastic Agents
  • Lung Cancer
  • Sensitivity and Specificity
  • Exons
  • Protein-Tyrosine Kinases
  • Piperidines
  • Chromosome 10
  • Japan
  • Proto-Oncogene Proteins c-ret
  • Staging
  • Epidermal Growth Factor Receptor
  • Serine Endopeptidases
Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KIF5B (cancer-related)

Song M, Kim SH, Yoon SK
Cabozantinib for the treatment of non-small cell lung cancer with KIF5B-RET fusion. An example of swift repositioning.
Arch Pharm Res. 2015; 38(12):2120-3 [PubMed] Related Publications
A new chimeric fusion transcript of KIF5B (the kinesin family 5B gene) and the RET (Rearranged during Transcription) oncogene, KIF5B-RET, was found in 1-2% of lung adenocarcinomas (LADCs) in 2012. Several related clinical trials for non-small cell lung cancer (NSCLC) with KIF5B-RET rearrangements using existing RET inhibitors, such as cabozantinib, lenvatinib, vandetanib, sunitinib, ponatinib, and AUY922, have been swiftly initiated by the discovery of the KIF5B-RET fusion gene. Anti-RET activity and the status of clinical development of cabozantinib for KIF5B-RET fusion-positive NSCLC are discussed.

Kim JO, Lee J, Shin JY, et al.
KIF5B-RET Fusion gene may coincide oncogenic mutations of EGFR or KRAS gene in lung adenocarcinomas.
Diagn Pathol. 2015; 10:143 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The KIF5B-RET rearrangement is detected with the frequency of 1 ~ 2% in 'triple marker'-negative lung adenocarcinomas, i.e., EGFR, KRAS and EML4-ALK wild type. These mutational changes are known to be mutually exclusive, but the co-existence of ALK rearrangement with activating mutations of EGFR is rarely found.
METHODS: We examined the KIF5B-RET fusion gene in frozen tissues from 154 surgically resected lung tumors using RT-PCR with direct sequencing and the mutation status of EGFR and KRAS genes using PNA clamping. We tested KIF5B-RET translocation in Formalin Fixed Paraffin Embedded using fluorescence in situ hybridization. We also measured RET mRNA and protein expression by RT-PCR and immunohistochemistry, respectively.
RESULTS: The existence of KIF5B-RET fusion gene was identified in 9 patients. The mean age was 67.2 and M: F ratio 4:5. Of 9 patients, 3 patients harbored wild type of EGFR and KRAS gene. However, KIF5B-RET fusion gene coincided with EGFR or KRAS mutation in 6 patients. These six pts were also positive for both RET break-apart probes (23.9%) and KIF5B-RET fusion (44.4%). However, there were no correlations between RET mRNA and protein expression in the KIF5B-RET-positive patients. The median disease free survival and overall survival were 23.9 months and 29.5 months, respectively.
CONCLUSIONS: Taken together, our data suggest one-step screening platform for KIF5B-RET as well as EGFR, K-RAS, ALK oncogenic mutations be necessary for lung adenocarcinoma patients because EGFR or KRAS mutation are not infrequently found in KIF5B-RET-positive patients.

Wang Q, Yang X, He Y, et al.
Droplet Digital PCR for Absolute Quantification of EML4-ALK Gene Rearrangement in Lung Adenocarcinoma.
J Mol Diagn. 2015; 17(5):515-20 [PubMed] Related Publications
Crizotinib treatment significantly prolongs progression-free survival, increases response rates, and improves the quality of life in patients with ALK-positive non-small-cell lung cancer. Droplet Digital PCR (ddPCR), a recently developed technique with high sensitivity and specificity, was used in this study to evaluate the association between the abundance of ALK rearrangements and crizotinib effectiveness. FFPE tissues were obtained from 103 consecutive patients with lung adenocarcinoma. Fluorescent in situ hybridization (FISH) and ddPCR were performed. The results revealed that 14 (13.6%) of the 103 patients were positive by dual-color, break-apart FISH. Three variants (1, 2, and 3) of the EML4-ALK gene rearrangements were detected. Thirteen of 14 ALK-positive cases identified by FISH were confirmed by ddPCR (four with variant 1, two with variant 2, and seven with variant 3). The case missed by ddPCR was identified as KIF5B-ALK gene rearrangement by PCR-based direct sequencing. Sixteen patients were detected with low copy numbers of EML4-ALK gene rearrangement, which failed to meet the positive cutoff point of FISH. Two of them responded well to crizotinib after unsuccessful chemotherapy. Our study indicates that ddPCR can be used as a molecular analytical tool to accurately measure the EML4-ALK rearrangement copy numbers in FFPE samples of lung adenocarcinoma patients.

Cui J, Jin G, Yu B, et al.
Stable knockdown of Kif5b in MDCK cells leads to epithelial-mesenchymal transition.
Biochem Biophys Res Commun. 2015 Jul 17-24; 463(1-2):123-9 [PubMed] Related Publications
Polarization of epithelial cells requires vectorial sorting and transport of polarity proteins to apical or basolateral domains. Kif5b is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). To investigate the function of Kif5b in epithelial cells, we examined the phenotypes of Kif5b-deficient MDCK cells. Stable knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate, profound changes in cell morphology, loss of epithelial cell marker, and gain of mesenchymal marker, as well as increased cell migration, invasion, and tumorigenesis abilities. E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells, and their expression levels were decreased in Kif5b-deficient MDCK cells. Overexpression of E-cadherin and NMMIIA in Kif5b depleted MDCK cells could decrease mesenchymal marker expression and cell migration ability. These results indicate that stable knockdown of Kif5b in MDCK cells can lead to epithelial-mesenchymal transition, which is mediated by defective E-cadherin and NMMIIA expression.

