TRIM27

Gene Summary

Gene:TRIM27; tripartite motif containing 27
Aliases: RFP, RNF76
Location:6p22.1
Summary:This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein localizes to the nuclear matrix. It interacts with the enhancer of polycomb protein and represses gene transcription. It is also thought to be involved in the differentiation of male germ cells. Fusion of the N-terminus of this protein with the truncated C-terminus of the RET gene product has been shown to result in production of the ret transforming protein. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:zinc finger protein RFP
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (27)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TRIM27 (cancer-related)

Yano S, Takehara K, Kishimoto H, et al.
Comparison of Tumor Recurrence After Resection of Highly- and Poorly-Metastatic Triple-negative Breast Cancer in Orthotopic Nude-Mouse Models.
Anticancer Res. 2017; 37(1):57-60 [PubMed] Related Publications
BACKGROUND: Triple-negative breast cancer (TNBC), defined by the absence of receptors for estrogen, progesterone and human epithelial receptor 2, is a recalcitrant disease in need of effective therapy. We previously isolated highly-metastatic variants of the human TNBC cell line MDA-MB-231 using serial orthotopic implantation in nude mice.
MATERIALS AND METHODS: In the present report, we compared local and metastatic recurrence in lymph nodes in orthotopic nude-mouse models after bright-light surgery (BLS) of tumors from highly-metastatic variants or poorly-metastatic parental MDA-MB-231-RFP cells. Orthotopic tumors from parental MDA-MB-231 or highly-metastatic MDA-MB-231 were resected under bright light similar to an operating room.
RESULTS: After resection of primary tumors, local recurrence from highly-metastatic MDA-MB-231 cells grew more rapidly than did parental MDA-MB-231 cells. Lymph-node metastasis from highly-metastatic MDA-MB-231 cells occurred after primary tumor resection much more extensively than after parental MDA-MB-231 tumors were resected.
CONCLUSION: The results of the present report suggest that conventional surgery under bright light was unable to control highly-metastatic compared with poorly-metastatic MDA-MB-231 TNBC.

Zhang F, Dong W, Zeng W, et al.
Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation.
Breast Cancer Res. 2016; 18(1):38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Targeting the TGF-β1 pathway for breast cancer metastasis therapy has become an attractive strategy. We have previously demonstrated that naringenin significantly reduced TGF-β1 levels in bleomycin-induced lung fibrosis and effectively prevented pulmonary metastases of tumors. This raised the question of whether naringenin can block TGF-β1 secretion from breast cancer cells and inhibit their pulmonary metastasis.
METHODS: We transduced a lentiviral vector encoding the mouse Tgf-β1 gene into mouse breast carcinoma (4T1-Luc2) cells and inoculated the transformant cells (4T1/TGF-β1) into the fourth primary fat pat of Balb/c mice. Pulmonary metastases derived from the primary tumors were monitored using bioluminescent imaging. Spleens, lungs and serum (n = 18-20 per treatment group) were analyzed for immune cell activity and TGF-β1 level. The mechanism whereby naringenin decreases TGF-β1 secretion from breast cancer cells was investigated at different levels, including Tgf-β1 transcription, mRNA stability, translation, and extracellular release.
RESULTS: In contrast to the null-vector control (4T1/RFP) tumors, extensive pulmonary metastases derived from 4T1/TGF-β1 tumors were observed. Administration of the TGF-β1 blocking antibody 1D11 or naringenin showed an inhibition of pulmonary metastasis for both 4T1/TGF-β1 tumors and 4T1/RFP tumors, resulting in increased survival of the mice. Compared with 4T1/RFP bearing mice, systemic immunosuppression in 4T1/TGF-β1 bearing mice was observed, represented by a higher proportion of regulatory T cells and myeloid-derived suppressor cells and a lower proportion of activated T cells and INFγ expression in CD8(+) T cells. These metrics were improved by administration of 1D11 or naringenin. However, compared with 1D11, which neutralized secreted TGF-β1 but did not affect intracellular TGF-β1 levels, naringenin reduced the secretion of TGF-β1 from the cells, leading to an accumulation of intracellular TGF-β1. Further experiments revealed that naringenin had no effect on Tgf-β1 transcription, mRNA decay or protein translation, but prevented TGF-β1 transport from the trans-Golgi network by inhibiting PKC activity.
CONCLUSIONS: Naringenin blocks TGF-β1 trafficking from the trans-Golgi network by suppressing PKC activity, resulting in a reduction of TGF-β1 secretion from breast cancer cells. This finding suggests that naringenin may be an attractive therapeutic candidate for TGF-β1 related diseases.

Hoffman RM, Yano S
Salmonella typhimurium A1-R and Cell-Cycle Decoy Therapy of Cancer.
Methods Mol Biol. 2016; 1409:165-75 [PubMed] Related Publications
Cancer cells in G0/G1 are resistant to cytotoxic chemotherapy agents which kill only cycling cancer cells. Salmonella typhimurium A1-R (S. typhimurium A1-R) decoyed cancer cells in monolayer culture and in tumor spheres to cycle from G0/G1 to S/G2/M, as demonstrated by fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging. S. typhimurium A1-R targeted FUCCI-expressing subcutaneous tumors, and tumors growing on the liver, growing in nude mice and also decoyed quiescent cancer cells, which were the majority of the cells in the tumors, to cycle from G0/G1 to S/G2/M. The S. typhimurium A1-R-decoyed cancer cells became sensitive to cytotoxic agents.

