Gene Summary

Gene:MSMB; microseminoprotein beta
Aliases: MSP, PSP, IGBF, MSPB, PN44, PRPS, HPC13, PSP57, PSP94, PSP-94
Summary:The protein encoded by this gene is a member of the immunoglobulin binding factor family. It is synthesized by the epithelial cells of the prostate gland and secreted into the seminal plasma. This protein has inhibin-like activity. It may have a role as an autocrine paracrine factor in uterine, breast and other female reproductive tissues. The expression of the encoded protein is found to be decreased in prostate cancer. Two alternatively spliced transcript variants encoding different isoforms are described for this gene. The use of alternate polyadenylation sites has been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Tissue Kallikreins
  • Case-Control Studies
  • Messenger RNA
  • Young Adult
  • Chromosome Mapping
  • Genetic Predisposition
  • Gene Expression
  • Transcription Factors
  • Kallikreins
  • Staging
  • Chromosome 10
  • Single Nucleotide Polymorphism
  • Genetic Variation
  • RT-PCR
  • Oligonucleotide Array Sequence Analysis
  • Cancer Gene Expression Regulation
  • Germ-Line Mutation
  • Genome-Wide Association Study
  • Prostate
  • Risk Assessment
  • Genetic Association Studies
  • Gene Expression Profiling
  • Adenocarcinoma
  • Linkage Disequilibrium
  • Cohort Studies
  • Alleles
  • Sensitivity and Specificity
  • Biomarkers, Tumor
  • Reproducibility of Results
  • Genotype
  • Risk Factors
  • Prostate-Specific Antigen
  • Prostate Cancer
  • European Continental Ancestry Group
  • MSMB
  • Tamoxifen
  • Immunohistochemistry
  • Genome, Human
  • Promoter Regions
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSMB (cancer-related)

Gerashchenko GV, Grygoruk OV, Kononenko OA, et al.
Expression pattern of genes associated with tumor microenvironment in prostate cancer.
Exp Oncol. 2018; 40(4):315-322 [PubMed] Related Publications
AIM: To assess relative expression (RE) levels of CAF-, TAM-specific, immune defense-associated genes in prostate tumors and to show correlation of RE with clinical, pathological and molecular characteristics, with the aim to define clinically significant specific alterations in a gene expression pattern.
METHODS: RE of 23 genes was analyzed by a quantitative polymerase chain reaction in 37 freshly frozen samples of prostate cancer tissues of a different Gleason score (GS) and at various tumor stages, compared with RE in 37 paired conventionally normal prostate tissue (CNT) samples and 20 samples of prostate adenomas.
RESULTS: Differences in RE were shown for 11 genes out of 23 studied, when tumor samples were compared with corresponding CNTs. 7 genes, namely ACTA2, CXCL14, CTGF, THY1, FAP, CD163, CCL17 were upregulated in tumors. 4 genes, namely CCR4, NOS2A, MSMB, IL1R1 were downregulated in tumors. 14 genes demonstrated different RE in TNA at different stages: CXCL12, CXCL14, CTGF, FAP, HIF1A, THY1, CCL17, CCL22, CCR4, CD68, CD163, NOS2A, CTLA4, IL1R1. RE changes of 9 genes - CXCL12, CXCL14, HIF1A, CCR4, CCL17, NOS2A, CTLA4, IL1R1, IL2RA - were found in tumors with different GS. Moreover, 9 genes showed differences in RE in TNA, dependently on the presence or absence of the TMPRSS2/ERG fusion and 7 genes showed differences in RE of groups with differential PTEN expression. Significant correlations were calculated between RE of 9 genes in adenocarcinomas and the stage, and GS; also, between RE of 2 genes and the fusion presence; and between RE of 4 genes and PTEN expression.
CONCLUSIONS: Several gene expression patterns were identified that correlated with the GS, stage and molecular characteristics of tumors, i.e. presence of the TMPRSS2/ERG fusion and alterations in PTEN expression. These expression patterns can be used for molecular profiling of prostate tumors, with the aim to develop personalized medicine approaches. However, the proposed profiling requires a more detailed analysis and a larger cohort of patients with prostate tumor.

Olivier J, Stavrinides V, Kay J, et al.
Immunohistochemical biomarker validation in highly selective needle biopsy microarrays derived from mpMRI-characterized prostates.
Prostate. 2018; 78(16):1229-1237 [PubMed] Related Publications
INTRODUCTION: Diagnosing prostate cancer routinely involves tissue biopsy and increasingly image guided biopsy using multiparametric MRI (mpMRI). Excess tissue after diagnosis can be used for research to improve the diagnostic pathway and the vertical assembly of prostate needle biopsy cores into tissue microarrays (TMAs) allows the parallel immunohistochemical (IHC) validation of cancer biomarkers in routine diagnostic specimens. However, tissue within a biopsy core is often heterogeneous and cancer is not uniformly present, resulting in needle biopsy TMAs that suffer from highly variable cancer detection rates that complicate parallel biomarker validation.
MATERIALS AND METHODS: The prostate cores with the highest tumor burden (in terms of Gleason score and/or maximum cancer core length) were obtained from 249 patients in the PICTURE trial who underwent transperineal template prostate mapping (TPM) biopsy at 5 mm intervals preceded by mpMRI. From each core, 2 mm segments containing tumor or benign tissue (as assessed on H&E pathology) were selected, excised and embedded vertically into a new TMA block. TMA sections were then IHC-stained for the routinely used prostate cancer biomarkers PSA, PSMA, AMACR, p63, and MSMB and assessed using the h-score method. H-scores in patient matched malignant and benign tissue were correlated with the Gleason grade of the original core and the MRI Likert score for the sampled prostate area.
RESULTS: A total of 2240 TMA cores were stained and IHC h-scores were assigned to 1790. There was a statistically significant difference in h-scores between patient matched malignant and adjacent benign tissue that is independent of Likert score. There was no association between the h-scores and Gleason grade or Likert score within each of the benign or malignant groups.
CONCLUSION: The construction of highly selective TMAs from prostate needle biopsy cores is possible. IHC data obtained through this method are highly reliable and can be correlated with imaging. IHC expression patterns for PSA, PSMA, AMACR, p63, and MSMB are distinct in malignant and adjacent benign tissue but did not correlate with mpMRI Likert score.

Bergström SH, Järemo H, Nilsson M, et al.
Prostate tumors downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate epithelium and this response is associated with tumor aggressiveness.
Prostate. 2018; 78(4):257-265 [PubMed] Related Publications
BACKGROUND: Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue.
METHODS: MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue.
RESULTS: In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors.
CONCLUSION: Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.