Jang JS, Lee A, Li J, et al.
Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers.
Sci Rep. 2015; 5:9755 [PubMed] Free Access to Full Article Related Publications
Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1-9 of SND1 and exons 2 to 3' end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy.

Subbiah V, Berry J, Roxas M, et al.
Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases.
Lung Cancer. 2015; 89(1):76-9 [PubMed] Free Access to Full Article Related Publications
In-frame fusion KIF5B (the-kinesin-family-5B-gene)-RET transcripts have been characterized in 1-2% of non-small cell lung cancers and are known oncogenic drivers. The RET tyrosine kinase inhibitor, vandetanib, suppresses fusion-induced, anchorage-independent growth activity. In vitro studies have shown that vandetanib is a high-affinity substrate of breast cancer resistance protein (Bcrp1/Abcg2) but is not transported by P-glycoprotein (P-gp), limiting its blood-brain barrier penetration. A co-administration strategy to enhance the brain accumulation of vandetanib by modulating P-gp/Abcb1- and Bcrp1/Abcg2-mediated efflux with mTOR inhibitors, specifically everolimus, was shown to increase the blood-brain barrier penetration. We report the first bench-to-bedside evidence that RET inhibitor combined with an mTOR inhibitor is active against brain-metastatic RET-rearranged lung cancer and the first evidence of blood-brain barrier penetration. A 74-year-old female with progressive adenocarcinoma of the lung (wild-type EGFR and no ALK rearrangement) presented for therapy options. A deletion of 5'RET was revealed by FISH assay, indicating RET-gene rearrangement. Because of progressive disease in the brain, she was enrolled in a clinical trial with vandetanib and everolimus (NCT01582191). Comprehensive genomic profiling revealed fusion of KIF5B (the-kinesin-family-5B-gene) and RET, in addition to AKT2 gene amplification. After two cycles of therapy a repeat MRI brain showed a decrease in the intracranial disease burden and PET/CT showed systemic response as well. Interestingly, AKT2 amplification seen is a critical component of the PI3K/mTOR pathway, alterations of which has been associated with both de novo and acquired resistance to targeted therapy. The addition of everolimus may have both overcome the AKT2 amplification to produce a response in addition to its direct effects on the RET gene. Our case report forms the first evidence of blood-brain barrier penetration by vandetanib in combination with everolimus. Further research is required in this setting.

Lin C, Wang S, Xie W, et al.
The RET fusion gene and its correlation with demographic and clinicopathological features of non-small cell lung cancer: a meta-analysis.
Cancer Biol Ther. 2015; 16(7):1019-28 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The RET fusion gene is a novel oncogene observed in a subset of NSCLC in recent years. Nevertheless, the results of epidemiological studies concerning the gene remain unclear. Thus, a meta-analysis was conducted to evaluate the correlation of RET fusion gene with demographic and clinicopathological features of NSCLC.
METHODS: PubMed, Embase, and Web of Science databases were searched to identify eligible studies. The association of RET fusion gene occurrence with gender, age, smoking status, histology type and tumor stage were analyzed in meta-analysis. Subgroup analysis according to patients' location (Asian and non-Asian) was also conducted. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the correlation.
RESULTS: Nine studies with a total of 6,899 NSCLC patients met the inclusion criteria. A total of 84 patients with RET fusion gene were detected. The RET fusion gene was identified at significantly higher frequencies in female (OR = 0.55, 95%CI = 0.35-0.85) than male patients and in young (<60) patients (OR = 0.43, 95%CI = 0.19-0.99) than old patients (≤60), particularly in patients from Asian. A significant higher frequency was also identified in non-smokers (OR = 0.28, 95% CI = 0.16-0.49), and in patients with lung adenocarcinomas (OR = 3.59, 95%CI = 1.50-8.56). Additionally, no association between RET fusion gene and the TNM stage of tumor was observed.
CONCLUSION: RET fusion gene occurred predominantly in Asian females with younger age, in non-smokers, and in lung adenocarcinomas patients. This subset of NSCLC patients might be good candidates for personalized diagnostic and therapeutic approaches.

Xiang L, Li J, Jiang W, et al.
Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers.
Oncotarget. 2015; 6(7):4968-75 [PubMed] Free Access to Full Article Related Publications
Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy.

Song M
Progress in Discovery of KIF5B-RET Kinase Inhibitors for the Treatment of Non-Small-Cell Lung Cancer.
J Med Chem. 2015; 58(9):3672-81 [PubMed] Related Publications
A new chimeric fusion transcript of KIF5B (the kinesin family 5B gene) and the RET (Rearranged during Transcription) oncogene, KIF5B-RET, was found in 1-2% of lung adenocarcinomas (LADCs) in late 2011. Several related clinical trials for non-small-cell lung cancer (NSCLC) with KIF5B-RET rearrangements using existing RET inhibitors, such as lenvatinib, vandetanib, sunitinib, ponatinib, cabozantinib, and AUY922, have been swiftly initiated by the discovery of the KIF5B-RET fusion gene. Anti-RET activity and the status of clinical development of these known RET tyrosine kinase inhibitors (TKIs) for KIF5B-RET fusion-positive NSCLC are discussed. A kinase inhibitor that can target a driver mutation specifically may lead to a superior clinical benefit compared with broad-spectrum kinase inhibitors. In this regard, an analysis of the structure of RET kinase and its complex with known RET inhibitors are also briefly discussed.