Hoffman RM, Zhao M
Methods for Tumor Targeting with Salmonella typhimurium A1-R.
Methods Mol Biol. 2016; 1409:143-64 [PubMed] Related Publications
Salmonella typhimurium A1-R (S. typhimurium A1-R) has shown great preclinical promise as a broad-based anti-cancer therapeutic (please see Chapter 1 ). The present chapter describes materials and methods for the preclinical study of S. typhimurium A1-R in clinically-relevant mouse models. Establishment of orthotopic metastatic mouse models of the major cancer types is described, as well as other useful models, for efficacy studies of S. typhimurium A1-R or other tumor-targeting bacteria, as well. Imaging methods are described to visualize GFP-labeled S. typhimurium A1-R, as well as GFP- and/or RFP-labeled cancer cells in vitro and in vivo, which S. typhimurium A1-R targets. The mouse models include metastasis to major organs that are life-threatening to cancer patients including the liver, lung, bone, and brain and how to target these metastases with S. typhimurium A1-R. Various routes of administration of S. typhimurium A1-R are described with the advantages and disadvantages of each. Basic experiments to determine toxic effects of S. typhimurium A1-R are also described. Also described are methodologies for combining S. typhimurium A1-R and chemotherapy. The testing of S. typhimurium A1-R on patient tumors in patient-derived orthotopic xenograft (PDOX) mouse models is also described. The major methodologies described in this chapter should be translatable for clinical studies.

Ming J, Liu Z, Zeng W, et al.
Association between BRAF and RAS mutations, and RET rearrangements and the clinical features of papillary thyroid cancer.
Int J Clin Exp Pathol. 2015; 8(11):15155-62 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To evaluate the significance of BRAF (V600E) and Ras mutations, and RET rearrangements in papillary thyroid cancer (PTC) in the South central region of China.
METHODS: We included patients from Union hospital's pathology archive diagnosed with PTC and meeting the criteria for BRAF mutation, RAS mutation, and RET rearrangement testing. Medical records were analyzed for BRAF and RAS mutation status, RET rearrangements (positive or negative), and a list of standardized clinicopathologic features.
RESULTS: Positive BRAF mutation was found to be significantly associated with age and extrathyroidal extension (P=0.011 and P=0.013, respectively). However, there was no significant association between BRAF mutation and sex, tumor size, histological subtype, multifocality, or accompanying nodular goiter and Hashimoto's. On the other hand, none of these characteristics of PTC were been found to be associated with RAS mutation. Additionally, the frequency of RET rearrangements was higher in patients ≤45 years old than that in patients >45 years old.
CONCLUSIONS: We demonstrated that the BRAF (V600E) mutation slightly correlated with the clinicopathological characteristics of PTC in the Han population. Furthermore, neither RAS mutation nor RET rearrangements were found to be associated with the clinicopathological characteristics of PTCs. Our work provides useful information on somatic mutations to predict the risk of PTC in different ethnic groups.

Ma Y, Wei Z, Bast RC, et al.
Downregulation of TRIM27 expression inhibits the proliferation of ovarian cancer cells in vitro and in vivo.
Lab Invest. 2016; 96(1):37-48 [PubMed] Related Publications
TRIM27 (tripartite motif-containing 27) was originally identified as a fusion partner with the RET (REarranged during transfection) proto-oncogene and is highly expressed in various tumor cells and tissues. However, the level of expression and function of TRIM27 in ovarian cancer remain unclear. Here we have measured the expression of TRIM27 in normal ovarian and fallopian tube epithelial cells and in ovarian serous carcinoma cells and correlated TRIM27 expression with clinical and pathological parameters. In addition, we detected the effect of TRIM27 knockdown on proliferation of ovarian cancer cells in cell culture and xenografts. The results demonstrated that TRIM27 was highly expressed in ovarian serous carcinoma cells, and TRIM27 expression was significantly correlated with metastasis and FIGO stage in ovarian serous carcinoma patients. Downregulation of TRIM27 expression suppressed the proliferation of ovarian cancer cells in cell culture and inhibited the growth of xenografts in nude mice. TRIM27 knockdown induced cell cycle arrest and apoptosis in ovarian cancer cells by upregulating the expression of p-P38 and downregulating the expression of p-AKT. Thus the present study suggests that TRIM27 could have important roles as an oncogene during the development of ovarian cancer and could serve as a diagnostic and therapeutic target.

Wan J, Wen D, Dong L, et al.
Establishment of monoclonal HCC cell lines with organ site-specific tropisms.
BMC Cancer. 2015; 15:678 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Organ site-specific metastasis is an ominous feature for most poor-prognostic hepatocellular carcinoma (HCC) patients. Cancer cell lines and animal models are indispensable for investigating the molecular mechanisms of organ specific tropism. However, till now, little is known about the drivers in HCC metastatic tropism, and also no effective way has been developed to block the process of tropistic metastasis.
METHODS: In this study, we established several monoclonal HCC cell lines from HCCLM3-RFP together with their xenograft models, and then analyzed their metastatic potentials and tropisms using in-vitro and in-vivo assays, and finally elucidated the driving forces of HCC tropistic metastases.
RESULTS: Six monoclonal cell lines with different organ site-specific tropism were established successfully. SPARC, VCAM1 and ANGPTL4 were found positively correlated with the potentials of lung metastasis, while ITGA1 had a positive relation to lymph node metastasis of enterocoelia.
CONCLUSIONS: By our powerful platforms, HCC metastatic tropisms in clinic could be easily mimicked and recapitulated for exploring the bilateral interactions between tumor and its microenvironment, elucidating the drivers of HCC metastatic tropisms, and testing anti-cancer effects of newly developed agent in pre-clinical stage.

