HSPB1

Gene Summary

Gene:HSPB1; heat shock protein family B (small) member 1
Aliases: CMT2F, HMN2B, HSP27, HSP28, Hsp25, SRP27, HS.76067, HEL-S-102
Location:7q11.23
Summary:The protein encoded by this gene is induced by environmental stress and developmental changes. The encoded protein is involved in stress resistance and actin organization and translocates from the cytoplasm to the nucleus upon stress induction. Defects in this gene are a cause of Charcot-Marie-Tooth disease type 2F (CMT2F) and distal hereditary motor neuropathy (dHMN). [provided by RefSeq, Oct 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:heat shock protein beta-1
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Apoptosis
  • Single Nucleotide Polymorphism
  • HSPB1
  • Western Blotting
  • Antineoplastic Agents
  • Drug Resistance
  • Oligonucleotide Array Sequence Analysis
  • Disease Progression
  • bcl-2-Associated X Protein
  • HSP70 Heat-Shock Proteins
  • Biomarkers, Tumor
  • Heat-Shock Proteins
  • Phosphorylation
  • Adenocarcinoma
  • Down-Regulation
  • Brain Tumours
  • Prostate Cancer
  • HSP90 Heat-Shock Proteins
  • Breast Cancer
  • Immunohistochemistry
  • Neoplasm Invasiveness
  • Chromosome 7
  • Lung Cancer
  • Cell Movement
  • Cancer Gene Expression Regulation
  • Neoplasm Proteins
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • HSP27 Heat-Shock Proteins
  • RT-PCR
  • Neoplasm Metastasis
  • Proteomics
  • Gene Expression Profiling
  • Protein-Serine-Threonine Kinases
  • Signal Transduction
  • Transcription Factors
  • DNA-Binding Proteins
  • Sex Factors
  • Gene Expression
  • Melanoma
  • Brain Tumours
  • siRNA
  • Molecular Sequence Data
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HSPB1 (cancer-related)

Matsushima-Nishiwaki R, Toyoda H, Nagasawa T, et al.
Phosphorylated Heat Shock Protein 20 (HSPB6) Regulates Transforming Growth Factor-α-Induced Migration and Invasion of Hepatocellular Carcinoma Cells.
PLoS One. 2016; 11(4):e0151907 [PubMed] Free Access to Full Article Related Publications
Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway.

Li J, Tang C, Li L, et al.
Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo.
J Exp Clin Cancer Res. 2016; 35:61 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Evidences indicate that inflammatory process plays pivotal role in tumor disease. Soluble epoxide hydrolase inhibitors (sEHIs) have been shown to participate in anti-inflammation and tumorigenesis by protecting epoxyeicosatrienoic acids (EETs). Although we have previously revealed some effects of t-AUCB on glioma in vitro, further investigations are needed to demonstrate its effects on glioblastoma growth in vivo and how to strengthen its antitumor effect.
METHODS: CCK-8 kit was used to test cell growth. Cell migration capacity was performed by wound healing assays. Transwell assay was used to test cell invasion potency. Cell-cycle analysis and cell apoptosis was performed by flow cytometry. The activity of caspase-3 in cells was measured using caspase-3 activity assay kits. Total RNA was extracted from cells lysated by TRIzol reagent. qRT-PCR was performed by ABI 7500 fast RT- PCR system. Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) was used for siRNA transfection. Western blootting was used to test protein expression. Tumor cell xenograft mouse models were used for in vivo study. The SPSS version 17.0 software was applied for statistical analysis.
RESULTS: Our data shown that t-AUCB inhibits cell proliferation, migration and invasion and induces cell cycle G1 phase arrest in vitro but induces no cell apoptosis; increased Hsp27 activation and following COX-2 overexpression confer resistance to t-AUCB treatment in glioblastoma both in vitro and in vivo; quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo.
CONCLUSIONS: These results indicate that combination of t-AUCB and quercetin may be a potential approach to treating glioblastoma.

