Gene Summary

Gene:GATA2; GATA binding protein 2
Summary:This gene encodes a member of the GATA family of zinc-finger transcription factors that are named for the consensus nucleotide sequence they bind in the promoter regions of target genes. The encoded protein plays an essential role in regulating transcription of genes involved in the development and proliferation of hematopoietic and endocrine cell lineages. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Mar 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:endothelial transcription factor GATA-2
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (43)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Zinc Fingers
  • Tumor Markers
  • Cancer Gene Expression Regulation
  • Messenger RNA
  • Proto-Oncogene Proteins
  • Leukaemia
  • DNA-Binding Proteins
  • Myeloid Leukemia
  • Androgen Receptors
  • Leukemic Gene Expression Regulation
  • Trans-Activators
  • Neoplasm Proteins
  • Cell Differentiation
  • Promoter Regions
  • siRNA
  • Genetic Predisposition
  • DNA Mutational Analysis
  • Tissue Kallikreins
  • Hematopoiesis
  • GATA1
  • Myelodysplastic Syndromes
  • Basic Helix-Loop-Helix Transcription Factors
  • GATA2 Transcription Factor
  • Cultured Cells
  • Gene Expression Profiling
  • Acute Myeloid Leukaemia
  • Transfection
  • Bladder Cancer
  • Erythroid-Specific DNA-Binding Factors
  • Virus Integration
  • Recurrence
  • Molecular Sequence Data
  • gamma-Globulins
  • Prostate Cancer
  • Childhood Cancer
  • Hematopoietic Stem Cells
  • Base Sequence
  • Mutation
  • Chromosome 3
  • Adolescents
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GATA2 (cancer-related)

Gosse G, Celton M, Lamontagne V, et al.
Whole genome and transcriptome analysis of a novel AML cell line with a normal karyotype.
Leuk Res. 2015; 39(7):709-18 [PubMed] Related Publications
Acute myeloid leukemia (AML) occurs when hematopoietic progenitor cells acquire genetic defects blocking the regulation of normal growth and differentiation. Although recurrent translocations have been identified in AML, almost half of adult AML patients present with a normal karyotype (NK-AML). While cell line models exist to study AML, they frequently have abnormal/unstable karyotypes, while primary cells from NK-AML patients are difficult to maintain in vitro. Here we provide a thorough molecular characterization of a recently established cell line, CG-SH, which has normal cytogenetics, representing a useful new model for NK-AML. Using high-throughput DNA sequencing, we first defined the genetic background of this cell line. In addition to identifying potentially deleterious SNVs in genes relevant to AML, we also found insertions in both GATA2 and EZH2, two genes previously linked to AML. We further characterized the growth of this model system in vitro with a cytokine mix that promotes faster cell growth. We assessed gene expression changes after the addition of cytokines to the culture media and found differential expression in genes implicated in proliferation, apoptosis and differentiation. Our results provide a detailed molecular characterization of genetic defects in this cell line derived from an NK-AML patient.

Kühnl A, Valk PJ, Sanders MA, et al.
Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia.
Blood. 2015; 125(19):2985-94 [PubMed] Free Access to Full Article Related Publications
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.

Xu J, Shao Z, Li D, et al.
Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions.
Mol Cell. 2015; 57(2):304-16 [PubMed] Article available free on PMC after 22/01/2016 Related Publications
Polycomb repressive complex 2 (PRC2) plays crucial roles in transcriptional regulation and stem cell development. However, the context-specific functions associated with alternative subunits remain largely unexplored. Here we show that the related enzymatic subunits EZH1 and EZH2 undergo an expression switch during blood cell development. An erythroid-specific enhancer mediates transcriptional activation of EZH1, and a switch from GATA2 to GATA1 controls the developmental EZH1/2 switch by differential association with EZH1 enhancers. We further examine the in vivo stoichiometry of the PRC2 complexes by quantitative proteomics and reveal the existence of an EZH1-SUZ12 subcomplex lacking EED. EZH1 together with SUZ12 form a non-canonical PRC2 complex, occupy active chromatin, and positively regulate gene expression. Loss of EZH2 expression leads to repositioning of EZH1 to EZH2 targets. Thus, the lineage- and developmental stage-specific regulation of PRC2 subunit composition leads to a switch from canonical silencing to non-canonical functions during blood stem cell specification.