Drilon A, Wang L, Arcila ME, et al.
Broad, Hybrid Capture-Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches.
Clin Cancer Res. 2015; 21(16):3631-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Broad, hybrid capture-based next-generation sequencing (NGS), as a clinical test, uses less tissue to identify more clinically relevant genomic alterations compared with profiling with multiple non-NGS tests. We set out to determine the frequency of such genomic alterations via this approach in tumors in which previous extensive non-NGS testing had not yielded a targetable driver alteration.
EXPERIMENTAL DESIGN: We enrolled patients with lung adenocarcinoma with a ≤ 15 pack-year smoking history whose tumors previously tested "negative" for alterations in 11 genes (mutations in EGFR, ERBB2, KRAS, NRAS, BRAF, MAP2K1, PIK3CA, and AKT1 and fusions involving ALK, ROS1, and RET) via multiple non-NGS methods. We performed hybridization capture of the coding exons of 287 cancer-related genes and 47 introns of 19 frequently rearranged genes and sequenced these to deep, uniform coverage.
RESULTS: Actionable genomic alterations with a targeted agent based on NCCN guidelines were identified in 26% [8 of 31: EGFR G719A, BRAF V600E, SOCS5-ALK, HIP1-ALK, CD74-ROS1, KIF5B-RET (n = 2), CCDC6-RET]. Seven of these patients either received or are candidates for targeted therapy. Comprehensive genomic profiling using this method also identified a genomic alteration with a targeted agent available on a clinical trial in an additional 39% (12 of 31).
CONCLUSIONS: Broad, hybrid capture-based NGS identified actionable genomic alterations in 65% [95% confidence interval (CI), 48%-82%] of tumors from never or light smokers with lung cancers deemed without targetable genomic alterations by earlier extensive non-NGS testing. These findings support first-line profiling of lung adenocarcinomas using this approach as a more comprehensive and efficient strategy compared with non-NGS testing. See related commentary by McCutcheon and Giaccone, p. 3584.

Mukhopadhyay S, Pennell NA, Ali SM, et al.
RET-rearranged lung adenocarcinomas with lymphangitic spread, psammoma bodies, and clinical responses to cabozantinib.
J Thorac Oncol. 2014; 9(11):1714-9 [PubMed] Related Publications
Oncogenic rearrangements of the RET gene have recently been described in 1% to 2% of lung adenocarcinomas. We report five cases of RET-rearranged lung adenocarcinoma with an unusual constellation of clinical and histologic features that has not previously been described in tumors with this genomic alteration. The age at diagnosis of the five patients (4F, 1M) ranged from 44 to 77 years. All were never-smokers. Radiologically, four tumors showed lymphangitic spread within the lungs at presentation; three of these had multiple bilateral lung nodules. Histology showed psammoma bodies within the tumor in four of five cases. Molecular testing for activating EGFR mutations by standard genotyping and ALK expression by immunohistochemistry was negative in all cases. Additional molecular analysis was prompted by the clinical profile in that all five patients were never-smokers with metastatic, relapsed, and/or refractory disease; and also by unusual histologic findings in two cases. Comprehensive genomic profiling performed by means of a clinical grade cancer gene panel next-generation sequencing assay demonstrated a KIF5B-RET fusion in three; and fluorescence in-situ hybridization documented a RET rearrangement in two. Three of the patients were treated with the RET inhibitor cabozantinib. By Response Evaluation Criteria In Solid Tumors (RECIST) criteria, two had a confirmed partial response (at 6 weeks and 4 weeks) and one had stable disease. Our findings suggest that the combination of lymphangitic spread and psammoma bodies may be characteristic of a subset of advanced stage RET-rearranged lung adenocarcinomas. These findings should prompt additional molecular testing for RET translocations, particularly in never-smokers with EGFR- and ALK-negative lung adenocarcinoma.

Kodama T, Tsukaguchi T, Satoh Y, et al.
Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer.
Mol Cancer Ther. 2014; 13(12):2910-8 [PubMed] Related Publications
Alectinib/CH5424802 is a known inhibitor of anaplastic lymphoma kinase (ALK) and is being evaluated in clinical trials for the treatment of ALK fusion-positive non-small cell lung cancer (NSCLC). Recently, some RET and ROS1 fusion genes have been implicated as driver oncogenes in NSCLC and have become molecular targets for antitumor agents. This study aims to explore additional target indications of alectinib by testing its ability to inhibit the activity of kinases other than ALK. We newly verified that alectinib inhibited RET kinase activity and the growth of RET fusion-positive cells by suppressing RET phosphorylation. In contrast, alectinib hardly inhibited ROS1 kinase activity unlike other ALK/ROS1 inhibitors such as crizotinib and LDK378. It also showed antitumor activity in mouse models of tumors driven by the RET fusion. In addition, alectinib showed kinase inhibitory activity against RET gatekeeper mutations (RET V804L and V804M) and blocked cell growth driven by the KIF5B-RET V804L and V804M. Our results suggest that alectinib is effective against RET fusion-positive tumors. Thus, alectinib might be a therapeutic option for patients with RET fusion-positive NSCLC.