Mostafavinia SE, Khorashadizadeh M, Hoshyar R
Antiproliferative and Proapoptotic Effects of Crocin Combined with Hyperthermia on Human Breast Cancer Cells.
DNA Cell Biol. 2016; 35(7):340-7 [PubMed] Related Publications
We investigated the suppressive effects of crocin alone and in combination with hyperthermia (HT) on proliferation of breast cancer cells. Cell viability, colony formation ability, and apoptosis were assessed by 3-(4,5-dimetylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT), soft agar, Hoechst 33258 staining, and percentage of lactate dehydrogenase (LDH) release methods, respectively. The mRNA levels Hsp27, Hsp70, Hsp90, Bax, and Bcl-2 were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Hsp70 and Hsp90 proteins were determined using enzyme-linked immunosorbent assay (ELISA) technique. Crocin in combination with HT significantly inhibited the proliferation of cancer cells in a dose- and time-dependent manner. There was a degree of synergism in the combined treatment. However, crocin did not show the high cytotoxic effect on normal cells. This treatment decreased colony formation of cancer cells up to 94%. Changed nuclear morphology and increased LDH indicated that crocin combined with HT has a more apoptotic effect than crocin alone. Furthermore, in treated cells Bax/Bcl-2 ratio markedly increased, whereas expression of heat-induced genes decreased. Also, the Hsp70 and Hsp90 proteins decreased in the treated cells. Our study indicated that combination of crocin and HT has strong antiproliferative and apoptotic activities against breast cancer cells. Hence, it is suggested that more studies are warranted to apply crocin as a possible, safe, and promising anticancer agent in cancer.

Zhang Y, Tao X, Jin G, et al.
A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma.
Theranostics. 2016; 6(4):558-70 [PubMed] Free Access to Full Article Related Publications
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.

Lu H, Sun C, Zhou T, et al.
HSP27 Knockdown Increases Cytoplasmic p21 and Cisplatin Sensitivity in Ovarian Carcinoma Cells.
Oncol Res. 2016; 23(3):119-28 [PubMed] Related Publications
Drug resistance is the leading cause of chemotherapy failure in the treatment of ovarian cancer. So far, little is known about the mechanism of chemoresistance in ovarian cancer. In this study, we explored the mechanism that HSP27 was involved in cisplatin resistance of ovarian cancer both in vitro and clinically. HSP27 protein was found to be upregulated and expressed in cisplatin-resistant ovarian cancer cell line C13*, and HSP27 siRNA transfection reversed the chemoresistance of C13*. We found that HSP27 exerted its chemoresistant role by inhibiting p21 transferring from the nucleus to the plasma through the activation of phosphorylated-Akt pathway. These findings have implications for clinical trials aimed at a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.

Li X, Xu S, Cheng Y, Shu J
HSPB1 polymorphisms might be associated with radiation-induced damage risk in lung cancer patients treated with radiotherapy.
Tumour Biol. 2016; 37(5):5743-9 [PubMed] Related Publications
Several studies investigating the association between heat shock protein beta-1 (HSPB1) polymorphisms and radiation-induced damage in lung cancer patients administrated with radiotherapy have derived conflicting results. This meta-analysis aimed to assess the association between the HSPB1 genes' (rs2868370 and rs2868371) polymorphisms and the risk of radiation-induced damage in lung cancer patients. After an electronic literature search, four articles including six studies were found to be eligible for this meta-analysis. No association was observed between rs2868370 genotypes and radiation-induced damage risk. However, rs2868371 showed a statistically increased risk of radiation-induced damage under CC vs. CG/GG model (OR = 1.59, 95 % CI = 1.10-2.29). Subgroup analysis by ethnicity showed that the genotypes of rs2868371 were also associated with a significantly increased risk of radiation-induced damage in CC vs. CG/GG model (OR = 1.86, 95 % CI = 1.21-2.83) among mixed ethnicities which are mainly comprised of white people. When the data was stratified by organ-damaged, a significant association was only observed in the esophagus group (OR = 2.94, 95 % CI = 1.35-6.37, for CC vs. CG/GG model). In conclusion, the present study demonstrated that the rs2868371 genotypes of HSPB1 might be associated with radiation-induced esophagus damage risk, especially in Caucasians but not in the Asian population.

Wang C, Zhang Y, Guo K, et al.
Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential.
Int J Cancer. 2016; 138(8):1824-34 [PubMed] Related Publications
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.

van Ommeren R, Staudt MD, Xu H, Hebb MO
Advances in HSP27 and HSP90-targeting strategies for glioblastoma.
J Neurooncol. 2016; 127(2):209-19 [PubMed] Related Publications
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. There is a critical need for novel strategies to abolish the molecular mechanisms that support GBM growth, invasion and treatment resistance. The heat shock proteins, HSP27 and HSP90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. Natural and synthetic inhibitors have been evaluated in clinical trials for several forms of systemic cancer but none as yet for GBM. This topic review summarizes the current preclinical evidence and rationale to define the potential of HSP27 and HSP90 inhibitors in GBM management.