Hsu MK, Wu IC, Cheng CC, et al.
Triple-layer dissection of the lung adenocarcinoma transcriptome: regulation at the gene, transcript, and exon levels.
Oncotarget. 2015; 6(30):28755-73 [PubMed] Free Access to Full Article Related Publications
Lung adenocarcinoma is one of the most deadly human diseases. However, the molecular mechanisms underlying this disease, particularly RNA splicing, have remained underexplored. Here, we report a triple-level (gene-, transcript-, and exon-level) analysis of lung adenocarcinoma transcriptomes from 77 paired tumor and normal tissues, as well as an analysis pipeline to overcome genetic variability for accurate differentiation between tumor and normal tissues. We report three major results. First, more than 5,000 differentially expressed transcripts/exonic regions occur repeatedly in lung adenocarcinoma patients. These transcripts/exonic regions are enriched in nicotine metabolism and ribosomal functions in addition to the pathways enriched for differentially expressed genes (cell cycle, extracellular matrix receptor interaction, and axon guidance). Second, classification models based on rationally selected transcripts or exonic regions can reach accuracies of 0.93 to 1.00 in differentiating tumor from normal tissues. Of the 28 selected exonic regions, 26 regions correspond to alternative exons located in such regulators as tumor suppressor (GDF10), signal receptor (LYVE1), vascular-specific regulator (RASIP1), ubiquitination mediator (RNF5), and transcriptional repressor (TRIM27). Third, classification systems based on 13 to 14 differentially expressed genes yield accuracies near 100%. Genes selected by both detection methods include C16orf59, DAP3, ETV4, GABARAPL1, PPAR, RADIL, RSPO1, SERTM1, SRPK1, ST6GALNAC6, and TNXB. Our findings imply a multilayered lung adenocarcinoma regulome in which transcript-/exon-level regulation may be dissociated from gene-level regulation. Our described method may be used to identify potentially important genes/transcripts/exonic regions for the tumorigenesis of lung adenocarcinoma and to construct accurate tumor vs. normal classification systems for this disease.

Gruslova A, Cavazos DA, Miller JR, et al.
VB-111: a novel anti-vascular therapeutic for glioblastoma multiforme.
J Neurooncol. 2015; 124(3):365-72 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is among the most highly vascularized of solid tumors, contributing to the infiltrative nature of the disease, and conferring poor outcome. Due to the critical dependency of GBM on growth of new endothelial vasculature, we evaluated the preclinical activity of a novel adenoviral gene therapy that targets the endothelium within newly formed blood vessels for apoptosis. VB-111, currently in phase II clinical trials, consists of a non-replicating Adenovirus 5 (El deleted) carrying a proapoptotic human Fas-chimera (transgene) under the control of a modified murine promoter (PPE-1-3×) which specifically targets endothelial cells within the tumor vasculature. Here we report that a single intravenous dose of 2.5 × 10(11) or 1 × 10(11) VPs was sufficient to extend survival in nude rats bearing U87MG-luc2 or nude mice bearing U251-luc, respectively. Bioluminescence imaging of nude rats showed that VB-111 effectively inhibited tumor growth within four weeks of treatment. This was confirmed in a select group of animals by MRI. In our mouse model we observed that 3 of 10 nude mice treated with VB-111 completely lost U251 luciferase signal and were considered long term survivors. To assess the antiangiogenic effects of VB-111, we evaluated the tumor-associated microvaculature by CD31, a common marker of neovascularization, and found a significant decrease in the microvessel density by IHC. We further assessed the neovasculature by confocal microscopy and found that VB-111 inhibits vascular density in two separate mouse models bearing U251-RFP xenografts. Collectively, this study supports the clinical development of VB-111 as a treatment for GBM.

Chen Y, Wang Z, Dai X, et al.
Glioma initiating cells contribute to malignant transformation of host glial cells during tumor tissue remodeling via PDGF signaling.
Cancer Lett. 2015; 365(2):174-81 [PubMed] Related Publications
INTRODUCTION: Glioma initiating cells (GICs) play important roles in tumor initiation and progression. However, interactions between tumor cells and host cells of local tumor microenvironment are kept largely unknown. Besides GICs and their progeny cells, whether adjacent normal glial cells contribute to tumorigenesis during glioma tissue remodeling deserves further investigation.
METHODS: Red fluorescence protein (RFP) gene was stably transfected into human GIC cells lines SU3 and U87, then were transplanted intracerebrally into athymic nude mice with whole-body green fluorescence protein (GFP) expression. The interactions between GICs and host cells in vivo were observed during tissue remodeling processes initiated by hGICs. The biological characteristics of host glial cells with high proliferation capability cloned from the xenograft were further assayed.
RESULTS: In a SU3 initiated dual-fluorescence xenograft glioma model, part of host cells cloned from the intracerebral tumors were found acquiring the capability of unlimited proliferation. PCR and FISH results indicated that malignant transformed cells were derived from host cells; cell surface marker analysis showed these cells expressed murine oligodendrocyte specific marker CNP, and oligodendrocyte progenitor cells (OPCs) specific markers PDGFR-α and NG2. Chromosomal analysis showed these cells were super tetraploid. In vivo studies showed they behaved with high invasiveness activity and nearly 100% tumorigenic ratio. Compared with SU3 cells with higher PDGF-B expression, GICs derived from U87 cells with low level of PDGF-B expression failed to induce host cell transformation.
CONCLUSIONS: Primary high invasive GICs SU3 contribute to transformation of adjacent normal host glial cells in local tumor microenvironment possibly via PDGF/PDGFR signaling activation, which deserved further investigation.