Chen H, Ewing CM, Zheng S, et al.
Genetic factors influencing prostate cancer risk in Norwegian men.
Prostate. 2018; 78(3):186-192 [PubMed] Related Publications
Norway has one of the highest rates of death due to prostate cancer (PCa) in the world. To assess the contribution of both common and rare single nucleotide variants (SNPs) to the prostate cancer burden in Norway, we assessed the frequency of the established prostate cancer susceptibility allele, HOXB13 G84E, as well as a series of validated, common PCa risk SNPs in a Norwegian PCa population of 779 patients. The G84E allele was observed in 2.3% of patients compared to 0.7% of control individuals, OR = 3.8, P = 1 × 10-4. While there was a trend toward an earlier age at diagnosis, overall the clinicopathologic features of PCa were not significantly different in G84E carriers and non-carriers. Evaluation of 32 established common risk alleles revealed significant associations of risk alleles at 13 loci, including SNPs at 8q24, and near TET2, SLC22A3, NKX3-1, CASC8, MYC, DAP2IP, MSMB, HNF1B, PPP1R14A, and KLK2/3. When the data for each SNP are combined into a genetic risk score (GRS), Norwegian men within the top decile of GRS have over 5-fold greater risk to be diagnosed with PCa than men with GRS in the lowest decile. These results indicate that risk alleles of HOXB13 and common variant SNPs are important components of inherited PCa risk in the Norwegian population, although these factors appear to contribute little to the malignancy's aggressiveness.

Nordström T, Adolfsson J, Grönberg H, Eklund M
Effects of increasing the PSA cutoff to perform additional biomarker tests before prostate biopsy.
BMC Urol. 2017; 17(1):92 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multi-step testing might enhance performance of the prostate cancer diagnostic pipeline. Using PSA >1 ng/ml for first-line risk stratification and the Stockholm 3 Model (S3M) blood-test >10% risk of Gleason Score > 7 prostate cancer to inform biopsy decisions has been suggested. We aimed to determine the effects of changing the PSA cutoff to perform reflex testing with S3M and the subsequent S3M cutoff to recommend prostate biopsy while maintaining the sensitivity to detect Gleason Score ≥ 7 prostate cancer.
METHODS: We used data from the prospective, population-based, paired, diagnostic Stockholm 3 (STHLM3) study with participants invited by date of birth from the Swedish Population Register during 2012-2014. All participants underwent testing with PSA and S3M (a combination of plasma protein biomarkers [PSA, free PSA, intact PSA, hK2, MSMB, MIC1], genetic polymorphisms, and clinical variables [age, family, history, previous prostate biopsy, prostate exam]). Of 47,688 men in the STHLM3 main study, we used data from 3133 men with S3M >10% and prostate biopsy data. Logistic regression models were used to calculate prostate cancer detection rates and proportion saved biopsies.
RESULTS: 44.2%, 62.5% and 67.9% of the participants had PSA <1, <1.5 and <1.7 ng/ml, respectively. Increasing the PSA cut-off for additional work-up from 1 ng/ml to 1.5 ng/ml would thus save 18.3% of the performed tests, 4.9% of the biopsies and 1.3% (10/765) of Gleason Grade ≥ 7 cancers would be un-detected. By lowering the S3M cutoff to recommend biopsy, sensitivity to high-grade prostate cancer can be restored, to the cost of increasing the number of performed biopsies modestly.
CONCLUSION: The sensitivity to detect prostate cancer can be maintained when using different PSA cutoffs to perform additional testing. Biomarker cut-offs have implications on number of tests and prostate biopsies performed. A PSA cutoff of 1.5 ng/ml to perform additional testing such as the S3M test might be considered.

Choe EK, Lee Y, Cho JY, et al.
Search for genetic factor association with cancer-free prostate-specific antigen level elevation on the basis of a genome-wide association study in the Korean population.
Eur J Cancer Prev. 2018; 27(5):453-460 [PubMed] Related Publications
We investigated the genetic markers associated with elevated serum prostate-specific antigen (sPSA) levels to improve the predictive power of sPSA in screening for prostate cancer. A genome-wide association study was carried out among 4124 healthy Korean male adults using the Affymetrix Axiom Customized Biobank Genotyping Arrays for sPSA levels. A subgroup analysis for increased sPSA levels who underwent a prostate biopsy (n=64) was also carried out. We detected 11 single nucleotide polymorphisms (SNPs) near the Solute carrier family 45member 3, AGAP7P, MSMB, LOC101929917, and KLK3 genes associated with sPSA levels. The top SNP associated with the log of the sPSA levels was rs72434280 in the Solute carrier family 45 member 3 gene (P value, discovery set=2.98×10, replication set=7.31×10). A case-control study utilizing available biopsy reports (49 patients with normal biopsies vs. 15 patients with biopsies indicating cancer) for the sPSA more than 3 ng/ml group was carried out for the respective SNPs after adjusting for age. Only the SNPs near the KLK3 gene were associated with prostate cancer. In the model of the predictive elevation of sPSA level, adding the genetic risk score [area under the curve (AUC)=0.697] to age and BMI (AUC=0.602) significantly improved the results of the AUC (P<0.0001). We found seven SNPs associated with elevated prostate-specific antigen levels in healthy Korean men. Four SNPs were a novel marker in the Korean population. In men with increased prostate-specific antigen levels, genotyping SNP related to cancer-free elevation of sPSA level could be informative to decide the indication of prostate biopsy.