Kim J, Lim H, Kim S, et al.
Effects of HSP27 downregulation on PDT resistance through PDT-induced autophagy in head and neck cancer cells.
Oncol Rep. 2016; 35(4):2237-45 [PubMed] Related Publications
We previously reported that photodynamic therapy (PDT) induces cell death in head and neck cancer through both autophagy and apoptosis. Regulation of cell death by autophagy and apoptosis is important to enhance the effects of PDT. Autophagy maintains a balance between cell death and PDT resistance. Downregulation of heat shock protein 27 (HSP27) induces PDT resistance in head and neck cancer cells. Furthermore, HSP70 regulates apoptosis during oxidative stress. However, the role of HSPs in PDT-induced cell death through autophagy and apoptosis is unclear. Therefore, in the present study, we investigated the effects of HSP27 and HSP70 on PDT-induced cell death of oral cancer cells through autophagy and apoptosis. Cancer cells were treated with hematoporphyrin at varying doses, followed by irradiation at 635 nm with an energy density of 5 mW/cm2. We determined the changes in HSP expression by determining the levels of PARP-1 and LC3II in PDT-resistant cells. Furthermore, we assessed cell death signaling after downregulating HSPs by transfecting specific siRNAs. We observed that PDT decreased HSP27 expression but increased HSP70 expression in the head and neck cancer cells. Treatment of cells with LC3II and PARP-1 inhibitors resulted in upregulation of HSP70 and HSP27 expression, respectively. Downregulation of HSP27 and HSP70 induced cell death and PDT resistance through autophagy and apoptosis. Moreover, downregulation of HSP27 in PDT-resistant cells resulted in enhanced survival. These results indicate that the regulation of HSP27 and HSP70 plays a principal role in increasing the effects of PDT by inducing autophagic and apoptotic cell death.

Okuno M, Adachi S, Kozawa O, et al.
The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer.
Int J Mol Sci. 2016; 17(1) [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when they are exposed to various stresses, such as chemotherapy. While the administration of gemcitabine, an anti-tumor drug, has been the standard treatment for patients with advanced pancreatic cancer, accumulating evidence shows that HSP27 plays a key role in the chemosensitivity to gemcitabine. In addition, phosphorylated HSP27 induced by gemcitabine has been associated with the inhibition of pancreatic cancer cell growth. In this review, we summarize the role of phosphorylated HSP27, as well as HSP27, in the regulation of chemosensitivity in pancreatic cancer.

Choghaei E, Khamisipour G, Falahati M, et al.
Knockdown of microRNA-29a Changes the Expression of Heat Shock Proteins in Breast Carcinoma MCF-7 Cells.
Oncol Res. 2016; 23(1-2):69-78 [PubMed] Related Publications
Breast cancer is the most commonly occurring cancer among women. MicroRNAs as noncoding small RNA molecules play pivotal roles in cancer-related biological processes. Increased levels of microRNA-29a in the serum of breast cancer patients have been reported. Since heat shock proteins (HSPs) play important roles in cell events, the quantitative fluctuations in their cellular levels could be deemed as key indicators of how the exerted treatment alters cell behavior. In this regard, using an antisense small RNA, we attempted to investigate the effects of miR-29a knockdown on the expression of HSPs genes in the MCF-7 breast cancer cell line. MCF-7 cells were cultured in high-glucose Dulbecco's modified Eagle's medium with 10% FBS. Studied cells were subdivided into five groups: treated with scramble, anti-miR-29a, anti-miR-29a + Taxol, Taxol, and control. Taxol was added 24 h post-anti-miR transfection and RNA extraction, and cDNA synthesis was done 48 h later. The changes in expression of HSP27, HSP40, HSP60, HSP70, and HSP90 were evaluated by real-time PCR. Our results revealed that inhibitors of microRNA-29a promote apoptosis through upregulation of HSP60 level and downregulation of HSP27, HSP40, HSP70, and HSP90 levels and could be contemplated as a compelling alternative for Taxol employment with similar effects and/or to sensitize cancer cells to chemotherapy with fewer side effects.

Chen JT, Younusi A, Cao L, et al.
Potential role of heat-shock proteins in giant cell tumors.
Genet Mol Res. 2015; 14(4):19144-54 [PubMed] Related Publications
We investigated the differential expression protein profile of giant cell tumors (GCTs), which can be used to monitor the tumor's recurrence and metastasis, to provide preliminary results for further study. We also explored heat-shock protein (HSP) inhibitor that prevents tumors from recurring and migrating. A stable isotope-labeling strategy using isobaric tags for relative and absolute quantitation coupled with two-dimensional liquid chromatography tandem mass spectrometry was used to separate and identify differentially expressed proteins. A total of 467 differentially expressed proteins were identified in GCT tissues. Up to 311 proteins were upregulated, whereas 156 proteins were downregulated in GCT tissues. Three of the differentially expressed HSPs, namely HP90A, HSPB1, and HSPB2, were upregulated. The differentially expressed proteins of GCT tissues will provide a scientific foundation for tumor prognosis, and for further studies exploring HSP inhibitor to prevent tumor recurrence and migration.