Gröschel S, Sanders MA, Hoogenboezem R, et al.
Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways.
Blood. 2015; 125(1):133-9 [PubMed] Article available free on PMC after 22/01/2016 Related Publications
Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group.

Hou HA, Lin YC, Kuo YY, et al.
GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.
Ann Hematol. 2015; 94(2):211-21 [PubMed] Related Publications
Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation.

Wu BL, Li CQ, Du ZP, et al.
Functional analysis of the mRNA profile of neutrophil gelatinase‑associated lipocalin overexpression in esophageal squamous cell carcinoma using multiple bioinformatic tools.
Mol Med Rep. 2014; 10(4):1800-12 [PubMed] Article available free on PMC after 22/01/2016 Related Publications
Neutrophil gelatinase-associated lipocalin (NGAL) is a member of the lipocalin superfamily; dysregulated expression of NGAL has been observed in several benign and malignant diseases. In the present study, differentially expressed genes, in comparison with those of control cells, in the mRNA expression profile of EC109 esophageal squamous cell carcinoma (ESCC) cells following NGAL overexpression were analyzed by multiple bioinformatic tools for a comprehensive understanding. A total of 29 gene ontology (GO) terms associated with immune function, chromatin structure and gene transcription were identified among the differentially expressed genes (DEGs) in NGAL overexpressing cells. In addition to the detected GO categories, the results from the functional annotation chart revealed that the differentially expressed genes were also associated with 101 functional annotation category terms. A total of 59 subpathways associated locally with the differentially expressed genes were identified by subpathway analysis, a markedly greater total that detected by traditional pathway enrichment analysis only. Promoter analysis indicated that the potential transcription factors Snail, deltaEF1, Mycn, Arnt, MNB1A, PBF, E74A, Ubx, SPI1 and GATA2 were unique to the downregulated DEG promoters, while bZIP910, ZNF42 and SOX9 were unique for the upregulated DEG promoters. In conclusion, the understanding of the role of NGAL overexpression in ESCC has been improved through the present bioinformatic analysis.

Inoue T, Swain A, Nakanishi Y, Sugiyama D
Multicolor analysis of cell surface marker of human leukemia cell lines using flow cytometry.
Anticancer Res. 2014; 34(8):4539-50 [PubMed] Related Publications
BACKGROUND: Leukemia cell lines are utilized as tools for molecular analysis. Their implementation in therapy will require standards for quality control, including appropriate selection criteria for functional analysis and efficacy determination.
MATERIALS AND METHODS: Characteristics of six human leukemia cell lines -Kasumi-1, NB-4, MOLM-13, MV-4-11, K562, and Jurkat cells-were investigated using multiple color analysis of surface antigen expression and comparative analysis of gene expression.
RESULTS: Differentiation states of Kasumi-1 and MOLM-13 cells are colony-forming units-granulocyte/macrophage equivalent cells to myeloblasts with comparatively high Growth factor independent-1(GFI1) and Transcription factor PU.1 (PU.1) expression, respectively. NB4 and MV-4-11 express high levels of CCAAT/enhancer-binding protein-alpha (CEBPα) and differentiate from myeloblasts to pro-monocytes and myeloblasts, respectively. K562 cells are colony-forming units-erythroid equivalent cells to erythroblasts, with the highest expression of GATA-binding factor 2 (GATA2), GATA1 and Friend of gata-1 (FOG1). Jurkat cells are pro-T to mature T-cells with the highest Neurogenic locus notch-1 homolog protein 1 (NOTCH1) expression.
CONCLUSION: Our study gives a useful guideline of standards for appropriate usage of leukemia cell lines for examining novel targets in vitro.