Suetsugu A, Jiang P, Yang M, et al.
The Use of Living Cancer Cells Expressing Green Fluorescent Protein in the Nucleus and Red Fluorescence Protein in the Cytoplasm for Real-time Confocal Imaging of Chromosome and Cytoplasmic Dynamics During Mitosis.
Anticancer Res. 2015; 35(5):2553-7 [PubMed] Related Publications
BACKGROUND/AIM: A library of dual-color fluorescent cancer cells with green fluorescent protein (GFP), linked to histone H2B, expressed in the nucleus and red fluorescent protein (RFP) expressed in the cytoplasm was previously genetically engineered. The aim of the current study was to use the dual-color cancer cells to visualize chromosome and cytoplasmic dynamics during mitosis.
MATERIALS AND METHODS: Using an Olympus FV1000 confocal microscope, a library of dual-color cells from the major cancer types was cultured on plastic. The cells were imaged by confocal microscopy to demonstrate chromosome and cytoplasmic dynamics during mitosis.
RESULTS: Nuclear GFP expression enabled visualization of chromosomes behavior, whereas simultaneous cytoplasmic RFP expression enabled visualization of cytoplasmic behavior during mitosis. Thus, total cellular dynamics can be visualized at high resolution, including individual chromosomes in some cases, in living dual-color cells in real time.
CONCLUSION: Dual-color cancer cells expressing H2B-GFP in the nucleus and RFP in the cytoplasm provide unique tools for visualizing subcellular nuclear and cytoplasm dynamics, including the behavior of individual chromosomes during mitosis. The dual-color cells can be used to evaluate chromosomal loss or gain in real time during treatment with a variety of agents or as the cells are selected for increased or decreased malignancy in culture or in vivo. The dual color cells will be a useful tool to discover and evaluate novel strategies for killing cancer cells.

Yang M, Jiang P, Hoffman RM
Early Reporting of Apoptosis by Real-time Imaging of Cancer Cells Labeled with Green Fluorescent Protein in the Nucleus and Red Fluorescent Protein in the Cytoplasm.
Anticancer Res. 2015; 35(5):2539-43 [PubMed] Related Publications
BACKGROUND/AIM: We previously developed PC-3 human prostate cancer cells expressing red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) linked to histone H2B expressed in the nucleus. We demonstrate in the present report the use of these dual-color cells for early detection of apoptosis in the presence of cancer chemotherapy agents.
MATERIALS AND METHODS: Induction of apoptosis was observed by real-time imaging of cytoplasmic and nuclear size and shape changes and nuclear fragmentation using fluorescence microscopy. Apoptosis was also detected by measuring DNA fragmentation. The cancer chemotherapy agents paclitaxel and vinblastine were used for induction of apoptosis.
RESULTS: When the PC-3 dual-color cells were treated with paclitaxel or vinblastine, cytoplasmic and nuclear size and shape changes and nuclear fragmentation were observed by 24 hours. The paclitaxel-treated PC-3 dual-color cells exhibited ring-like structures formed by the fragmented nuclei, which could be brightly visualized by H2B-GFP fluorescence. Apoptosis was also detected by the dual-color PC-3 cells by 24 hours when treated with vinblastine. However, no nuclear ring-like structures were formed in the PC-3 cells by vinblastine treatment. In contrast, DNA fragmentation could not be observed in PC-3 cells until 48 hours after exposure to paclitaxel.
CONCLUSION: Dual-color PC-3 cells can serve as a simple real-time early reporter of apoptosis and as a screen for novel cancer therapeutics or genotoxic agents. The dual-color cell real-time imaging assay is a more sensitive and earlier reporter for apoptosis than the DNA fragmentation assay.

Qiao B, Shui W, Cai L, et al.
Human mesenchymal stem cells as delivery of osteoprotegerin gene: homing and therapeutic effect for osteosarcoma.
Drug Des Devel Ther. 2015; 9:969-76 [PubMed] Free Access to Full Article Related Publications
Biological treatments have been studied extensively and previous studies have proved that osteoprotegerin (OPG) can inhibit the development and progress of human osteosarcoma. However, the utility of biologic agents for cancer therapy has a short half-life, which can hardly deliver to and function in tumor sites efficiently. Mesenchymal stem cells (MSCs) have the potential to migrate to tumor sites. In this study, MSCs transfected with adenoviruses carrying the OPG gene (MSCs-OPG) were used via the tail vein to treat athymic nude mice (nu/nu) bearing osteosarcoma. In vivo and ex vivo images were used to validate the MSCs homing to tumors. The therapeutic effect for osteosarcoma was evaluated by observations on growth of tumors and bone destruction. The results showed that infected MSCs-OPG labeled with red fluorescent protein (RFP) can migrate to tumor sites and express OPG protein. The treatment by MSCs-OPG reduced the tumor growth and inhibited bone destruction in vivo. All these indicated that MSCs can deliver OPG to tumor sites, which could be a new direction of biological treatment for human osteosarcoma.