Xu HU, Bihari F, Whitehead S, et al.
In Vitro Validation of Intratumoral Modulation Therapy for Glioblastoma.
Anticancer Res. 2016; 36(1):71-80 [PubMed] Related Publications
BACKGROUND/AIM: This proof-of-concept study evaluated the antitumor impact of a direct electrical stimulation technique, termed intratumoral modulation therapy (IMT) on glioblastoma (GBM) cells.
MATERIALS AND METHODS: An in vitro IMT model comprised of a calibrated electrode to deliver continuous, low-intensity stimulation within GBM preparations. Viability and apoptosis assays were performed in treated immortalized and patient-derived GBM cells, and post-mitotic neurons. IMT was delivered alone and with temozolomide, or gene silencing of the tumor-promoting chaperone, heat-shock protein 27 (HSP27).
RESULTS: GBM cells, but not neurons, exhibited >40% loss of viability, caspase-3 activation and apoptosis with IMT. Cell death was modest with temozolomide alone (30%) but increased significantly with concomitant IMT (70%). HSP27 silencing alone produced 30% viability loss, with significant enhancement of target knockdown and GBM cell death (65%), when combined with IMT.
CONCLUSION: These findings warrant further evaluation of IMT as a potential novel therapeutic strategy for GBM.

Chen X, Dong XS, Gao HY, et al.
Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells.
Mol Med Rep. 2016; 13(1):689-96 [PubMed] Free Access to Full Article Related Publications
Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti‑cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV‑G‑NR‑U6‑shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis‑associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti‑cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia.

Sahoo S, Singh P, Kalha B, et al.
Gonadotropin-mediated chemoresistance: Delineation of molecular pathways and targets.
BMC Cancer. 2015; 15:931 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Human chorionic gonadotropin (hCG) has essential roles in pregnancy. Reports linking hCG in non-trophoblastic tumors with poor patient prognosis has spurred interest in patho-physiological roles the hormone might play.
METHODS: The ability of hCG to prevent tumor cell death and sustain viability in the presence of chemotherapeutic drugs was assessed and potential synergies with TLR ligands explored. hCG-induced up-modulation of genes involved in chemoresistance was documented and targets validated by siRNA knock-down. Whether hCG could drive collaboration between tumor cells and macrophages in the production of IL-6 and consequent chemoresistance was assessed. The effects of concurrent anti-hCG immunization and chemotherapy on the growth of syngeneic murine tumors were evaluated.
RESULTS: hCG maintained basal levels of cytokine secretion by tumor cells exposed to chemotherapeutic drugs, and enhanced viability and proliferation; pre-treatment with hCG also decreased apoptosis, as assessed by Annexin-V binding and the cleavage of caspase 3. While co-incubation with hCG along with several TLR ligands mediated heightened chemo-resistance, TLR-2/6 and TLR-9 ligands increased the phosphorylation of JNK, and TLR-2 and TLR-8 ligands the phosphorylation of ERK in presence of hCG and curcumin, providing evidence of tri-molecular synergy. The hormone increased the transcription and/or expression of molecular intermediates (SURVIVIN, HIF-1α, PARP-1, Bcl-2, c-FLIP, KLK-10, XIAP, c-IAP-1) associated with chemo-resistance and increased levels of stress modulators (PON2, HO-1, HSP27 and NRF-2). siRNAs to SURVIVIN, NRF-2, HO-1 and HIF-1α attenuated hCG-mediated chemo-resistance. hCG-conditioned tumor cell supernatants induced heightened secretion of IL-6 and TNF-α from peripheral blood adherent cells and secreted IL-6 imparted chemo-resistance to naïve tumor cells. Co-administration of curcumin along with an anti-hCG vaccine (hCGβ conjugated to Tetanus Toxoid (TT)) to mice carrying syngeneic tumors resulted in significantly enhanced benefits on animal survival; synergy was demonstrated between anti-hCG antibodies and curcumin in the reduction of tumor cell viability.
CONCLUSIONS: The data suggest that hCG, via direct as well as collaborative effects with TLR ligands and accessory cell-secreted cytokines, mediates chemo-resistance in gonadotropin-sensitive tumors and outlines the potential benefits of combination therapy.