Scott E, Adolfsson J, Aly M, et al.
Prostate cancer screening in men aged 50 to 69 years (STHLM3): A prospective population-based diagnostic study. Grönberg H, Adolfsson J, Aly M, Nordström T, Wiklund P, Brandberg Y, Thompson J, Wiklund F, Lindberg J, Clements M, Egevad L, Eklund M.Lancet Oncol. 2015 Dec;16(16):1667-76. [Epub 2015 Nov 10]. doi: 10.1016/S1470-2045(15)00361-7.
Urol Oncol. 2017; 35(3):120 [PubMed] Related Publications
BACKGROUND: The prostate-specific antigen (PSA) test is used to screen for prostate cancer but has a high false-positive rate that translates into unnecessary prostate biopsies and overdiagnosis of low-risk prostate cancers. We aimed to develop and validate a model to identify high-risk prostate cancer (with a Gleason score of at least 7) with better test characteristics than that provided by PSA screening alone.
METHODS: The Stockholm 3 (STHLM3) study is a prospective, population-based, paired, screen-positive, diagnostic study of men without prostate cancer aged 50 to 69 years randomly invited by date of birth from the Swedish Population Register kept by the Swedish Tax Agency. Men with prostate cancer at enrolment were excluded from the study. The predefined STHLM3 model (a combination of plasma protein biomarkers [PSA, free PSA, intact PSA, hK2, MSMB, MIC1], genetic polymorphisms [232 SNPs], and clinical variables [age, family, history, previous prostate biopsy, prostate exam]), and PSA concentration were both tested in all participants enrolled. The primary aim was to increase the specificity compared with PSA without decreasing the sensitivity to diagnose high-risk prostate cancer. The primary outcomes were number of detected high-risk cancers (sensitivity) and the number of performed prostate biopsies (specificity). The STHLM3 training cohort was used to train the STHLM3 model, which was prospectively tested in the STHLM3 validation cohort. Logistic regression was used to test for associations between biomarkers and clinical variables and prostate cancer with a Gleason score of at least 7. This study is registered with, number ISRCTN84445406.
FINDINGS: The STHLM3 model performed significantly better than PSA alone for detection of cancers with a Gleason score of at least 7 (P<0.0001), the area under the curve was 0·56 (95% CI: 0·55-0·60) with PSA alone and 0·74 (95% CI: 0·72-0·75) with the STHLM3 model. All variables used in the STHLM3 model were significantly associated with prostate cancers with a Gleason score of at least 7 (P<0·05) in a multiple logistic regression model. At the same level of sensitivity as the PSA test using a cutoff of≥3ng/ml to diagnose high-risk prostate cancer, use of the STHLM3 model could reduce the number of biopsies by 32% (95% CI: 24-39) and could avoid 44% (35-54) of benign biopsies.
INTERPRETATION: The STHLM3 model could reduce unnecessary biopsies without compromising the ability to diagnose prostate cancer with a Gleason score of at least 7, and could be a step towards personalised risk-based prostate cancer diagnostic programmes.
FUNDING: Stockholm County Council (Stockholms Läns Landsting).

Peng T, Zhang L, Zhu L, Mi YY
MSMB gene rs10993994 polymorphism increases the risk of prostate cancer.
Oncotarget. 2017; 8(17):28494-28501 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWASs) identified microseminoprotein-β (MSMB) gene rs10993994 polymorphism was significantly associated with prostate cancer (PC) risk. However, the association between MSMB gene rs10993994 polymorphism and PC risk remains controversial. Therefore, we performed a systematic review and meta-analysis by searching in the databases of PubMed, and Embase. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by using fixed-effect or random-effect models. A total of 11 publications containing 13 case-control studies for rs10993994 polymorphism were included in our analysis. Our data indicated that MSMB gene rs10993994 polymorphism was associated with an increased risk of PC. Stratification analyses of ethnicity suggested rs10993994 polymorphism increased the risk of PC among Caucasians, but not among Asians. In conclusion, this meta-analysis indicates that MSMB gene rs10993994 polymorphism increases the risk of PC.

Student V, Vidlar A, Bouchal J, et al.
Cranberry intervention in patients with prostate cancer prior to radical prostatectomy. Clinical, pathological and laboratory findings.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016; 160(4):559-565 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Recently, we described an inverse association between cranberry supplementation and serum prostate specific antigen (PSA) in patients with negative biopsy for prostate cancer (PCa) and chronic nonbacterial prostatitis. This double blind placebo controlled study evaluates the effects of cranberry consumption on PSA values and other markers in men with PCa before radical prostatectomy.
METHODS: Prior to surgery, 64 patients with prostate cancer were randomized to a cranberry or placebo group. The cranberry group (n=32) received a mean 30 days of 1500 mg cranberry fruit powder. The control group (n=32) took a similar amount of placebo. Selected blood/urine markers as well as free and total phenolics in urine were measured at baseline and on the day of surgery in both groups. Prostate tissue markers were evaluated after surgery.
RESULTS: The serum PSA significantly decreased by 22.5% in the cranberry arm (n=31, P<0.05). A trend to down-regulation of urinary beta-microseminoprotein (MSMB) and serum gamma-glutamyltranspeptidase, as well as upregulation of IGF-1 was found after cranberry supplementation. There were no changes in prostate tissue markers or, composition and concentration of phenolics in urine.
CONCLUSIONS: Daily consumption of a powdered cranberry fruit lowered serum PSA in patients with prostate cancer. The whole fruit contains constituents that may regulate the expression of androgen-responsive genes.

Costa WH, Jabboure G, Cunha IW
Urological cancer related to familial syndromes.
Int Braz J Urol. 2017 Mar-Apr; 43(2):192-201 [PubMed] Free Access to Full Article Related Publications
Cancer related to hereditary syndromes corresponds to approximately 5-10% of all tumors. Among those from the genitourinary system, many tumors had been identified to be related to genetic syndromes in the last years with the advent of new molecular genetic tests. New entities were described or better characterized, especially in kidney cancer such as hereditary leiomyomatosis renal cell carcinoma (HLRCC), succinate dehydrogenase kidney cancer (SDH-RCC), and more recently BAP1 germline mutation related RCC. Among tumors from the bladder or renal pelvis, some studies had reinforced the role of germline mutations in mismatch repair (MMR) genes, especially in young patients. In prostate adenocarcinoma, besides mutations in BRCA1 and BRCA2 genes that are known to increase the incidence of high-risk cancer in young patients, new studies have shown mutation in other gene such as HOXB13 and also polymorphisms in MYC, MSMB, KLK2 and KLK3 that can be related to hereditary prostate cancer. Finally, tumors from testis that showed an increased in 8 - 10-fold in siblings and 4 - 6-fold in sons of germ cell tumors (TGCT) patients, have been related to alteration in X chromosome. Also genome wide association studies GWAS pointed new genes that can also be related to increase of this susceptibility.

Tiwary M, Agarwal N, Dinda A, Yadav SC
Overexpression and purification of folded domain of prostate cancer related proteins MSMB and PSA.
Mol Biol Rep. 2016; 43(5):349-58 [PubMed] Related Publications
Overexpression of domains of a human protein using recombinant DNA technology has been challenging because individual domains intend to accumulate as non-soluble aggregate when expressed separately. Studies on identifying right sequences for a domain to be able to fold independently may help understand the folding pattern and underlying protein-engineering events to isolate the functional domains of a protein. In this report, individual domains of prostate cancer related biomarkers; MSMB and PSA were overexpressed in bacterial system and purified in their folded forms using affinity chromatography. The western blotting experiment using domain specific antibodies further confirmed these proteins. The designed nucleotide sequences domains were truncated using fold index software and folding were predicted by phyre2 and I-TASSER software. Other parameters were optimized for their overexpression and purification using Co-NTA affinity chromatography. Purified domains of each protein showed secondary structures such as α + β type for PSA, α/β and β type for the each domains of PSA and MSMB respectively. This is the first report on producing PSA and MSMB individual domains in functional folded forms. This study may help produce the folded domain of many such proteins to be used for better diagnostic purpose.