Tan Q, Joshua AM, Saggar JK, et al.
Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy.
Br J Cancer. 2015; 112(5):832-40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Autophagy allows recycling of cellular components and may facilitate cell survival after chemotherapy. Pantoprazole inhibits proton pumps and is reported to inhibit autophagy. Here we evaluate the effects of pantoprazole to modify cytotoxicity of the anticancer drug docetaxel, and underlying mechanisms.
METHODS: Effects of docetaxel±pantoprazole were studied against wild-type and autophagy-deficient PC3 cells and against four human xenografts. Effects of pantoprazole on autophagy were evaluated by quantifying LC3-I, LC3-II and p62 proteins in western blots, and by fluorescent microscopy of cells transfected with RFP-GFP-LC3. The distribution of drug effects and of autophagy was quantified in tumour sections in relation to blood vessels and hypoxia by immunohistochemistry using γH2AX, cleaved caspase-3, Ki67 and LC3/ p62.
RESULTS: Pantoprazole increased the toxicity of docetaxel in vitro, increased docetaxel-induced expression of γH2AX and cleaved caspase-3, and decreased Ki67 in tumour sections. Pantoprazole increased growth delay of four human xenografts of low, moderate and high sensitivity to docetaxel, with minimal increase in toxicity. Docetaxel led to increased autophagy throughout tumour sections. Pantoprazole inhibited autophagy, and effects of pantoprazole were reduced against genetically modified cells with decreased ability to undergo autophagy.
CONCLUSIONS: Autophagy is a mechanism of resistance to docetaxel chemotherapy that may be modified by pantoprazole to improve therapeutic index.

Akin D, Wang SK, Habibzadegah-Tari P, et al.
A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors.
Autophagy. 2014; 10(11):2021-35 [PubMed] Free Access to Full Article Related Publications
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.

Wang A, Dai X, Cui B, et al.
Experimental research of host macrophage canceration induced by glioma stem progenitor cells.
Mol Med Rep. 2015; 11(4):2435-42 [PubMed] Free Access to Full Article Related Publications
The involvement of tumor‑associated macrophages in tumor progression is an indisputable fact. However, whether the growth‑promotion effects of macrophages towards tumors in the aggressive stage affect their own canceration remains unknown. In the present study, human glioma stem/progenitor cells transfected with red fluorescent protein gene (SU3‑RFP) were seeded inside the abdominal cavity of transgenic nude mice, of which all nucleated cells could express green fluorescent protein (GFP), forming a tumor model with a double‑color RFP/GFP fluorescent tracer. Ascites and tumor nodules from tumor‑bearing mice were cultured, then the GFP+ cells were separated for clonal culture and further related phenotypic characterization and tumorigenicity tests. It was observed that the GFP+ cells isolated from ascites and solid tumors exhibited unlimited proliferative potential; the monoclonal cells were mouse‑original, had a cancer cell phenotype and expressed the macrophage marker protein CD68. Thus, in the abdominal tumor model with double‑color fluorescent tracer, macrophages recruited by tumor cells not only promoted tumor cell growth, but also exhibited their own canceration. This discovery is significant for the further study of tumor tissue remodeling and the tumor microenvironment.

Hsu FT, Liu YC, Chiang IT, et al.
Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-κB signaling.
Int J Oncol. 2014; 45(1):177-88 [PubMed] Related Publications
Sorafenib is effective for patients with advanced hepatocellular carcinoma (HCC) and particularly for those who are unsuitable to receive life-prolonging transarterial chemo-embolization. The survival benefit of sorafenib, however, is unsatisfactory. Vorinostat also known as suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anti-HCC efficacy in preclinical studies. SAHA induces nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in vitro, which may lead to cancer cell progression and jeopardize cytotoxic effect of SAHA in HCC. The goal of this study was to investigate whether sorafenib enhances SAHA cytotoxicity against HCC through inhibition of SAHA-induced NF-κB activity. The human HCC cell line Huh7 transfected with dual reporter genes, luciferase (luc) and thymidine kinase (tk) with NF-κB response elements, was co-transfected with red fluorescent protein (rfp) gene for non-invasive molecular imaging to assess NF-κB activity and living cells simultaneously. Cell viability assay, DNA fragmentation, western blotting, electrophoretic mobility shift assay (EMSA) and multiple modalities of molecular imaging were used to assess the combination efficacy and mechanism of sorafenib and SAHA. The administration of high-dose SAHA (10 µM) with long treatment time (48 h) in vitro, and 25 mg/kg/day by gavage in HCC-bearing nude mice to induce NF-κB activity were performed. Sorafenib inhibited SAHA-induced NF-κB activity and the expression of NF-κB-regulated effector proteins while it increased the efficacy of SAHA against HCC both in vitro and in vivo. The mechanism of sorafenib to enhance SAHA efficacy on HCC is through the suppression of ERK/NF-κB pathway, which induces extrinsic and intrinsic apoptosis. Combination of sorafenib and SAHA may have the potential as new strategy against HCC.

Almeida TA, Quispe-Ricalde A, Montes de Oca F, et al.
A high-throughput open-array qPCR gene panel to identify housekeeping genes suitable for myometrium and leiomyoma expression analysis.
Gynecol Oncol. 2014; 134(1):138-43 [PubMed] Related Publications
OBJECTIVE: To evaluate 51 different housekeeping genes for their use as internal standards in myometrial and matched leiomyoma samples in proliferative and secretory phases.
METHODS: RNA from 6 myometrium and matched leiomyoma samples was obtained from pre-menopausal women who underwent hysterectomy. Reverse-transcription and real-time quantitative PCR were achieved using TaqMan high-density open-array human endogenous control panel.
RESULTS: Expression stability of 51 candidate genes was determined by GeNorm and NormFinder softwares. We identified 10 housekeeping genes, ARF1, MRPL19, FBXW2, PUM1, UBE2D2, EIF2B1, HPRT1, GUSB, ALAS1, and TRIM27, as the best set of normalization genes for comparing relative expression between leiomyoma and myometrium samples in proliferative and secretory phases.
CONCLUSIONS: Adequate reference genes for accurate normalization are essential to compare gene expression between leiomyoma and myometrial samples. Ideal housekeeping genes must have stable expression patterns regardless of the sample type and menstrual cycle phase. In this study, we propose a set of 10 candidate genes with greater expression stability than those housekeeping genes commonly used in leiomyoma and myometrium tissues. Their use will improve the sensitivity and specificity of the gene expression analysis in these tissues.