Wang X, Shi L, Deng Y, et al.
Inhibition of leucine aminopeptidase 3 suppresses invasion of ovarian cancer cells through down-regulation of fascin and MMP-2/9.
Eur J Pharmacol. 2015; 768:116-22 [PubMed] Related Publications
Leucine aminopeptidase 3 (LAP3) is a cell surface aminopeptidase that catalyzes the hydrolysis of leucine residues from the amino termini of protein or peptide substrates. The over-expression of LAP3 correlates with prognosis and malignant development of several human cell carcinomas. However, the molecular mechanism remains unknown. In this study, we used ES-2 ovarian cancer cell line as a model system to explore the role of LAP3 in regulation of cancer cell invasion by employing a natural LAP3 inhibitor bestatin and LAP3 siRNA. Bestatin inhibited tumor cell migration and invasion in a dose-dependent manner. More interestingly, bestatin down-regulated expression of fascin protein and inhibited activity of fascin promoter luciferase reporter. Both proteome profiler array and Western blot assay showed that bestatin up-regulated the phosphorylation of Hsp27. Furthermore, LAP3 siRNA could up-regulate the phosphorylation of Hsp27 and down-regulate the expression of fascin. Meanwhile, LAP3 siRNA could also down-regulate the phosphorylation of Akt and the expression of MMP-2/9. Taken together, LAP3 could affect the expression of fascin and MMP-2/9 and may act as a potential anti-metastasis therapeutic target.

Wang XW, Shi XH, Tong YS, Cao XF
The Prognostic Impact of Heat Shock Proteins Expression in Patients with Esophageal Cancer: A Meta-Analysis.
Yonsei Med J. 2015; 56(6):1497-502 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Heat shock proteins (HSPs) are highly conserved molecular chaperones. There are various studies that assess the prognostic value of HSPs in patients with esophageal cancer, but the conclusion remains controversial. This is the first meta-analysis study aiming to summarize the evidence on the suitability of HSPs to predict patients' survival.
MATERIALS AND METHODS: Searching PubMed, Web of science and Medline until May 31, 2014, data were compared for overall survival in patients with down-regulated HSPs level with those with up-regulated level. We conducted a meta-analysis of 9 studies (801 patients) that correlated HSPs levels with overall survival. Data were synthesized with hazard ratios (HRs).
RESULTS: The estimated risk of death was 2.93-fold greater in HSP27 negative patients than HSP27 positive patients [95% confidence interval (CI), 1.12-7.62]. When limited to esophageal squamous cell carcinoma (ESCC), the risk of death in HSP27 negative patients seemed more significant (HR, 3.90; 95% CI, 2.35-6.49). Decreased expression of HSP70 was also associated with worse survival in esophageal cancer (HR, 2.83; 95% CI, 1.90-4.23) and, when limited to ESCC, HR was 3.21 (95% CI, 1.94-5.30). Data collected, however, were not sufficient to determine the prognostic value of HSP90 in patients with ESCC nor esophageal adenocarcinomas (EADC).
CONCLUSION: In this meta-analysis, reduced HSP27 and HSP70 expressions were associated with poor survival in patients with esophageal cancer, especially esophageal squamous cell carcinoma.

Jiang Y, Wang X, Guo Y, et al.
Expression of Heat Shock Protein 27 in Benign Prostatic Hyperplasia with Chronic Inflammation.
Med Sci Monit. 2015; 21:2976-85 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Heat shock protein 27 (HSP 27) is known as a mediator in immune response and has been recently found to be expressed in prostate cancer. This study aimed to investigate the role of HSP27 in inflammatory BPH.
MATERIAL AND METHODS: Hospitalized BPH patients who received TURP were divided into 4 groups by the presence and degrees of chronic inflammation: non-inflammatory BPH (NI BPH), mild-inflammatory BPH (MI BPH), moderate-inflammatory BPH (MOI BPH), and severe-inflammatory BPH (SI BPH). Expressions of HSP 27, TNF-α, IL-6, and CD3 in prostate tissues and serum of patients were detected by immunohistochemistry and ELISA.
RESULTS: Expression of HSP27 in BPH with histological inflammation was significantly higher than in non-inflammatory BPH. In inflammatory BPH groups, HSP27 expression gradually increased along with increasing inflammation. There was a significant correlation between the expression of TNF-α, IL-6, CD3 and HSP27 among different inflammatory BPH groups.
CONCLUSIONS: HSP27 expression level is associated with the degree of chronic inflammation in BPH and may participate in the pathological process in inflammatory BPH.

Wang RC, Huang CY, Pan TL, et al.
Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells.
PLoS One. 2015; 10(10):e0139232 [PubMed] Free Access to Full Article Related Publications
To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI), and heat shock protein-27 (HSP27), were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.

Kim HB, Lee SH, Um JH, et al.
Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1.
Oncotarget. 2015; 6(34):36202-18 [PubMed] Free Access to Full Article Related Publications
The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp.