Katsumura KR, Yang C, Boyer ME, et al.
Molecular basis of crosstalk between oncogenic Ras and the master regulator of hematopoiesis GATA-2.
EMBO Rep. 2014; 15(9):938-47 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Disease mutations provide unique opportunities to decipher protein and cell function. Mutations in the master regulator of hematopoiesis GATA-2 underlie an immunodeficiency associated with myelodysplastic syndrome and leukemia. We discovered that a GATA-2 disease mutant (T354M) defective in chromatin binding was hyperphosphorylated by p38 mitogen-activated protein kinase. p38 also induced multisite phosphorylation of wild-type GATA-2, which required a single phosphorylated residue (S192). Phosphorylation of GATA-2, but not T354M, stimulated target gene expression. While crosstalk between oncogenic Ras and GATA-2 has been implicated as an important axis in cancer biology, its mechanistic underpinnings are unclear. Oncogenic Ras enhanced S192-dependent GATA-2 phosphorylation, nuclear foci localization, and transcriptional activation. These studies define a mechanism that controls a key regulator of hematopoiesis and a dual mode of impairing GATA-2-dependent genetic networks: mutational disruption of chromatin occupancy yielding insufficient GATA-2, and oncogenic Ras-mediated amplification of GATA-2 activity.

Tessema M, Yingling CM, Snider AM, et al.
GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer.
J Thorac Oncol. 2014; 9(6):784-93 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
INTRODUCTION: GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small-cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear.
METHODS: GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation.
RESULTS: GATA2 expression in KRAS wild-type (n = 15) and mutant (n = 10) NSCLC cell lines and primary lung tumors (n = 24) was significantly lower, 1.3- to 33.6-fold (p = 2.2 × 10(9)), compared with corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0 of 10) but frequently methylated in lung tumors (96%, 159 of 165) and NSCLC cell lines (97%, 30 of 31). This highly prevalent aberrant methylation was independently validated using The Cancer Genome Atlas data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced premalignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of GATA2 in NNK-induced mouse lung tumors (n = 6) and cell lines (n = 5) was fivefold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant (human [n = 4] and murine [n = 5]) and wild-type (human [n = 4]) NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death.
CONCLUSION: GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer.

Gao J, Gentzler RD, Timms AE, et al.
Heritable GATA2 mutations associated with familial AML-MDS: a case report and review of literature.
J Hematol Oncol. 2014; 7:36 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
A 50-year-old woman was diagnosed with acute myeloid leukemia (AML). She has history of thrombocytopenia for 25 years and a significant family history of thrombocytopenia, affecting her mother, siblings and their children, as well as her own children. Both her mother and maternal aunt died from myelodysplastic syndrome (MDS). Additional genetic analysis was performed and identified two heterozygous missence mutations in the second zinc finger domain of GATA2 gene (p.Thr358Lys, and p.Leu359Val), occurring in cis on the same allele. Given the patient's family history and clinical manifestation, this was interpreted as an acute myeloid leukemia with heritable GATA2 mutations associated with familial AML-MDS. Germline GATA2 mutations are involved in a group of complex syndromes with overlapping clinical features of immune deficiency, lymphedema and propensity to acute myeloid leukemia or myelodysplastic syndrome (AML-MDS). Here we reported a case of familial AML-MDS with two novel GATA2 mutations. This case illustrates the importance of recognizing the clinical features for this rare category of AML-MDS and performing the appropriate molecular testing. The diagnosis of heritable gene mutations associated familial AML-MDS has significant clinical implication for the patients and affected families. Clinical trials are available to further investigate the role of allogeneic hematopoietic stem cell transplant in managing these patients.

Koche RP, Armstrong SA
Genomic dark matter sheds light on EVI1-driven leukemia.
Cancer Cell. 2014; 25(4):407-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The orchestration of transcriptional programs depends on proper gene-enhancer pairing. While much remains to be learned about this process in normal development, two recent studies in Cell (Gröschel and colleagues) and this issue of Cancer Cell (Yamazaki and colleagues) highlight how the genomic rearrangement of an enhancer plays a causal role in the onset of a leukemogenic program.

Yamazaki H, Suzuki M, Otsuki A, et al.
A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression.
Cancer Cell. 2014; 25(4):415-27 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Chromosomal inversion between 3q21 and 3q26 results in high-risk acute myeloid leukemia (AML). In this study, we identified a mechanism whereby a GATA2 distal hematopoietic enhancer (G2DHE or -77-kb enhancer) is brought into close proximity to the EVI1 gene in inv(3)(q21;q26) inversions, leading to leukemogenesis. We examined the contribution of G2DHE to leukemogenesis by creating a bacterial artificial chromosome (BAC) transgenic model that recapitulates the inv(3)(q21;q26) allele. Transgenic mice harboring a linked BAC developed leukemia accompanied by EVI1 overexpression-neoplasia that was not detected in mice bearing the same transgene but that was missing the GATA2 enhancer. These results establish the mechanistic basis underlying the pathogenesis of a severe form of leukemia through aberrant expression of the EVI1 proto-oncogene.