Hao Q, Wei D, Zhang Y, et al.
Systematic meta-analyses of gene-specific genetic association studies in prostate cancer.
Oncotarget. 2016; 7(16):22271-84 [PubMed] Free Access to Full Article Related Publications
In the past twenty-five years, over 700 case-control association studies on the risk of prostate cancer have been published worldwide, but their results were largely inconsistent. To facilitate following and explaining these findings, we performed a systematic meta-analysis using allelic contrasts for gene-specific SNVs from at least three independent population-based case-control studies, which were published in the field of prostate cancer between August 1, 1990 and August 1, 2015. Across 66 meta-analyses, a total of 20 genetic variants involving 584,100 subjects in 19 different genes (KLK3, IGFBP3, ESR1, SOD2, CAT, CYP1B1, VDR, RFX6, HNF1B, SRD5A2, FGFR4, LEP, HOXB13, FAS, FOXP4, SLC22A3, LMTK2, EHBP1 and MSMB) exhibited significant association with prostate cancer. The average summary OR was 1.33 (ranging from: 1.016-3.788) for risk alleles and 0.838 (ranging from: 0.757-0.896) for protective alleles. Of these positive variants, FOXP4 rs1983891, LMTK2 rs6465657 and RFX6 rs339331 had not been previously meta-analyzed. Further analyses with sufficient power design and investigations of the potential biological roles of these genetic variants in prostate cancer should be conducted.

Sjöblom L, Saramäki O, Annala M, et al.
Microseminoprotein-Beta Expression in Different Stages of Prostate Cancer.
PLoS One. 2016; 11(3):e0150241 [PubMed] Free Access to Full Article Related Publications
Microseminoprotein-beta (MSMB, MSMB) is an abundant secretory protein contributed by the prostate, and is implicated as a prostate cancer (PC) biomarker based on observations of its lower expression in cancerous cells compared with benign prostate epithelium. However, as the current literature on MSMB is inconsistent, we assessed the expression of MSMB at the protein and mRNA levels in a comprehensive set of different clinical stages of PC. Immunohistochemistry using monoclonal and polyclonal antibodies against MSMB was used to study protein expression in tissue specimens representing prostatectomies (n = 261) and in diagnostic needle biopsies from patients treated with androgen deprivation therapy (ADT) (n = 100), and in locally recurrent castration-resistant PC (CRPC) (n = 105) and CRPC metastases (n = 113). The transcript levels of MSMB, nuclear receptor co-activator 4 (NCOA4) and MSMB-NCOA4 fusion were examined by qRT-PCR in prostatectomy samples and by RNA-sequencing in benign prostatic hyperplasia, PC, and CRPC samples. We also measured serum MSMB levels and genotyped the single nucleotide polymorphism rs10993994 using DNA from the blood of 369 PC patients and 903 controls. MSMB expression in PC (29% of prostatectomies and 21% of needle biopsies) was more frequent than in CRPC (9% of locally recurrent CRPCs and 9% of CRPC metastases) (p<0.0001). Detection of MSMB protein was inversely correlated with the Gleason score in prostatectomy specimens (p = 0.024). The read-through MSMB-NCOA4 transcript was detected at very low levels in PC. MSMB levels in serum were similar in cases of PC and controls but were significantly associated with PC risk when adjusted for age at diagnosis and levels of free or total PSA (p<0.001). Serum levels of MSMB in both PC patients and controls were significantly associated with the rs10993994 genotype (p<0.0001). In conclusion, decreased expression of MSMB parallels the clinical progression of PC and adjusted serum MSMB levels are associated with PC risk.

Grönberg H, Adolfsson J, Aly M, et al.
Prostate cancer screening in men aged 50-69 years (STHLM3): a prospective population-based diagnostic study.
Lancet Oncol. 2015; 16(16):1667-76 [PubMed] Related Publications
BACKGROUND: The prostate-specific antigen (PSA) test is used to screen for prostate cancer but has a high false-positive rate that translates into unnecessary prostate biopsies and overdiagnosis of low-risk prostate cancers. We aimed to develop and validate a model to identify high-risk prostate cancer (with a Gleason score of at least 7) with better test characteristics than that provided by PSA screening alone.
METHODS: The Stockholm 3 (STHLM3) study is a prospective, population-based, paired, screen-positive, diagnostic study of men without prostate cancer aged 50-69 years randomly invited by date of birth from the Swedish Population Register kept by the Swedish Tax Agency. Men with prostate cancer at enrolment were excluded from the study. The predefined STHLM3 model (a combination of plasma protein biomarkers [PSA, free PSA, intact PSA, hK2, MSMB, MIC1], genetic polymorphisms [232 SNPs], and clinical variables [age, family, history, previous prostate biopsy, prostate exam]), and PSA concentration were both tested in all participants enrolled. The primary aim was to increase the specificity compared with PSA without decreasing the sensitivity to diagnose high-risk prostate cancer. The primary outcomes were number of detected high-risk cancers (sensitivity) and the number of performed prostate biopsies (specificity). The STHLM3 training cohort was used to train the STHLM3 model, which was prospectively tested in the STHLM3 validation cohort. Logistic regression was used to test for associations between biomarkers and clinical variables and prostate cancer with a Gleason score of at least 7. This study is registered with, number ISRCTN84445406.
FINDINGS: The STHLM3 model performed significantly better than PSA alone for detection of cancers with a Gleason score of at least 7 (p<0·0001), the area under the curve was 0·56 (95% CI 0·55-0·60) with PSA alone and 0·74 (95% CI 0·72-0·75) with the STHLM3 model. All variables used in the STHLM3 model were significantly associated with prostate cancers with a Gleason score of at least 7 (p<0·05) in a multiple logistic regression model. At the same level of sensitivity as the PSA test using a cutoff of ≥3 ng/mL to diagnose high risk prostate cancer, use of the STHLM3 model could reduce the number of biopsies by 32% (95% CI 24-39) and could avoid 44% (35-54) of benign biopsies.
INTERPRETATION: The STHLM3 model could reduce unnecessary biopsies without compromising the ability to diagnose prostate cancer with a Gleason score of at least 7, and could be a step towards personalised risk-based prostate cancer diagnostic programmes.
FUNDING: Stockholm County Council (Stockholms Läns Landsting).

Ross-Adams H, Lamb AD, Dunning MJ, et al.
Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study.
EBioMedicine. 2015; 2(9):1133-44 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome.
METHODS: In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone.
FINDINGS: We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions.
INTERPRETATION: For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.