de Kruijf EM, Bastiaannet E, Rubertá F, et al.
Comparison of frequencies and prognostic effect of molecular subtypes between young and elderly breast cancer patients.
Mol Oncol. 2014; 8(5):1014-25 [PubMed] Related Publications
PURPOSE: To compare the distribution and prognostic effect of the breast cancer molecular subtypes in young and elderly breast cancer patients.
PATIENTS AND METHODS: Our study population (n = 822) consisted of all early breast cancer patients primarily treated with surgery in our center between 1985 and 1996. A total of 142/822 fresh frozen tissues were available with good quality RNA and analyzed by gene expression microarray. Gene expression molecular subtypes were determined by correlation to the expression centroids of 534 "intrinsic" genes. Sections of a tissue micro array containing formalin-fixed paraffin-embedded tumor tissue of 714/822 patients were immunohistochemically (IHC) stained for Ki67, EGFR, CK5/6. Tumor expression of ER, PR, HER2 was previously determined. IHC molecular subtypes were defined based on expression of these markers: Luminal A: ER+ and/or PR+, HER2- and Ki67-; Luminal B: ER+ and/or PR+ and ki67+; ERBB2: ER-, PR- and HER2+; Basal-like: ER-, PR-, HER2- and EGFR+ and/or CK5/6+; Unclassified: ER-, PR-, HER2-, EGFR- and CK5/6-. IHC molecular subtypes were validated against gene expression defined molecular subtypes. Assessment of distribution and prognostic effect of molecular subtypes was stratified to age (<65 versus ≥65 years).
RESULTS: Validation of molecular subtypes determined by IHC against gene expression revealed a substantial agreement in classification (Cohen's kappa coefficient 0.75). A statistically significant association (p = 0.02) was found between molecular subtypes and age, where Luminal tumors were more often found in elderly patients, while ERBB2, basal-like and unclassified subtypes were more often found in young patients. Molecular subtypes showed a prognostic association with outcome in young patients concerning relapse-free period (RFP) (p = 0.01) and relative survival (RS) (p < 0.001). No statistically significant prognostic effect was found for molecular subtypes in elderly patients (RFP p = 0.5; RS p = 0.1). Additional analyses showed that no molecular subtypes showed a statistically significant difference in outcome for elderly compare to young patients.
CONCLUSION: We have shown that molecular subtypes have a different distribution and prognostic effect in elderly compared to young breast cancer patients, emphasizing the fact that biomarkers may have different distributions and prognostic effects and therefore different implications in elderly compared to their younger counterparts. Our results support the premise that breast cancer clinical behavior is significantly affected by patient age. We suggest that competing risks of death in elderly patients, ER-driven differences and micro-environmental changes in biology are underlying these age-dependent variations in patient prognosis.

Lee S, Koo H, Na JH, et al.
DNA amplification in neutral liposomes for safe and efficient gene delivery.
ACS Nano. 2014; 8(5):4257-67 [PubMed] Related Publications
In general, traditional gene carriers contain strong cationic charges to efficiently load anionic genes, but this cationic character also leads to destabilization of plasma membranes and causes severe cytotoxicity. Here, we developed a PCR-based nanofactory as a safe gene delivery system. A few template plasmid DNA can be amplified by PCR inside liposomes about 200 nm in diameter, and the quantity of loaded genes highly increased by more than 8.8-fold. The liposome membrane was composed of neutral lipids free from cationic charges. Consequently, this system is nontoxic, unlike other traditional cationic gene carriers. Intense red fluorescent protein (RFP) expression in CHO-K1 cells showed that the amplified genes could be successfully transfected to cells. Animal experiments with the luciferase gene also showed in vivo gene expression by our system without toxicity. We think that this PCR-based nanofactory system can overcome the toxicity problem that is the critical limitation of current gene delivery to clinical application.

Leng L, Wang Y, He N, et al.
Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy.
Biomaterials. 2014; 35(19):5162-70 [PubMed] Free Access to Full Article Related Publications
The tumor tropism of mesenchymal stem cells (MSCs) makes them an excellent delivery vehicle used in anticancer therapy. However, the exact mechanisms of MSCs involved in tumor microenvironment are still not well defined. Molecular imaging technologies with the versatility in monitoring the therapeutic effects, as well as basic molecular and cellular processes in real time, offer tangible options to better guide MSCs mediated cancer therapy. In this study, an in situ breast cancer model was developed with MDA-MB-231 cells carrying a reporter system encoding a double fusion (DF) reporter gene consisting of firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP). In mice breast cancer model, we injected human umbilical cord-derived MSCs (hUC-MSCs) armed with a triple fusion (TF) gene containing the herpes simplex virus truncated thymidine kinase (HSV-ttk), renilla luciferase (Rluc) and red fluorescent protein (RFP) into tumor on day 13, 18, 23 after MDA-MB-231 cells injection. Bioluminescence imaging of Fluc and Rluc provided the real time monitor of tumor cells and hUC-MSCs simultaneously. We found that tumors were significantly inhibited by hUC-MSCs administration, and this effect was enhanced by ganciclovir (GCV) application. To further demonstrate the effect of hUC-MSCs on tumor cells in vivo, we employed the near infrared (NIR) imaging and the results showed that hUC-MSCs could inhibit tumor angiogenesis and increased apoptosis to a certain degree. In conclusion, hUC-MSCs can inhibit breast cancer progression by inducing tumor cell death and suppressing angiogenesis. Moreover, molecular imaging is an invaluable tool in tracking cell delivery and tumor response to hUC-MSCs therapies as well as cellular and molecular processes in tumor.