Kenmotsu H, Serizawa M, Koh Y, et al.
Prospective genetic profiling of squamous cell lung cancer and adenosquamous carcinoma in Japanese patients by multitarget assays.
BMC Cancer. 2014; 14:786 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Despite considerable recent progress in the treatment of lung adenocarcinoma, there has been little progress in the development of efficacious molecular targeted therapies for squamous cell lung cancer. In addition to the recent comprehensive genome-wide characterization of squamous cell lung cancer, it is also important to genotype this form of cancer. We therefore conducted the Shizuoka Lung Cancer Mutation Study to analyze driver mutations in patients with thoracic malignancies. Here we report the results of genotyping in patients with squamous cell lung cancer.
METHODS: Based on the biobanking system, in conjunction with the clinic and pathology lab, we developed a genotyping panel designed to assess 24 mutations in 10 genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, HER2 and DDR2), EGFR, MET, PIK3CA, FGFR1 and FGFR2 copy numbers, and EML4-ALK and ROS1 translocations, using pyrosequencing plus capillary electrophoresis, quantitative polymerase chain reaction (PCR) and reverse-transcription PCR, respectively.
RESULTS: A total of 129 patients with squamous cell lung cancer and adenosquamous carcinoma were enrolled in this study between July 2011 and November 2012. We detected genetic alterations in 40% of all cases. Gene alterations included: EGFR mutations, 6%; KRAS mutations, 4%; PIK3CA mutations, 13%; NRAS mutations, 1%; KIF5b-RET fusion gene, 1%; EGFR copy number gain, 5%; PIK3CA copy number gain, 15%; and FGFR1 copy number gain, 5%. Twelve patients (9%) harbored simultaneous genetic alterations. Genetic alterations were detected more frequently in surgically-resected, snap-frozen samples than in formalin-fixed, paraffin-embedded samples (50% vs. 29%). In addition, patients aged ≤70 years old and never-smokers showed high frequencies of genetic alterations.
CONCLUSIONS: This study represents one of the largest prospective tumor-genotyping studies to be performed in Asian patients with squamous cell lung cancer. These results suggest that incorporation of genetic profiling into lung cancer clinical practice may facilitate the administration of personalized cancer treatments in patients with squamous cell lung cancer.

Saito M, Ishigame T, Tsuta K, et al.
A mouse model of KIF5B-RET fusion-dependent lung tumorigenesis.
Carcinogenesis. 2014; 35(11):2452-6 [PubMed] Related Publications
Oncogenic fusion of the RET (rearranged during transfection) gene was recently identified as a novel driver gene aberration not only for the development of thyroid carcinoma but also of lung adenocarcinoma, the most frequent histological type of lung cancer. This study constructed and analyzed transgenic mice expressing KIF5B-RET, the predominant form of RET fusion gene specific for lung adenocarcinoma, under the control of the SPC (surfactant protein C) gene promoter. The mice expressed the KIF5B-RET fusion gene specifically in lung alveolar epithelial cells, and developed multiple tumors in the lungs. Treatment of the transgenic mice with vandetanib, which is a RET tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration for the treatment of thyroid carcinoma, for 8 or 20 weeks led to a marked reduction in the number of lung tumors (3.3 versus 0 and 6.5 versus 0.2 per tissue section, respectively; P < 0.01, t-test). The results suggest that the RET fusion functions as a driver for the development of lung tumors, whose growth is inhibited by RET tyrosine kinase inhibitors.

Qian Y, Chai S, Liang Z, et al.
KIF5B-RET fusion kinase promotes cell growth by multilevel activation of STAT3 in lung cancer.
Mol Cancer. 2014; 13:176 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer in nonsmokers tends to be driven by a single somatic mutation or a gene fusion. KIF5B-RET fusion is an oncogene identified in non-small cell lung cancers. In this study, we verified the oncogenic activity of KIF5B-RET fusion and investigated how KIF5B-RET activates the specific signaling pathways for cellular transformation. We aimed to provide a basis for the further development of the therapy for KIF5B-RET positive lung cancer patients.
METHODS: RT-PCR was used to screen for KIF5B-RET fusions in Chinese lung cancer patients. To verify the oncogenic activity of KIF5B-RET kinase in lung cancer cells, we manipulated its expression genetically followed by colony formation and tumor formation assays. The mechanism by which KIF5B-RET kinase induces proliferation was investigated by western blot, coimmunoprecipitation, and administration of RET, MAPK and STAT3 inhibitors.
RESULTS: Our study identified a KIF5B-RET fusion in Chinese NSCLC patients and demonstrated that KIF5B-RET transfected cells showed a significantly increased proliferation rate and colony-forming ability. Furthermore, we found that KIF5B-RET fusion kinase induced multilevel activation of STAT3 at both Tyr705 and Ser727, and KIF5B-RET-STAT3 signaling related inhibitors repressed the proliferation and tumorigenicity of lung cancer cells significantly.
CONCLUSIONS: Our data suggest that KIF5B-RET promotes the cell growth and tumorigenicity of non-small cell lung cancers through multilevel activation of STAT3 signaling, providing possible strategies for the treatment of KIF5B-RET positive lung cancers.