Braun K, Sjoberg DD, Vickers AJ, et al.
A Four-kallikrein Panel Predicts High-grade Cancer on Biopsy: Independent Validation in a Community Cohort.
Eur Urol. 2016; 69(3):505-11 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A statistical model based on four kallikrein markers (total prostate-specific antigen [tPSA], free PSA [fPSA], intact PSA, and human kallikrein-related peptidase 2) in blood can predict risk of Gleason score ≥7 (high-grade) cancer at prostate biopsy.
OBJECTIVE: To determine the value of this model in predicting high-grade cancer at biopsy in a community-based setting in which referral criteria included percentage of fPSA to tPSA (%fPSA).
DESIGN, SETTING, AND PARTICIPANTS: We evaluated the model, with or without adding blood levels of microseminoprotein-β (MSMB) in a cohort of 749 men referred for prostate biopsy due to elevated PSA (≥3 ng/ml), low %fPSA (<20%), or suspicious digital rectal examination at Skåne University Hospital, Malmö, Sweden.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The kallikrein markers, with or without MSMB levels, measured in cryopreserved anticoagulated blood were combined with age in a published statistical model (Prostate Testing for Cancer and Treatment [ProtecT]) to predict high-grade cancer at biopsy. Predictive accuracy was compared with a base model.
RESULTS AND LIMITATIONS: The %fPSA was low (median: 17; interquartile range: 13-22) in this cohort because this marker was used as a referral criterion. The ProtecT model improved discrimination over age and PSA for high-grade cancer (0.777 vs 0.720; p=0.002). At one illustrative cut point, use of the panel would reduce the number of biopsies by 236 per 1000 and detect 195 of 208 (94%) but delay diagnosis of 13 of 208 high-grade cancers. MSMB levels in blood did not improve the accuracy of the panel (p=0.2).
CONCLUSIONS: The kallikrein model is predictive of high-grade cancer if criteria for biopsy referral also include %fPSA, and it can reduce unnecessary biopsies without missing an undue number of tumors.
PATIENT SUMMARY: We evaluated a published model to predict biopsy outcome in men biopsied due to low percentage of free to total prostate-specific antigen. The model helps reduce unnecessary biopsies without missing an undue number of high-grade cancers.

Penney KL, Sinnott JA, Tyekucheva S, et al.
Association of prostate cancer risk variants with gene expression in normal and tumor tissue.
Cancer Epidemiol Biomarkers Prev. 2015; 24(1):255-60 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Numerous germline genetic variants are associated with prostate cancer risk, but their biologic role is not well understood. One possibility is that these variants influence gene expression in prostate tissue. We therefore examined the association of prostate cancer risk variants with the expression of genes nearby and genome-wide.
METHODS: We generated mRNA expression data for 20,254 genes with the Affymetrix GeneChip Human Gene 1.0 ST microarray from normal prostate (N = 160) and prostate tumor (N = 264) tissue from participants of the Physicians' Health Study and Health Professionals Follow-up Study. With linear models, we tested the association of 39 risk variants with nearby genes and all genes, and the association of each variant with canonical pathways using a global test.
RESULTS: In addition to confirming previously reported associations, we detected several new significant (P < 0.05) associations of variants with the expression of nearby genes including C2orf43, ITGA6, MLPH, CHMP2B, BMPR1B, and MTL5. Genome-wide, five genes (MSMB, NUDT11, RBPMS2, NEFM, and KLHL33) were significantly associated after accounting for multiple comparisons for each SNP (P < 2.5 × 10(-6)). Many more genes had an FDR <10%, including SRD5A1 and PSCA, and we observed significant associations with pathways in tumor tissue.
CONCLUSIONS: The risk variants were associated with several genes, including promising prostate cancer candidates and lipid metabolism pathways, suggesting mechanisms for their impact on disease. These genes should be further explored in biologic and epidemiologic studies.
IMPACT: Determining the biologic role of these variants can lead to improved understanding of prostate cancer etiology and identify new targets for chemoprevention.

Kim H, Yokoyama W, Davis PA
TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism.
J Med Food. 2014; 17(12):1281-6 [PubMed] Free Access to Full Article Related Publications
Dietary changes could potentially reduce prostate cancer morbidity and mortality. Transgenic adenocarcinoma of the mouse prostate (TRAMP) prostate tumor responses to a 100 g of fat/kg diet (whole walnuts, walnut oil, and other oils; balanced for macronutrients, tocopherols [α-and γ]) for 18 weeks ad libitum were assessed. TRAMP mice (n=17 per group) were fed diets with 100 g fat from either whole walnuts (diet group WW), walnut-like fat (diet group WLF, oils blended to match walnut's fatty acid profile), or as walnut oil (diet group WO, pressed from the same walnuts as WW). Fasted plasma glucose was from tail vein blood, blood was obtained by cardiac puncture, and plasma stored frozen until analysis. Prostate (genitourinary intact [GUI]) was weighed and stored frozen at -80°C. Plasma triglyceride, lipoprotein cholesterol, plasma multianalyte levels (Myriad RBM Rat Metabolic MAP), prostate (GUI), tissue metabolites (Metabolon, Inc., Durham, NC, USA), and mRNA (by Illumina NGS) were determined. The prostate tumor size, plasma insulin-like growth factor-1 (IGF-1), high density lipoprotein, and total cholesterol all decreased significantly (P<.05) in both WW and WO compared to WLF. Both WW and WO versus WLF showed increased insulin sensitivity (Homeostasis Model Assessment [HOMA]), and tissue metabolomics found reduced glucose-6-phosphate, succinylcarnitine, and 4-hydroxybutyrate in these groups suggesting effects on cellular energy status. Tissue mRNA levels also showed changes suggestive of altered glucose metabolism with WW and WO diet groups having increased PCK1 and CIDEC mRNA expression, known for their roles in gluconeogenesis and increased insulin sensitivity, respectively. WW and WO group tissues also had increased MSMB mRNa a tumor suppressor and decreased COX-2 mRNA, both reported to inhibit prostate tumor growth. Walnuts reduced prostate tumor growth by affecting energy metabolism along with decreased plasma IGF-1 and cholesterol. These effects are not due to the walnut's N-3 fatty acids, but due to component(s) found in the walnut's fat component.