Cheng J, Lv Z, Weng X, et al.
Hsp27 Acts as a Master Molecular Chaperone and Plays an Essential Role in Hepatocellular Carcinoma Progression.
Digestion. 2015; 92(4):192-202 [PubMed] Related Publications
AIMS: Hsp27, a master molecular chaperone, plays an important role in cancer. However, the specific co-chaperones that partner with Hsp27 and the role of Hsp27 in hepatocellular carcinoma (HCC) are not fully enumerated. The present study focuses on the role of Hsp27 in HCC and explores its potential co-chaperones in HCC development.
METHODS: Gene overexpression or knockdown was used to observe the role of Hsp27 in HCC. Co-immunoprecipitation and mass spectrometry were used to explore apoptosis resistance by regulating multiple co-chaperones of Hsp27. Hsp27 protein-protein interaction (PPI) networks were constructed by the MetaCore software.
RESULTS: Hsp27 was upregulated in HCC tissues, and Hsp27 overexpression significantly facilitated formation of HCC cell colony and invasion in normoxia and tolerance in hypoxia by interacting with HIF-1α. Next, the analysis of microarrays revealed that Hsp27 regulated several cellular signaling pathways, including Wnt, ErbB and TGF-β signaling. Moreover, we characterized the Hsp27 PPI map, which indicated that Hsp27 along with its co-chaperones formed different complexes and exerts transcription regulation activity by activating sp1, c-Myc, p53 and ESR1.
CONCLUSIONS: Hsp27 along with its co-chaperones was related to the development of HCC by regulating multiple signaling pathways, and drugs that target Hsp27 along with its co-chaperones may be a potential therapy for HCC.

Jing R, Chen W, Wang H, et al.
Plasma miR-185 is decreased in patients with esophageal squamous cell carcinoma and might suppress tumor migration and invasion by targeting RAGE.
Am J Physiol Gastrointest Liver Physiol. 2015; 309(9):G719-29 [PubMed] Related Publications
The receptor for advanced-glycation end products (RAGE) is upregulated in various cancers and has been associated with tumor progression, but little is known about its expression and regulation by microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). Here, we describe miR-185, which represses RAGE expression, and investigate the biological role of miR-185 in ESCC. In this study, we found that the high level of RAGE expression in 29 pairs of paraffin-embedded ESCC tissues was correlated positively with the depth of invasion by immunohistochemistry, suggesting that RAGE was involved in ESCC. We used bioinformatics searches and luciferase reporter assays to investigate the prediction that RAGE was regulated directly by miR-185. Besides, overexpression of miR-185 in ESCC cells was accompanied by 27% (TE-11) and 49% (Eca-109) reduced RAGE expression. The effect was further confirmed in RAGE protein by immunofluorescence in both cell lines. The effects were reversed following cotransfection with miR-185 and high-level expression of the RAGE vector. Furthermore, the biological role of miR-185 in ESCC cell lines was investigated using assays of cell viability, Ki-67 staining, and cell migration and invasion, as well as in a xenograft model. We found that overexpression of miR-185 inhibited migration and invasion by ESCC cells in vitro and reduced their capacity to develop distal pulmonary metastases in vivo partly through the RAGE/heat shock protein 27 pathway. Interestingly, in clinical specimens, the level of plasma miR-185 expression was decreased significantly (P = 0.002) in patients with ESCC [0.500; 95% confidence interval (CI) 0.248-1.676] compared with healthy controls (2.410; 95% CI 0.612-5.671). The value of the area under the receiver-operating characteristic curve was 0.73 (95% CI 0.604-0.855). In conclusion, our findings shed novel light on the role of miR-185/RAGE in ESCC metastasis, and plasma miR-185 has potential as a novel diagnostic biomarker in ESCC.

Shi Y, Ma IT, Patel RH, et al.
NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis.
Cell Death Dis. 2015; 6:e1841 [PubMed] Free Access to Full Article Related Publications
Dual specificity protein phosphatase 26 (DUSP26) is overexpressed in high-risk neuroblastoma (NB) and contributes to chemoresistance by inhibiting p53 function. In vitro, DUSP26 has also been shown to effectively inhibit p38 MAP kinase. We hypothesize that inhibiting DUSP26 will result in decreased NB cell growth in a p53 and/or p38-mediated manner. NSC-87877 (8-hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid), a novel DUSP26 small molecule inhibitor, shows effective growth inhibition and induction of apoptosis in NB cell lines. NB cell lines treated with small hairpin RNA (shRNA) targeting DUSP26 also exhibit a proliferation defect both in vitro and in vivo. Treatment of NB cell lines with NSC-87877 results in increased p53 phosphorylation (Ser37 and Ser46) and activation, increased activation of downstream p38 effector proteins (heat shock protein 27 (HSP27) and MAP kinase-activated protein kinase 2 (MAPKAPK2)) and poly ADP ribose polymerase/caspase-3 cleavage. The cytotoxicity resulting from DUSP26 inhibition is partially reversed by knocking down p53 expression with shRNA and also by inhibiting p38 activity with SB203580 (4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine). In an intrarenal mouse model of NB, NSC-87877 treatment results in decreased tumor growth and increased p53 and p38 activity. Together, these results suggest that DUSP26 inhibition with NSC-87877 is an effective strategy to induce NB cell cytotoxicity in vitro and in vivo through activation of the p53 and p38 mitogen-activated protein kinase (MAPK) tumor-suppressor pathways.