Mizukami T, Shiraishi K, Shimada Y, et al.
Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma.
J Thorac Oncol. 2014; 9(5):622-30 [PubMed] Related Publications
BACKGROUND: Oncogenic RET fusion, caused by an inversion in chromosome 10, was recently identified as a driver mutation for the development of lung adenocarcinoma (LADC). Nevertheless, the molecular mechanism(s) underlying the rearrangement of the RET locus during lung carcinogenesis are unknown.
METHODS: Genomic segments containing breakpoint junctions for RET fusions were cloned and analyzed by genomic polymerase chain reaction and genome capture sequencing using a next-generation sequencer to identify the mechanisms involved in DNA strand breaks and illegitimate joining of DNA ends. Of the 18 cases studied, 16 were identified by screening 671 LADC cases and two were previously published.
RESULTS: Almost all (17 of 18, 94%) of the breakpoints in RET were located within a 2.0-kb region spanning exon 11 to intron 11 and no breakpoint occurred within 4 bp of any other. This suggested that as in papillary thyroid carcinoma, DNA strand breaks formed at nonspecific sites within this region trigger RET fusion. Just over half of the RET fusions in LADC (10 of 18, 56%) were caused by simple reciprocal inversion, and two DNA-repair mechanisms, namely nonhomologous end joining and break-induced replication, were deduced to have contributed to the illegitimate joining of the DNA ends.
CONCLUSIONS: Oncogenic RET fusion in LADC occurs through multiple pathways and involves the illegitimate repair of DNA strand breaks through mechanisms different from those identified in papillary thyroid carcinoma, where RET fusion also functions as a driver mutation.

Tsuta K, Kohno T, Yoshida A, et al.
RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis.
Br J Cancer. 2014; 110(6):1571-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: To elucidate clinicopathological characteristics of non-small-cell lung carcinoma (NSCLC) cases carrying RET rearrangements causing oncogenic fusions to identify responders to therapy with RET tyrosine kinase inhibitors.
METHODS: We investigated 1874 patients with carcinomas, including 1620 adenocarcinomas (ADCs), 203 squamous cell carcinomas (SCCs), 8 large cell carcinomas, and 43 sarcomatoid carcinomas (SACs). Fluorescence in situ hybridisation (FISH) and/or reverse transcription-PCR (RT-PCR) were performed to detect RET gene rearrangement.
RESULTS: In all, 22 cases (1.2%) showed RET rearrangements; all cases were of ADC histology. Of the 22 patients, 19 possessed KIF5B-RET fusion genes, whereas 3 possessed CCDC6-RET fusion genes. The RET-rearranged tumours were significantly more common in younger patients (P=0.038) and tended to occur in patients with no history of smoking (P=0.051). In addition, RET rearrangements were not associated with gender, occupational history (particularly radioactive exposure), tumour size, lymph node status, tumour stage, or patient survival. The predominant growth pattern in RET-rearranged ADCs was lepidic in 6 cases, papillary in 9 cases, acinar in 2 cases, micropapillary in 1 case, and solid in 4 cases. Cells with cytoplasmic mucin production were at least focally present in 12 of the 22 (54.5%) RET-rearranged ADC cases. Among the 21 analysed RET-rearranged tumours, RET immunopositivity was observed in 15 cases (71.4%), and was significantly associated with RET rearrangement (P<0.001).
CONCLUSIONS: The RET rearrangements were observed in 1.2% of NSCLCs. All cases of RET rearrangement were ADCs. The RET rearrangements were more likely to be observed in younger patients. Although cytoplasmic mucin production was at least focally present in 54.5% of RET-rearranged ADCs, specific histological features were not detected.

Cartwright S, Karakesisoglou I
Nesprins in health and disease.
Semin Cell Dev Biol. 2014; 29:169-79 [PubMed] Related Publications
LINC (Linker of Nucleoskeleton and Cytoskeleton) complex is an evolutionary conserved structure that spans the entire nuclear envelope (NE), and integrates the nuclear interior with the cytoskeleton, in order to support a diverse array of fundamental biological processes. Key components of the LINC complex are the nesprins (Nuclear Envelope SPectrin Repeat proteINS) that were initially described as large integral NE proteins. However, nesprin genes are complex and generate many variants, which occupy various sub-cellular compartments suggesting additional functions. Hence, the potential involvement of nesprins in disease has expanded immensely on what we already know. That is, nesprins are implicated in diseases such as cancer, myopathies, arthrogryposis, neurological disorders and hearing loss. Here we review nesprins by providing an in depth account of their structure, molecular interactions and cellular functions with relevance to their potential roles in disease. Specifically, we speculate about possible pathomechanisms underlying nesprin-associated diseases.