Kachroo N, Warren AY, Gnanapragasam VJ
Multi-transcript profiling in archival diagnostic prostate cancer needle biopsies to evaluate biomarkers in non-surgically treated men.
BMC Cancer. 2014; 14:673 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Most biomarkers in prostate cancer have only been evaluated in surgical cohorts. The value of these biomarkers in a different therapy context remains unclear. Our objective was to test a panel of surgical biomarkers for prognostic value in men treated by external beam radiotherapy (EBRT) and primary androgen deprivation therapy (PADT).
METHODS: The Fluidigm® PCR array was used for multi-transcript profiling of laser microdissected tumours from archival formalin-fixed diagnostic biopsies of patients treated by EBRT or PADT. Cases were matched for disease characteristics and had known 5 year biochemical relapse outcomes (n = 60). Results were validated by immunohistochemistry in a custom needle biopsy tissue microarray. Six biomarkers previously tested only in surgical cohorts were analysed (PTEN, E-Cadherin, EGFR, EZH2, PSMA, MSMB). Transcript and protein expression was correlated with clinical outcome analysed using Kruskal Wallis, Fisher's test and Cox proportional hazard model.
RESULTS: Altered expression of E-Cadherin (p = 0.008) was associated with early relapse after EBRT. In PADT treated men however only altered MSMB transcript was prognostic for early relapse (p = 0.001). The remaining biomarkers however did not demonstrate prognostic ability in either cohort. In a separate tissue array we validated altered E-Cadherin protein as a predictor of early relapse after EBRT (n = 47) (HR 0.34, CI p = 0.02) but not in PADT treated men (n = 63).
CONCLUSION: We demonstrate proof of principle of multiple transcript profiling in archival diagnostic biopsies of non-surgically treated men for biomarker discovery. We identify a role for E-Cadherin as a novel biomarker of early relapse following EBRT.

Lim U, Kocarnik JM, Bush WS, et al.
Pleiotropy of cancer susceptibility variants on the risk of non-Hodgkin lymphoma: the PAGE consortium.
PLoS One. 2014; 9(3):e89791 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Risk of non-Hodgkin lymphoma (NHL) is higher among individuals with a family history or a prior diagnosis of other cancers. Genome-wide association studies (GWAS) have suggested that some genetic susceptibility variants are associated with multiple complex traits (pleiotropy).
OBJECTIVE: We investigated whether common risk variants identified in cancer GWAS may also increase the risk of developing NHL as the first primary cancer.
METHODS: As part of the Population Architecture using Genomics and Epidemiology (PAGE) consortium, 113 cancer risk variants were analyzed in 1,441 NHL cases and 24,183 controls from three studies (BioVU, Multiethnic Cohort Study, Women's Health Initiative) for their association with the risk of overall NHL and common subtypes [diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL)] using an additive genetic model adjusted for age, sex and ethnicity. Study-specific results for each variant were meta-analyzed across studies.
RESULTS: The analysis of NHL subtype-specific GWAS SNPs and overall NHL suggested a shared genetic susceptibility between FL and DLBCL, particularly involving variants in the major histocompatibility complex region (rs6457327 in 6p21.33: FL OR=1.29, p=0.013; DLBCL OR=1.23, p=0.013; NHL OR=1.22, p=5.9 × E-05). In the pleiotropy analysis, six risk variants for other cancers were associated with NHL risk, including variants for lung (rs401681 in TERT: OR per C allele=0.89, p=3.7 × E-03; rs4975616 in TERT: OR per A allele=0.90, p=0.01; rs3131379 in MSH5: OR per T allele=1.16, p=0.03), prostate (rs7679673 in TET2: OR per C allele=0.89, p=5.7 × E-03; rs10993994 in MSMB: OR per T allele=1.09, p=0.04), and breast (rs3817198 in LSP1: OR per C allele=1.12, p=0.01) cancers, but none of these associations remained significant after multiple test correction.
CONCLUSION: This study does not support strong pleiotropic effects of non-NHL cancer risk variants in NHL etiology; however, larger studies are warranted.

Sutcliffe S, De Marzo AM, Sfanos KS, Laurence M
MSMB variation and prostate cancer risk: clues towards a possible fungal etiology.
Prostate. 2014; 74(6):569-78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND. With recent advances in high-throughput sequencing technologies, many prostate cancer risk loci have been identified, including rs10993994, a single nucleotide polymorphism (SNP) located near the MSMB gene. Variant allele (T) carriers of this SNP produce less prostate secretory protein 94 (PSP94), the protein product of MSMB, and have an increased risk of prostate cancer (approximately 25% per T allele), suggesting that PSP94 plays a protective role in prostate carcinogenesis, although the mechanisms for such protection are unclear. METHODS. We reviewed the literature on possible mechanisms for PSP94 protection for prostate cancer. RESULTS. One possible mechanism is tumor suppression, as PSP94 has been observed to inhibit cell or tumor growth in in vitro and in vivo models. Another novel mechanism, which we propose in this review article, is that PSP94 may protect against prostate cancer by preventing or limiting an intracellular fungal infection in the prostate. This mechanism is based on the recent discovery of PSP94's fungicidal activity in low-calcium environments (such as the cytosol of epithelial cells), and accumulating evidence suggesting a role for inflammation in prostate carcinogenesis. We provide further details of our proposed mechanism in this review article. CONCLUSIONS. To explore this mechanism, future studies should consider screening prostate specimens for fungi using the rapidly expanding number of molecular techniques capable of identifying infectious agents from the entire tree of life.

Shui IM, Lindström S, Kibel AS, et al.
Prostate cancer (PCa) risk variants and risk of fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium.
Eur Urol. 2014; 65(6):1069-75 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Screening and diagnosis of prostate cancer (PCa) is hampered by an inability to predict who has the potential to develop fatal disease and who has indolent cancer. Studies have identified multiple genetic risk loci for PCa incidence, but it is unknown whether they could be used as biomarkers for PCa-specific mortality (PCSM).
OBJECTIVE: To examine the association of 47 established PCa risk single-nucleotide polymorphisms (SNPs) with PCSM.
DESIGN, SETTING, AND PARTICIPANTS: We included 10 487 men who had PCa and 11 024 controls, with a median follow-up of 8.3 yr, during which 1053 PCa deaths occurred.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The main outcome was PCSM. The risk allele was defined as the allele associated with an increased risk for PCa in the literature. We used Cox proportional hazards regression to calculate the hazard ratios of each SNP with time to progression to PCSM after diagnosis. We also used logistic regression to calculate odds ratios for each risk SNP, comparing fatal PCa cases to controls.
RESULTS AND LIMITATIONS: Among the cases, we found that 8 of the 47 SNPs were significantly associated (p<0.05) with time to PCSM. The risk allele of rs11672691 (intergenic) was associated with an increased risk for PCSM, while 7 SNPs had risk alleles inversely associated (rs13385191 [C2orf43], rs17021918 [PDLIM5], rs10486567 [JAZF1], rs6465657 [LMTK2], rs7127900 (intergenic), rs2735839 [KLK3], rs10993994 [MSMB], rs13385191 [C2orf43]). In the case-control analysis, 22 SNPs were associated (p<0.05) with the risk of fatal PCa, but most did not differentiate between fatal and nonfatal PCa. Rs11672691 and rs10993994 were associated with both fatal and nonfatal PCa, while rs6465657, rs7127900, rs2735839, and rs13385191 were associated with nonfatal PCa only.
CONCLUSIONS: Eight established risk loci were associated with progression to PCSM after diagnosis. Twenty-two SNPs were associated with fatal PCa incidence, but most did not differentiate between fatal and nonfatal PCa. The relatively small magnitudes of the associations do not translate well into risk prediction, but these findings merit further follow-up, because they may yield important clues about the complex biology of fatal PCa.
PATIENT SUMMARY: In this report, we assessed whether established PCa risk variants could predict PCSM. We found eight risk variants associated with PCSM: One predicted an increased risk of PCSM, while seven were associated with decreased risk. Larger studies that focus on fatal PCa are needed to identify more markers that could aid prediction.