Gröschel S, Sanders MA, Hoogenboezem R, et al.
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia.
Cell. 2014; 157(2):369-81 [PubMed] Related Publications
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.

Huang Y, Zheng J, Hu JD, et al.
Discovery of somatic mutations in the progression of chronic myeloid leukemia by whole-exome sequencing.
Genet Mol Res. 2014; 13(1):945-53 [PubMed] Related Publications
We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.

Shen S, Mao CQ, Yang XZ, et al.
Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma.
Mol Pharm. 2014; 11(8):2612-22 [PubMed] Related Publications
Synthetic lethal interaction provides a conceptual framework for the development of wiser cancer therapeutics. In this study, we exploited a therapeutic strategy based on the interaction between GATA binding protein 2 (GATA2) downregulation and the KRAS mutation status by delivering small interfering RNA targeting GATA2 (siGATA2) with cationic lipid-assisted polymeric nanoparticles for treatment of non-small-cell lung carcinoma (NSCLC) harboring oncogenic KRAS mutations. Nanoparticles carrying siGATA2 (NPsiGATA2) were effectively taken up by NSCLC cells and resulted in targeted gene suppression. NPsiGATA2 selectively inhibited cell proliferation and induced cell apoptosis in KRAS mutant NSCLC cells. However, this intervention was harmless to normal KRAS wild-type NSCLC cells and HL7702 hepatocytes, confirming the advantage of synthetic lethality-based therapy. Moreover, systemic delivery of NPsiGATA2 significantly inhibited tumor growth in the KRAS mutant A549 NSCLC xenograft murine model, suggesting the therapeutic promise of NPsiGATA2 delivery in KRAS mutant NSCLC therapy.

Celton M, Forest A, Gosse G, et al.
Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia.
Leukemia. 2014; 28(8):1617-26 [PubMed] Related Publications
The GATA2 gene encodes a zinc-finger transcription factor that acts as a master regulator of normal hematopoiesis. Mutations in GATA2 have been implicated in the development of myelodysplastic syndrome and acute myeloid leukemia (AML). Using RNA sequencing we now report that GATA2 is either mutated with a functional consequence, or expressed at low levels in the majority of normal karyotype AML (NK-AML). We also show that low-GATA2-expressing specimens (GATA2(low)) exhibit allele-specific expression (ASE) (skewing) in more than half of AML patients examined. We demonstrate that the hypermethylation of the silenced allele can be reversed by exposure to demethylating agents, which also restores biallelic expression of GATA2. We show that GATA2(low) AML lack the prototypical R882 mutation in DNMT3A frequently observed in NK-AML patients and that The Cancer Genome Atlas AML specimens with DNMT3A R882 mutations are characterized by CpG hypomethylation of GATA2. Finally, we validate that several known missense single-nucleotide polymorphisms in GATA2 are actually loss-of-function variants, which, when combined with ASE, represent the equivalent of homozygous GATA2 mutations. From a broader perspective, this work suggests for the first time that determinants of ASE likely have a key role in human leukemia.