Dacic S, Luvison A, Evdokimova V, et al.
RET rearrangements in lung adenocarcinoma and radiation.
J Thorac Oncol. 2014; 9(1):118-20 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RET rearrangement, a hallmark of radiation-induced thyroid cancer, has been reported to occur in 1% of lung adenocarcinoma patients. Patients with this rearrangement tend to be younger and never smokers, raising a possibility of other causes, such as radiation. We hypothesized that RET chromosomal rearrangement may represent a genetic mechanism of radiation-induced lung cancer.
METHODS: Two hundred forty-five consecutive primary lung adenocarcinomas without history of radiation and 38 lung adenocarcinoma patients with a history of therapeutic radiation for breast carcinoma or mediastinal Hodkgin lymphoma were tested for RET rearrangement by fluorescence in situ hybridization. Human lung adenocarcinoma cells (201T) were subjected to γ radiation and tested for RET gene fusions by reverse transcriptase-polymerase chain reaction and Southern blot hybridization.
RESULTS: We identified one case with RET rearrangement in the group without history of radiation (1 of 240; 0.4%) and two cases in the group with history of radiation (2 of 37; 5.4%; P=0.0436). Both these patients were women, who were former smokers with a history of breast carcinoma treated with surgery and radiation. Furthermore, we found that RET fusions could be directly induced in 201T human lung cells by exposure to 1 Gy of γ radiation. All fusions identified were between RET and KIF5B genes, and no RET fusions to CCDC6 or NCOA4 genes, characteristic for thyroid cancer, were identified in the irradiated lung cells.
CONCLUSION: RET fusions may represent a genetic mechanism of radiation-induced lung adenocarcinoma.

Yoo SS, Jin G, Jung HJ, et al.
RET fusion genes in Korean non-small cell lung cancer.
J Korean Med Sci. 2013; 28(10):1555-8 [PubMed] Free Access to Full Article Related Publications
Recently, rearranged during transfection (RET) fusions have been identified in approximately 1% of non-small cell lung cancer (NSCLC). To know the prevalence of RET fusion genes in Korean NSCLCs, we examined the RET fusion genes in 156 surgically resected NSCLCs using a reverse transcriptase polymerase chain reaction. Two KIF5B-RET fusions and one CCDC6-RET fusion were identified. All three patients were females and never smokers with adenocarcinomas. RET fusion genes were mutually exclusive from EGFR, KRAS mutations and EML4-ALK fusion. RET fusion genes occur 1.9% (3 of 156) of surgically treated NSCLC patients in Koreans.

Wu YC, Chang IC, Wang CL, et al.
Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan.
PLoS One. 2013; 8(8):e70839 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain.
METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed.
RESULTS: Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian.
CONCLUSIONS: Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.

Go H, Jung YJ, Kang HW, et al.
Diagnostic method for the detection of KIF5B-RET transformation in lung adenocarcinoma.
Lung Cancer. 2013; 82(1):44-50 [PubMed] Related Publications
KIF5B-RET fusions have recently been reported to occur in pulmonary adenocarcinomas, thereby being proposed as a novel genetic alteration in adenocarcinoma of the lung. However, clinically useful methods to detect RET-rearrangement in pulmonary adenocarcinoma have not been well established. 53 cases of lung adenocarcinomas harbored "triple (EGFR, KRAS and ALK)-negative" were tested for KIF5B-RET fusions using whole-transcriptome sequencing, fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and long-range PCR. Dual color break-apart probes and KIF5B-RET fusion probes were used for FISH. Three different commercial antibodies against C-terminal RET protein were tested for IHC. Primers designed for 3 different variants of KIF5B-RET fusions were used for long-range PCR. Three patients (5.6%) showed RET rearrangement in whole-transcriptome sequencing, which were used as a gold standard. All those three patients were also positive in FISH for both KIF5B-RET fusion and RET break-apart probes. None of remaining patients showed positive result, resulting in 100% concordance rate of FISH and transcriptome sequencing methods. However, fused RET proteins were not detected by IHC in none of true positive patients. Moreover, 6 patients without RET fusions showed gain of gene copy number of both KIF5B and RET. All those three true positive cases were detected by long-range PCR methods and none with true negative cases were positive. Both FISH and PCR may be useful methods to detect novel KIF5B-RET rearrangements in pulmonary adenocarcinomas rather than IHC. However, as there may be additional variant of fusion mutation, FISH may be better than PCR method in terms of sensitivity.

Akbari Moqadam F, Lange-Turenhout EA, Ariës IM, et al.
MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia.
Leuk Res. 2013; 37(10):1315-21 [PubMed] Related Publications
MicroRNA-125b (miR-125b), miR-99a and miR-100 are overexpressed in vincristine-resistant acute lymphoblastic leukemia (ALL). Cellular viability of ETV6-RUNX1-positive Reh cells significantly increased in presence of 9 ng/mL vincristine upon co-expression of miR-125b/miR-99a (91 ± 4%), miR-125b/miR-100 (93 ± 5%) or miR-125b/miR-99a/miR-100 (82 ± 17%) compared with miR-125b-transduced cells (38 ± 13%, P<0.05). Co-expression of these miRNAs resulted in downregulation of DNTT, NUCKS1, MALAT1, SNRPE, PNO1, SET, KIF5B, PRPS2, RPS11, RPL38 and RPL23A (fold-change 1.3-1.9, p<0.05). Similarly, 7 out of these genes are lower expressed in vincristine-resistant ALL cells of children (p<0.05). The concerted function of miR-125b in combination with miR-99a and/or miR-100 illustrates the complexity of vincristine-resistant pediatric ALL.