Debiais-Delpech C, Godet J, Pedretti N, et al.
Expression patterns of candidate susceptibility genes HNF1β and CtBP2 in prostate cancer: association with tumor progression.
Urol Oncol. 2014; 32(4):426-32 [PubMed] Related Publications
OBJECTIVES: Genome-wide association studies have identified variants at multiple loci associated with prostate cancer (PCa) risk. Some of these loci include candidate susceptibility genes, such as MSMB, HNF1β, and C-terminal-binding protein (CtBP2). Except for MSMB, the clinicopathological significance of these genes has not been investigated. We therefore aimed to analyze their expression in PCa tissues, in relation with tumor progression and aggressiveness.
METHODS AND MATERIALS: Protein expression was evaluated by immunohistochemistry on tissue microarrays containing samples from normal prostate (NL, n = 91), high-grade prostatic intraepithelial neoplasia (PIN, n = 61), clinically localized PCa (CLC, n = 434), PCa metastases (M, n = 28), and castration-resistant PCa (CRC, n = 49). Moreover, mRNA expression for each marker was assessed by quantitative real-time polymerase chain reaction, on 53 frozen samples of NL, CLC, and CRC.
RESULTS: These genes were differentially expressed at the different stages of PCa natural history. MSMB expression decreased with disease development and progression. In contrast, nuclear HNF1β and CtBP2 staining significantly increased in the CRC and M groups when compared with CLC, together with the transcripts levels. In patients with CLC, HNF1β and CtBP2 nuclear expressions were strongly associated with cancer cell proliferation. After adjusting for the Gleason score and the pathological stage, none of the candidate genes was significantly predictive of recurrence after radical prostatectomy. In patients with CRC, CtBP2 nuclear staining was associated with shorter overall survival.
CONCLUSIONS: The decrease of MSMB expression during tumor progression strongly supports its role as a tumor-suppressor gene. Although its functions remain to be clarified in PCa cells, HNF1β and CtBP2 are associated with cancer cell proliferation, tumor progression, and castration-resistant disease.

Flatley B, Wilmott KG, Malone P, Cramer R
MALDI MS profiling of post-DRE urine samples highlights the potential of β-microseminoprotein as a marker for prostatic diseases.
Prostate. 2014; 74(1):103-11 [PubMed] Related Publications
BACKGROUND: To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks' underlying biomolecules.
METHODS: Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test.
RESULTS: A peak at m/z 10,760 was identified as β-microseminoprotein (β-MSMB) and found to be statistically lower in urine from PCa participants using the peak's average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured β-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%.
CONCLUSIONS: These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.

Stott-Miller M, Wright JL, Stanford JL
MSMB gene variant alters the association between prostate cancer and number of sexual partners.
Prostate. 2013; 73(16):1803-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recently, a genetic variant (rs10993994) in the MSMB gene associated with prostate cancer (PCa) risk was shown to correlate with reduced prostate secretory protein of 94 amino acids (PSP94) levels. Although the biological activity of PSP94 is unclear, one of its hypothesized functions is to protect prostatic cells from pathogens. Number of sexual partners and a history of sexually transmitted infections (STIs) have been positively associated with PCa risk, and these associations may be related to pathogen-induced chronic prostatic inflammation. Based on these observations, we investigated whether MSMB genotype modifies the PCa-sexual history association.
METHODS: We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for the association between number of sexual partners and PCa by fitting logistic regression models, stratified by MSMB genotype, and adjusted for age, family history of PCa, and PCa screening history among 1,239 incident cases and 1,232 controls.
RESULTS: Compared with 1-4 female sexual partners, men with ≥ 15 such partners who carried the variant T allele of rs10993994 were at increased risk for PCa (OR = 1.32; 95% CI, 1.03-1.71); no association was observed in men with the CC genotype (OR = 1.03; 95% CI, 0.73-1.46; P = 0.05 for interaction). Similar estimates were observed for total sexual partners (any T allele OR = 1.37; 95% CI, 1.07-1.77; CC genotype OR = 1.11; 95% CI, 0.79-1.55; P = 0.06 for interaction).
CONCLUSIONS: The rs10993994 genotype in the MSMB gene modifies the association between number of sexual partners and PCa risk. These findings support a hypothesized biological mechanism whereby prostatic infection/inflammation may enhance risk of PCa.

Mygatt JG, Singhal A, Sukumar G, et al.
Oncogenic herpesvirus HHV-8 promotes androgen-independent prostate cancer growth.
Cancer Res. 2013; 73(18):5695-708 [PubMed] Related Publications
Mechanisms underlying progression to androgen-independent prostate cancer following radical ablation therapy remain poorly defined. Although intraprostatic infections have been highlighted as potential cofactors, pathogen influences on pathways that support tumor regrowth are not known. To explore this provocative concept, we derived androgen-sensitive and -insensitive prostate epithelial cells persistently infected with human herpesvirus 8 (HHV-8), an oncogenic herpesvirus that has been detected in normal prostate epithelium, prostate adenocarcinoma, and biologic fluids of patients with prostate cancer, to explore its effects on transition to hormone-refractory disease. Strikingly, we found that HHV-8 infection of androgen-sensitive prostate cancer cells conferred the capacity for androgen-independent growth. This effect was associated with altered expression and transcriptional activity of the androgen receptor (AR). However, HHV-8 infection bypassed AR signaling by promoting enhancer of zeste homolog 2 (EZH2)-mediated epigenetic silencing of tumor-suppressor genes, including MSMB and DAB2IP that are often inactivated in advanced disease. Furthermore, we found that HHV-8 triggered epithelial-to-mesenchymal transition. Although HHV-8 has not been linked etiologically to prostate cancer, virologic outcomes revealed by our study provide mechanistic insight into how intraprostatic infections could constitute risk for progression to androgen-independent metastatic disease where EZH2 has been implicated. Taken together, our findings prompt further evaluations of the relationship between HHV-8 infections and risk of advanced prostate cancer.