Shen FF, Yue WB, Zhou FY, et al.
Variations in the MHC region confer risk to esophageal squamous cell carcinoma on the subjects from high-incidence area in northern China.
PLoS One. 2014; 9(3):e90438 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The human major histocompatibility complex (MHC) is the most important region in vertebrate genome, and is crucial in innate immunity. Recent studies have demonstrated the possible role of polymorphisms in the MHC region to high risk for esophageal squamous cell carcinoma (ESCC). Our previous genome-wide association study (GWAS) has indicated that the MHC region may confer important risk loci for ESCC, but without further fine mapping. The aim of this study is to further identify the risk loci in the MHC region for ESCC in Chinese population.
METHODS: Conditional logistic regression analysis (CLRA) was performed on 24 single nucleotide polymorphisms (SNPs) within the MHC region, which were obtained from the genetically matched 937 cases and 692 controls of Chinese Han population. The identified promising SNPs were further correlated with clinical and clinicopathology characteristics. Immunohistochemistry was performed to explore the protein expression pattern of the related genes in ESCC and neighboring normal tissues.
RESULTS: Of the 24 promising SNPs analyzed, we identified three independent SNPs in the MHC region associated with ESCC: rs35399661 (P = 6.07E-06, OR = 1.71, 95%CI = 1.36-2.17), rs3763338 (P = 1.62E-05, OR = 0.63, 95%CI = 0.50-0.78) and rs2844695 (P = 7.60E-05, OR = 0.74, 95%CI = 0.64-0.86). These three SNPs were located at the genes of HLA-DQA1, TRIM27, and DPCR1, respectively. Further analyses showed that rs2844695 was preferentially associated with younger ESCC cases (P = 0.009). The positive immunostaining rates both for HLA-DQA1 and TRIM27 were much higher in ESCC tissues than in neighboring normal tissues (69.4% vs. 26.8% for HLA-DQA1 and 77.6% vs. 47.8% for TRIM27, P<0.001). Furthermore, the overexpression of HLA-DQA1 is correlated significantly with age (P = 0.001) and family history (P<0.001).
CONCLUSION: This study for the first time provides evidence that multiple genetic factors within the MHC region confer risk to ESCC on the subjects from high-risk area in northern China.

Rowan BG, Gimble JM, Sheng M, et al.
Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts.
PLoS One. 2014; 9(2):e89595 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis.
METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells.
CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231 breast tumor xenografts to multiple mouse organs. MDA-MB-231 tumors co-injected with ASCs from one donor exhibited partial EMT, expression of MMP-9, and increased angiogenesis.

Hoffman RM
Fluorescent angiogenesis models using gelfoam® implanted in transgenic mice expressing fluorescent proteins.
Methods Mol Biol. 2014; 1135:213-22 [PubMed] Related Publications
Fidler's group described an in vivo angiogenesis assay utilizing Gelfoam(®) sponges impregnated with agarose and proangiogenic factors. Vessels were detected by staining with fluorescent antibodies against CD31. We showed that Gelfoam(®) implanted in transgenic mice expressing the nestin promoter-driven green fluorescent protein (ND-GFP mice) was rapidly vascularized with ND-GFP-expressing nascent blood vessels. Angiogenesis in the Gelfoam(®) was quantified by measuring the total length of ND-GFP-expressing nascent blood vessels in a skin flap by in vivo fluorescence microscopy imaging. The ND-GFP-expressing nascent blood vessels formed a network on the surface of the basic fibroblast growth factor (bFGF)-treated Gelfoam(®). We then developed a color-coded imaging model that can visualize the interaction between αv integrin linked to green fluorescent protein (GFP) in osteosarcoma cells and blood vessels in Gelfoam(®) vascularized after implantation in red fluorescent protein (RFP) transgenic nude mice. The implanted Gelfoam(®) became highly vascularized with RFP-expressing vessels in 14 days. 143B osteosarcoma cells expressing αv integrin-GFP were injected into the Gelfoam(®) after transplantation of Gelfoam(®). After cancer cell injection, cancer cells interacting with blood vessels were observed in the Gelfoam(®) by color-coded confocal microscopy through the skin flap window. We developed another color-coded Gelfoam(®)-based imaging model that can visualize the anastomosis between blood vessels. RFP-expressing vessels in vascularized Gelfoam(®), previously transplanted into RFP transgenic mice, were re-transplanted into ND-GFP mice. Skin flaps were made and anastomosis between the GFP-expressing nascent blood vessels of ND-GFP transgenic nude mice and RFP blood vessels in the transplanted Gelfoam(®) could be imaged. Our results demonstrate that the Gelfoam(®) in vivo angiogenesis model in combination with fluorescent protein labeling of blood vessels is a powerful system for use in the discovery and evaluation of agents influencing vascularization.