Borrelli N, Giannini R, Proietti A, et al.
KIF5B/RET fusion gene analysis in a selected series of cytological specimens of EGFR, KRAS and EML4-ALK wild-type adenocarcinomas of the lung.
Lung Cancer. 2013; 81(3):377-81 [PubMed] Related Publications
A new RET fusion gene has been recently described in a subset of non-small cell lung cancer (NSCLC) identified by specific clinico-pathologic characteristics. This transforming gene arise from the fusion of KIF5B and the RET proto-oncogene, and it is mutually exclusive with EGFR, KRAS and EML4/ALK alterations. For this reason it could represent a putative target for specific inhibitory drugs and its evaluation could be necessary in the future daily molecular characterization of NSCLCs. One of the major challenge in diagnostic molecular pathology is to optimize genotyping tests with the minimally invasive techniques used to acquire diagnostic tumor tissue or cells. This is a significant relevant issue for approximately 60% of NSCLC patients presenting with unresectable disease, where the only pathologic materials available for diagnostic use are small biopsy or cytological specimens. Thus, the aim of this study was to verify the possibility to use RNA purified from cytological specimens to perform KIF5B/RET gene fusion expression analysis. Accordingly, we looked for the presence of the rearrangement in formalin fixed paraffin embedded tissues (FFPETs) and cytological specimens (CSs) of a selected series of "triple-marker" negative adenocarcinomas. The tests conducted revealed the presence of 1 positive patient for variant 1 of KIF5B/RET among the 49 analyzed. The presence of this fusion transcript was found in both FFPET and CS of the same patient demonstrating that the RNA obtained from minimally invasive techniques is perfectly suitable for this kind of tests. The presence of the rearrangement was also confirmed by FISH analysis. In conclusion, our findings confirm that the performance of cytology-based molecular testing for KIF5B/RET rearrangements is at least as effective as histology-based analysis, both with regard to the success rate for nucleic acid isolation and the ability to detect gene alterations.

Noguchi S, Kumazaki M, Yasui Y, et al.
MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b.
J Invest Dermatol. 2014; 134(2):461-9 [PubMed] Related Publications
MicroRNA (miR)-203 is known to be downregulated and to act as an anti-oncomir in melanoma cells. At present, we found that exogenous miR-203 increased pigmentation and protein expression levels of the melanoma antigen recognized by T cells (Melan-As/MART1s) and/or tyrosinase (TYR) in the human melanoma cells tested. Inversely, treatment with an inhibitor of miR-203 downregulated the expression level of TYR. The target gene of miR-203 involved in the mechanism was kinesin superfamily protein 5b (kif5b), which was revealed by gene silencing using short interfering RNA and luciferase activity assay. Furthermore, immunocytochemistry showed obvious accumulation of melanosomes around nuclei of human melanoma Mewo cells transfected with miR-203 or siR-kif5b. Importantly, treatment with the miR-203 inhibitor, but not miR-203, exhibited effects on human epidermal melanocytes isolated from lightly pigmented adult skin similar to those on melanoma cells. In addition, the data indicated that exogenous miR-203 also negatively regulated the cAMP response element-binding protein 1 (CREB1)/microphthalmia-associated transcription factor (MITF)/Rab27a pathway, which is one of the main pathways active in melanoma cells. In conclusion, our data indicated that anti-oncogenic miR-203 had a pivotal role in melanoma through reducing melanosome transport and promoting melanogenesis by targeting kif5b and through negative regulation of the CREB1/MITF/Rab27a pathway.

Matsuura S, Shinmura K, Kamo T, et al.
CD74-ROS1 fusion transcripts in resected non-small cell lung carcinoma.
Oncol Rep. 2013; 30(4):1675-80 [PubMed] Related Publications
The recent discovery of fusion oncokinases in a subset of non-small cell lung carcinomas (NSCLCs) is of considerable clinical interest, since NSCLCs that express such fusion oncokinases are reportedly sensitive to kinase inhibitors. To better understand the role of recently identified ROS1 and RET fusion oncokinases in pulmonary carcinogenesis, we examined 114 NSCLCs for SLC34A2-ROS1, EZR-ROS1, CD74-ROS1 and KIF5B-RET fusion transcripts using RT-polymerase chain reaction and subsequent sequencing analyses. Although the expression of SLC34A2-ROS1, EZR-ROS1, or KIF5B-RET fusion transcripts was not detected in any of the cases, the expression of CD74-ROS1 fusion transcripts was detected in one (0.9%) of the 114 NSCLCs. The fusion occurred between exon 6 of CD74 and exon 34 of ROS1 and was an in-frame alteration. The mutation was detected in a woman without a history of smoking. Histologically, the carcinoma was an adenocarcinoma with a predominant acinar pattern; notably, a mucinous cribriform pattern and a solid signet-ring cell pattern were also observed in part of the adenocarcinoma. ROS1 protein overexpression was immunohistochemically detected in a cancer-specific manner in both the primary cancer and the lymph node metastatic cancer. No somatic mutations were detected in the mutation cluster regions of the KRAS, EGFR, BRAF and PIK3CA genes and the entire coding region of p53 in the carcinoma, and the expression of ALK fusion was negative. The above results suggest that CD74-ROS1 fusion is involved in the carcinogenesis of a subset of NSCLCs and may contribute to the elucidation of the characteristics of ROS1 fusion-positive NSCLC in the future.