Pommier AJ, Dufour J, Alves G, et al.
Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice.
PLoS Genet. 2013; 9(5):e1003483 [PubMed] Free Access to Full Article Related Publications
LXR (Liver X Receptors) act as "sensor" proteins that regulate cholesterol uptake, storage, and efflux. LXR signaling is known to influence proliferation of different cell types including human prostatic carcinoma (PCa) cell lines. This study shows that deletion of LXR in mouse fed a high-cholesterol diet recapitulates initial steps of PCa development. Elevation of circulating cholesterol in Lxrαβ-/- double knockout mice results in aberrant cholesterol ester accumulation and prostatic intra-epithelial neoplasia. This phenotype is linked to increased expression of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2), which results in the down-regulation of the tumor suppressors Msmb and Nkx3.1 through increased methylation of lysine 27 of histone H3 (H3K27) on their promoter regions. Altogether, our data provide a novel link between LXR, cholesterol homeostasis, and epigenetic control of tumor suppressor gene expression.

Wu W, Lu J, Yuan B, et al.
Association of prostate cancer susceptibility variant (MSMB) rs10993994 with risk of spermatogenic failure.
Gene. 2013; 524(2):197-202 [PubMed] Related Publications
β-Microseminoprotein (MSMB) is one of the most abundant proteins in human seminal plasma. It has been identified that MSMB increased significantly in oligoasthenoteratozoospermic patients compared with fertile controls. We hypothesized that the functional polymorphism (rs10993994) of MSMB gene could be a risk factor for spermatogenic failure. For this study, 338 patients with idiopathic oligozoospermia or azoospermia and 382 fertile controls were recruited from an infertility clinic. Semen analysis was performed by computer-assisted semen analysis system. The functional polymorphism of MSMB gene was genotyped using TaqMan method. Sixty three seminal plasma samples were used to test the expression of MSMB by enzyme-linked immunosorbent assay (ELISA). The TT genotype and T allele were associated with an increased risk of idiopathic infertility with azoospermia (TT genotype: OR, 1.75; 95% CI, 1.03-2.95; T allele: OR, 1.34; 95% CI, 1.03-1.75). However, no differences were found in risk for the TT genotype or T allele among men with oligozoospermia. In addition, idiopathic infertile males have significantly higher MSMB expression levels than fertile controls. We present the first epidemiologic evidence supporting the involvement of common genetic polymorphism in MSMB gene in spermatogenic failure. These results suggest that men carrying the variant have an increased risk of spermatogenic failure associated with male infertility. Further studies are needed to confirm the roles of the polymorphism in idiopathic azoospermia and investigate the biological mechanism of elevated MSMB expression in infertile males.

Väänänen RM, Lilja H, Cronin A, et al.
Association of transcript levels of 10 established or candidate-biomarker gene targets with cancerous versus non-cancerous prostate tissue from radical prostatectomy specimens.
Clin Biochem. 2013; 46(7-8):670-4 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: The benefits of PSA (prostate specific antigen)-testing in prostate cancer remain controversial with a consequential need for validation of additional biomarkers. We used highly standardized reverse-transcription (RT)-PCR assays to compare transcript levels of 10 candidate cancer marker genes - BMP6, FGF-8b, KLK2, KLK3, KLK4, KLK15, MSMB, PCA3, PSCA and Trpm8 - in carefully ascertained non-cancerous versus cancerous prostate tissue from patients with clinically localized prostate cancer treated by radical prostatectomy.
DESIGN AND METHODS: Total RNA was isolated from fresh frozen prostate tissue procured immediately after resection from two separate areas in each of 87 radical prostatectomy specimens. Subsequent histopathological assessment classified 86 samples as cancerous and 88 as histologically benign prostate tissue. Variation in total RNA recovery was accounted for by using external and internal standards and enabled us to measure transcript levels by RT-PCR in a highly quantitative manner.
RESULTS: Of the ten genes, there were significantly higher levels only of one of the less abundant transcripts, PCA3, in cancerous versus non-cancerous prostate tissue whereas PSCA mRNA levels were significantly lower in cancerous versus histologically benign tissue. Advanced pathologic stage was associated with significantly higher expression of KLK15 and PCA3 mRNAs. Median transcript levels of the most abundantly expressed genes (i.e. MSMB, KLK3, KLK4 and KLK2) in prostate tissue were up to 10(5)-fold higher than those of other gene targets.
CONCLUSIONS: PCA3 expression was associated with advanced pathological stage but the magnitude of overexpression of PCA3 in cancerous versus non-cancerous prostate tissue was modest compared to previously reported data.

Sun J, Tao S, Gao Y, et al.
Genome-wide association study identified novel genetic variant on SLC45A3 gene associated with serum levels prostate-specific antigen (PSA) in a Chinese population.
Hum Genet. 2013; 132(4):423-9 [PubMed] Related Publications
Prostate-specific antigen (PSA) is a commonly used cancer biomarker for prostate cancer, and is often included as part of routine physical examinations in China. Serum levels of PSA may be influenced by genetic factors as well as other factors. A genome-wide association study (GWAS) conducted in a European population successfully identified six genetic loci that were significantly associated with PSA level. In this study, we aimed to identify common genetic variants that are associated with serum level of PSA in a Chinese population. We also evaluated the effects of those variants by creating personalized PSA cutoff values. A two-stage GWAS of PSA level was performed among men age 20-69 years and self-reported cancer-free participants that underwent routine physical examinations at several hospitals in Guangxi Province, China. Single nucleotide polymorphisms (SNPs) significantly associated with PSA levels in the first stage of sample (N = 1,999) were confirmed in the second stage of sample (N = 1,496). Multivariate linear regression was used to assess the independent contribution of confirmed SNPs and known covariates, such as age, to the level of PSA. SNPs in three regions were significantly associated with levels of PSA in this two-stage GWAS, and had combined P values between 4.62 × 10(-17) and 6.45 × 10(-37). The three regions are located on 1q32.1 at SLC45A3, 10q11.23 at MSMB, and 19q13.33 at KLK3. The region 1q32.1 at SLC45A3 was identified as a novel locus. Genetic variants contributed significantly more to the variance of PSA level than known covariates such as age. Personalized cutoff values of serum PSA, calculated based on the inheritance of these associated SNPs, differ considerably among individuals. Identification of these genetic markers provides new insight into the molecular mechanisms of PSA. Taking individual variation into account, these genetic variants may improve the performance of PSA to predict prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSMB, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999