Kwon SY, Jiang SN, Zheng JH, et al.
Rhodobacter sphaeroides, a novel tumor-targeting bacteria that emits natural near-infrared fluorescence.
Microbiol Immunol. 2014; 58(3):172-9 [PubMed] Related Publications
Several optical imaging techniques have been used to monitor bacterial tropisms for cancer. Most such techniques require genetic engineering of the bacteria to express optical reporter genes. This study investigated a novel tumor-targeting strain of bacteria, Rhodobacter sphaeroides 2.4.1 (R. sphaeroides), which naturally emits near-infrared fluorescence, thereby facilitating the visualization of bacterial tropisms for cancer. To determine the penetration depth of bacterial fluorescence, various numbers of cells (from 10(8) to 10(10)  CFU) of R. sphaeroides and two types of Escherichia coli, which stably express green fluorescent protein (GFP) or red fluorescent protein (RFP), were injected s.c. or i.m. into mice. Bacterial tropism for cancer was determined after i.v. injection of R. sphaeroides (10(8)  CFU) into mice implanted s.c. with eight types of tumors. The intensity of the fluorescence signal in deep tissue (muscle) from R. sphaeroides was much stronger than from E. coli-expressing GFP or RFP. The near-infrared fluorescence signal from R. sphaeroides was visualized clearly in all types of human or murine tumors via accumulation of bacteria. Analyses of C-reactive protein and procalcitonin concentrations and body weights indicated that i.v. injection of R. sphaeroides does not induce serious systemic immune reactions. This study suggests that R. sphaeroides could be used as a tumor-targeting microorganism for the selective delivery of drugs to tumor tissues without eliciting a systemic immune reaction and for visualizing tumors.

Urayama KY, Chokkalingam AP, Metayer C, et al.
SNP association mapping across the extended major histocompatibility complex and risk of B-cell precursor acute lymphoblastic leukemia in children.
PLoS One. 2013; 8(8):e72557 [PubMed] Free Access to Full Article Related Publications
The extended major histocompatibility complex (xMHC) is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs) in childhood BCP-ALL cases (n=567) enrolled in the Northern California Childhood Leukemia Study (NCCLS) compared with population controls (n=892). Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036), located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046). Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.

Dhruv HD, McDonough Winslow WS, Armstrong B, et al.
Reciprocal activation of transcription factors underlies the dichotomy between proliferation and invasion of glioma cells.
PLoS One. 2013; 8(8):e72134 [PubMed] Free Access to Full Article Related Publications
Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the "Go or Grow" hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the "Go or Grow" hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44) revealed higher proliferation (Ki67 labeling index) in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These findings suggest that the reciprocal and coordinated suppression/activation of transcription factors, such as c-Myc and NF-κB may underlie the shift of glioma cells from a "growing-to-going" phenotype.

Ke CC, Liu RS, Suetsugu A, et al.
In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.
PLoS One. 2013; 8(7):e69658 [PubMed] Free Access to Full Article Related Publications
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which are recruited to the tumor microenvironment (TME) and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

Kuang Y, An S, Guo Y, et al.
T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting.
Int J Pharm. 2013; 454(1):11-20 [PubMed] Related Publications
Among all the malignant brain tumors, glioma is the deadliest and most common form with poor prognosis. Gene therapy is regarded as a promising way to halt the progress of the disease or even cure the tumor and RNA interference (RNAi) stands out. However, the existence of the blood-brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, the delivery system targeting to the transferrin (Tf) receptor highly expressed on both BBB and glioma was successfully synthesized and would not compete with endogenous Tf. U87 cells stably express luciferase were employed here to simulate tumor and the RNAi experiments in vitro and in vivo validated that the gene silencing activity was 2.17-fold higher with the targeting ligand modification. The dual-targeting gene delivery system exhibits a series of advantages, such as high efficiency, low toxicity, stability and high transaction efficiency, which may provide new opportunities in RNAi therapeutics and nanomedicine of brain tumors.

Guo Y, Wei X, Das J, et al.
Dissecting disease inheritance modes in a three-dimensional protein network challenges the "guilt-by-association" principle.
Am J Hum Genet. 2013; 93(1):78-89 [PubMed] Free Access to Full Article Related Publications
To better understand different molecular mechanisms by which mutations lead to various human diseases, we classified 82,833 disease-associated mutations according to their inheritance modes (recessive versus dominant) and molecular types (in-frame [missense point mutations and in-frame indels] versus truncating [nonsense mutations and frameshift indels]) and systematically examined the effects of different classes of disease mutations in a three-dimensional protein interactome network with the atomic-resolution interface resolved for each interaction. We found that although recessive mutations affecting the interaction interface of two interacting proteins tend to cause the same disease, this widely accepted "guilt-by-association" principle does not apply to dominant mutations. Furthermore, recessive truncating mutations in regions encoding the same interface are much more likely to cause the same disease, even for interfaces close to the N terminus of the protein. Conversely, dominant truncating mutations tend to be enriched in regions encoding areas between interfaces. These results suggest that a significant fraction of truncating mutations can generate functional protein products. For example, TRIM27, a known cancer-associated protein, interacts with three proteins (MID2, TRIM42, and SIRPA) through two different interfaces. A dominant truncating mutation (c.1024delT [p.Tyr342Thrfs*30]) associated with ovarian carcinoma is located between the regions encoding the two interfaces; the altered protein retains its interaction with MID2 and TRIM42 through the first interface but loses its interaction with SIRPA through the second interface. Our findings will help clarify the molecular mechanisms of thousands of disease-associated genes and their tens of thousands of mutations, especially for those carrying truncating mutations, often erroneously considered "knockout" alleles.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TRIM27, Cancer Genetics Web: http://www.cancer-genetics.org/TRIM27.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999