Oike T, Ogiwara H, Tominaga Y, et al.
A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1.
Cancer Res. 2013; 73(17):5508-18 [PubMed] Related Publications
The occurrence of inactivating mutations in SWI/SNF chromatin-remodeling genes in common cancers has attracted a great deal of interest. However, mechanistic strategies to target tumor cells carrying such mutations are yet to be developed. This study proposes a synthetic-lethality therapy for treating cancers deficient in the SWI/SNF catalytic (ATPase) subunit, BRG1/SMARCA4. The strategy relies upon inhibition of BRM/SMARCA2, another catalytic SWI/SNF subunit with a BRG1-related activity. Immunohistochemical analysis of a cohort of non-small-cell lung carcinomas (NSCLC) indicated that 15.5% (16 of 103) of the cohort, corresponding to preferentially undifferentiated tumors, was deficient in BRG1 expression. All BRG1-deficient cases were negative for alterations in known therapeutic target genes, for example, EGFR and DDR2 gene mutations, ALK gene fusions, or FGFR1 gene amplifications. RNA interference (RNAi)-mediated silencing of BRM suppressed the growth of BRG1-deficient cancer cells relative to BRG1-proficient cancer cells, inducing senescence via activation of p21/CDKN1A. This growth suppression was reversed by transduction of wild-type but not ATPase-deficient BRG1. In support of these in vitro results, a conditional RNAi study conducted in vivo revealed that BRM depletion suppressed the growth of BRG1-deficient tumor xenografts. Our results offer a rationale to develop BRM-ATPase inhibitors as a strategy to treat BRG1/SMARCA4-deficient cancers, including NSCLCs that lack mutations in presently known therapeutic target genes.

Okamoto K, Kodama K, Takase K, et al.
Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models.
Cancer Lett. 2013; 340(1):97-103 [PubMed] Related Publications
RET gene fusions are recurrent oncogenes identified in thyroid and lung carcinomas. Lenvatinib is a multi-tyrosine kinase inhibitor currently under evaluation in several clinical trials. Here we evaluated lenvatinib in RET gene fusion-driven preclinical models. In cellular assays, lenvatinib inhibited auto-phosphorylation of KIF5B-RET, CCDC6-RET, and NcoA4-RET. Lenvatinib suppressed the growth of CCDC6-RET human thyroid and lung cancer cell lines, and as well, suppressed anchorage-independent growth and tumorigenicity of RET gene fusion-transformed NIH3T3 cells. These results demonstrate that lenvatinib can exert antitumor activity against RET gene fusion-driven tumor models by inhibiting oncogenic RET gene fusion signaling.

Drilon A, Wang L, Hasanovic A, et al.
Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas.
Cancer Discov. 2013; 3(6):630-5 [PubMed] Free Access to Full Article Related Publications
The discovery of RET fusions in lung cancers has uncovered a new therapeutic target for patients whose tumors harbor these changes. In an unselected population of non-small cell lung carcinomas (NSCLCs), RET fusions are present in 1% to 2% of cases. This incidence increases substantially, however, in never-smokers with lung adenocarcinomas that lack other known driver oncogenes. Although preclinical data provide experimental support for the use of RET inhibitors in the treatment of RET fusion-positive tumors, clinical data on response are lacking. We report preliminary data for the first three patients treated with the RET inhibitor cabozantinib on a prospective phase II trial for patients with RET fusion-positive NSCLCs (NCT01639508). Confirmed partial responses were observed in 2 patients, including one harboring a novel TRIM33-RET fusion. A third patient with a KIF5B-RET fusion has had prolonged stable disease approaching 8 months (31 weeks). All three patients remain progression-free on treatment.

Cai W, Su C, Li X, et al.
KIF5B-RET fusions in Chinese patients with non-small cell lung cancer.
Cancer. 2013; 119(8):1486-94 [PubMed] Related Publications
BACKGROUND: It has been established that "ret proto-oncogene" (RET) fusions are oncogenic drivers in non-small cell lung cancer (NSCLC). The prevalence and clinicopathologic characteristics of RET fusions in Chinese patients with NSCLC remain unclear. The objective of the current study was to determine the prevalence and clinicopathologic characteristics of KIF5B-RET fusions (fusions of the RET and kinesin family member 5B [KIF5B] genes) in Chinese patients with NSCLC.
METHODS: The authors screened for KIF5B-RET fusions in 392 patients with NSCLC using multiplex real-time polymerase chain reaction assay and validated all positive samples using direct sequencing. The relations between KIF5B-RET fusions and clinicopathologic characteristics were analyzed.
RESULTS: In total, 6 patients (1.5%) were identified who harbored KIF5B-RET fusions. Of these, 4 had adenocarcinoma, 1 had a malignant neuroendocrine tumor, and 1 had squamous cell carcinoma. All patients who were positive for a KIF5B-RET fusion were never-smokers. There was no statistically significant difference in age, sex, smoking status, pathologic stage, or histologic type between patients with and without KIF5B-RET fusions. Patients without KIF5B-RET fusions had a better prognosis than those with KIF5B-RET fusions (median survival, 52.6 months vs 21.0 months; P = .06), with a hazard ratio of 2.398 (95% confidence interval, 0.982-5.856; P = .055) on multivariate analysis. Disease stage (hazard ratio, 2.879) and younger age (<65 years; hazard ratio, 1.485) were identified as independent prognostic factors for better survival.
CONCLUSIONS: KIF5B-RET fusions were quite rare, with a prevalence of approximately 1.5% in Chinese patients with NSCLC, and they were a little more common in patients with adenocarcinoma than in those with squamous carcinoma (1.73% vs 0.84%). In addition, KIF5B-RET fusions also existed in patients with low-grade malignant neuroendocrine tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KIF5B, Cancer Genetics Web: http://www.cancer-genetics.org/KIF5B.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999