Khan R, Siddiqui NN, Ul Haq A, Rahman MA
Introducing differential expression of human heat shock protein 27 in hepatocellular carcinoma: moving toward identification of cancer biomarker.
Tumour Biol. 2016; 37(1):715-21 [PubMed] Related Publications
Previously, it has to be acknowledged that overexpressed heat shock protein B27 (HSPB27) have been implicated in the etiology of wide range of human cancers. However, the molecular mechanism leading to the disease initiation to progression in liver cancer is still unknown. Present work was undertaken to investigate the differentially expressed HSPB27 in association with those damages that lead to liver cancer development. For the identification of liver cancer biomarker, samples were subjected to comparative proteomic analysis using two-dimensional gel electrophoresis (2-DE) and were further validated by Western blot and immunohistochemical analysis. After validation, in silico studies were applied to demonstrate the significantly induced phosphorylated and S-nitrosylated signals. The later included the interacting partner of HSPB27, i.e., mitogen-activated protein kinase-3 and 5 (MAPK3 and 5), ubiquitin C (UBC), v-akt murine thymoma viral oncogene homolog 1 (AKT1), mitogen-activated protein kinase 14 (MAPK14), and tumor protein p53 (TP53), which bestowed with critical capabilities, namely, apoptosis, cell cycling, stress activation, tumor suppression, cell survival, angiogenesis, proliferation, and stress resistance. Taking together, these results shed new light on the potential biomarker HSPB27 that overexpression of HSPB27 did lead to upregulation of their interacting partner that together demonstrate their possible role as a novel tumor progressive agent for the treatment of metastasis in liver cancer. HSPB27 is a promising diagnostic marker for liver cancer although further large-scale studies are required. Also, molecular profiling may help pave the road to the discovery of new therapies.

Nguyen Ho-Bouldoires TH, Clapéron A, Mergey M, et al.
Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells.
Free Radic Biol Med. 2015; 89:34-46 [PubMed] Related Publications
The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. In addition to MK2 and Hsp27 overexpression in primary liver tumors compared to adjacent nontumorous tissues, the MK2/Hsp27 pathway is activated by hydrogen peroxide-induced oxidative stress in hepatobiliary cancer cells. MK2 inactivation or inhibition of MK2 or Hsp27 expression increases caspase-3 and PARP cleavage and DNA breaks and therefore cell death. Interestingly, MK2/Hsp27 inhibition decreases antioxidant defenses such as heme oxygenase 1 through downregulation of the transcription factor nuclear factor erythroid-derived 2-like 2. Moreover, MK2/Hsp27 inhibition decreases both phosphorylation of epidermal growth factor receptor (EGFR) and expression of its ligand, heparin-binding EGF-like growth factor. A new identified partner of MK2, the scaffold PDZ protein EBP50, could facilitate these effects through MK2/Hsp27 pathway regulation. These findings demonstrate that the MK2/Hsp27 pathway actively participates in resistance to oxidative stress and may contribute to liver cancer progression.

Zhu J, Pan C, Jiang J, et al.
Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China.
Oncotarget. 2015; 6(18):16757-65 [PubMed] Free Access to Full Article Related Publications
We previously analyzed human prostate tissue containing stroma near to tumor and from cancer-negative tissues of volunteers. Over 100 candidate gene expression differences were identified and used to develop a classifier that could detect nearby tumor with an accuracy of 97% (sensitivity = 98% and specificity = 88%) based on 364 independent test cases from primarily European American cases. These stroma-based gene signatures have the potential to identify cancer patients among those with negative biopsies. In this study, we used prostate tissues from Chinese cases to validate six of these markers (CAV1, COL4A2, HSPB1, ITGB3, MAP1A and MCAM). In validation by real-time PCR, four genes (COL4A2, HSPB1, ITGB3, and MAP1A) demonstrated significantly lower expression in tumor-adjacent stroma compared to normal stroma (p value ≤ 0.05). Next, we tested whether these expression differences could be extended to the protein level. In IHC assays, all six selected proteins showed lower expression in tumor-adjacent stroma compared to the normal stroma, of which COL4A2, HSPB1 and ITGB3 showed significant differences (p value ≤ 0.05). These results suggest that biomarkers for diagnosing prostate cancer based on tumor microenvironment may be applicable across multiple racial groups.

Kuramitsu Y, Wang Y, Kitagawa T, et al.
High-mobility Group Box 1 and Mitogen-activated Protein Kinase activated Protein Kinase-2 Are Up-regulated in Gemcitabine-resistant Pancreatic Cancer Cells.
Anticancer Res. 2015; 35(7):3861-5 [PubMed] Related Publications
BACKGROUND: Results of our previous studies demonstrated that the expression of heat-shock protein 27 (HSP27) was increased and HSP27 was phosphorylated in the GEM-resistant pancreatic cancer cell line, KLM1-R. The expression of HSP27 is regulated mainly by heat-shock factor 1, but other transcription factors or kinases have been reported to activate HSP27. High-mobility group box 1 (HMGB1) is a nuclear transcription factor. It has been reported that HMGB1 regulates HSP27 gene expression. Mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2) phosphorylates HSP27. In the present study, we investigated the expression of HMGB1 and MAPKAPK2 in KLM1-R cells.
MATERIALS AND METHODS: The expression levels of HMGB1 and MAPKAPK2 were compared between KLM1 and KLM1-R cells by western blotting.
RESULTS: The protein expression of both HMGB1 and MAPKAPK2 were increased in KLM1-R cells compared to KLM1 cells.
CONCLUSION: The increase of both HMGB1 and MAPKAPK2 in KLM1-R cells compared to KLM1 suggest the possibility of the activation of the pathway of HSP27 by HMGB1 and MAPKAPK2 in gemcitabine-resistant KLM1-R cells.

Jiang S, Tu K, Fu Q, et al.
Multifaceted roles of HSF1 in cancer.
Tumour Biol. 2015; 36(7):4923-31 [PubMed] Related Publications
Heat shock transcription factor 1 (HSF1) is the master regulator of the heat shock response. Accumulating evidence shows that HSF1 is overexpressed in a variety of human cancers, is associated with cancer aggressiveness, and could serve as an independent diagnostic or prognostic biomarker. In this review, we will provide an overview of the multifaceted roles of HSF1 in cancer, with a special focus on the four underlying molecular mechanisms involved. First, HSF1 regulates the expression of heat shock proteins (HSPs) including HSP90, HSP70, and HSP27. Second, HSF1 regulates cellular metabolism, including glycolysis and lipid metabolism. Third, HSF1 serves as a regulator of different signaling pathways, such as HuR-HIF-1, Slug, protein kinase C (PKC), nuclear factor-kappaB (NF-κB), PI3K-AKT-mTOR, and mitogen-activated protein kinase (MAPK) pathways. Finally, HSF1 regulates microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Overall, HSF1 plays many important roles in cancer via regulating cell proliferation, anti-apoptosis, epithelial-mesenchymal transition (EMT), migration, invasion, and metastasis and may be a potential therapeutic target for human cancers.

Kuramitsu Y, Tanaka I, Wang Y, et al.
Inflammation-Related Tumor Progression in Murine Fibrosarcoma Exhibited Over-expression of Sex-determining Region Y-box 2 (Sox2) Compared to Parental Regressor Cells.
Anticancer Res. 2015; 35(6):3217-21 [PubMed] Related Publications
BACKGROUND/AIM: Tumor progression is one of the most serious issues to overcome cancer disease. As a model of inflammation-induced tumor progression, we used the regressive murine fibrosarcoma cell clone QR-32 and the progressive malignant clone QRsP-11, that was derived from QR-32. Heat shock protein beta-1 (Hspb1) is a molecular chaperone. Hspb1 plays roles in not only cell protection but also chemo-resistance, tumorigenicity and protection from apoptosis. In a recent study, we showed that Hspb1 was up-regulated in QRsP-11 compared to QR-32.
MATERIALS AND METHODS: We compared the expression levels of Hspb1, Hsf1 and Sox2 in QR-32 and QRsP-11 cells by means of western blotting.
RESULTS: Hsf1, a transcription factor for Hspb1 was not increased in QRsP-11. Sex determining region Y-box 2 (Sox2) is a transcription factor, reported to interact with Hspb1. Sox2 was up-regulated in QRsP-11 compared to QR-32.
CONCLUSION: These results suggest that Sox2-Hspb1 signaling is a possible pathway responsible to tumor progression of QRsP-11.

Choi S, Oh JH, Kim H, et al.
Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y.
Cell Mol Neurobiol. 2015; 35(7):1049-59 [PubMed] Free Access to Full Article Related Publications
Alzheimer's disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HSPB1, Cancer Genetics Web: http://www.cancer-genetics.org/HSPB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999