Yang ZH, Zheng R, Gao Y, et al.
Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing.
Cancer Gene Ther. 2014; 21(2):74-82 [PubMed] Related Publications
To explore the universal law of the abnormal gene expression and the structural variation of genes related to lung adenocarcinoma, the gene expression profile of GSE37765 were downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were analyzed with t-test and NOISeq tool, and the core DEGs were screened out by combining with another RNA-seq data containing totally 77 pairs of samples in 77 patients with lung adenocarcinoma. Moreover, the functional annotation of the core DEGs was performed by using the Database for Annotation Visualization and Integrated Discovery following selection of oncogene and tumor suppressor by combining with tumor suppressor genes and Cancer Genes database, and motif-finding of core DEGs was performed with motif-finding algorithm Seqpos. We also used Tophat-fusion tool to further explore the fusion genes. In total, 850 downregulated DEGs and 206 upregulated DEGs were screened out in lung adenocarcinoma tissues. Next, we selected 543 core DEGs, including 401 downregulated and 142 upregulated genes, and vasculature development (P=1.89E-06) was significantly enriched among downregulated core genes, as well as mitosis (P=6.26E-04) enriched among upregulated core genes. On the basis of the cellular localization analysis of core genes, wnt-1-induced secreted protein 1 (WISP1) and receptor (G protein-coupled) activity modifying protein 1 (RAMP1) identified mainly located in extracellular region and extracellular space. We also screened one oncogene, v-myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2). Moreover, transcription factor GATA2 was mined by motif-finding analysis. Finally, four fusion genes belonged to the human leukocyte antigen (HLA) family. WISP1, RAMP1, MYBL2 and GATA2 could be potential targets of treatment for lung adenocarcinoma and the fusion of HLA family genes might have important roles in lung adenocarcinoma.

Wu BL, Luo LW, Li CQ, et al.
Comprehensive bioinformation analysis of the mRNA profile of fascin knockdown in esophageal squamous cell carcinoma.
Asian Pac J Cancer Prev. 2013; 14(12):7221-7 [PubMed] Related Publications
BACKGROUND: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC.
METHOD: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin.
RESULTS: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes.
CONCLUSIONS: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

Chiang YT, Wang K, Fazli L, et al.
GATA2 as a potential metastasis-driving gene in prostate cancer.
Oncotarget. 2014; 5(2):451-61 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Effective treatment for metastatic prostate cancer is critically needed. The present study was aimed at identifying metastasis-driving genes as potential targets for therapy (oncotargets). A differential gene expression profile of metastatic LTL-313H and non-metastatic LTL-313B prostate cancer tissue xenografts, derived from one patient's specimen, was subjected to integrative analysis using the Ingenuity Upstream Regulator Analysis tool. Six candidate master regulatory genes were identified, including GATA2, a gene encoding a pioneer factor, a special transcription factor facilitating the recruitment of additional transcription factors. Elevated GATA2 expression in metastatic prostate cancer tissues correlated with poor patient prognosis. Furthermore, GATA2 gene silencing in human prostate cancer LNCaP cells led to a marked reduction in cell migration, tissue invasion, focal adhesion disassembly and to a dramatic change in cell transcriptomes, indicating that GATA2 plays a critical role in prostate cancer metastasis. As such, GATA2 could represent a prostate cancer metastasis-driving gene and a potential target for therapy of metastatic prostate cancer.

Wu D, Sunkel B, Chen Z, et al.
Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer.
Nucleic Acids Res. 2014; 42(6):3607-22 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
In prostate cancer, androgen receptor (AR) binding and androgen-responsive gene expression are defined by hormone-independent binding patterns of the pioneer factors FoxA1 and GATA2. Insufficient evidence of the mechanisms by which GATA2 contributes to this process precludes complete understanding of a key determinant of tissue-specific AR activity. Our observations suggest that GATA2 facilitates androgen-responsive gene expression by three distinct modes of action. By occupying novel binding sites within the AR gene locus, GATA2 positively regulates AR expression before and after androgen stimulation. Additionally, GATA2 engages AR target gene enhancers prior to hormone stimulation, producing an active and accessible chromatin environment via recruitment of the histone acetyltransferase p300. Finally, GATA2 functions in establishing and/or sustaining basal locus looping by recruiting the Mediator subunit MED1 in the absence of androgen. These mechanisms may contribute to the generally positive role of GATA2 in defining AR genome-wide binding patterns that determine androgen-responsive gene expression profiles. We also find that GATA2 and FoxA1 exhibit both independent and codependent co-occupancy of AR target gene enhancers. Identifying these determinants of AR transcriptional activity may provide a foundation for the development of future prostate cancer therapeutics that target pioneer factor function.

Gong Y, Cao Y, Song L, et al.
HMGB3 characterization in gastric cancer.
Genet Mol Res. 2013; 12(4):6032-9 [PubMed] Related Publications
Gastric cancer is a major health problem worldwide; it is the second most common cause of cancer death in the world. Recent studies indicate that the high-mobility group (HMG) of chromosomal proteins is associated with cancer progression. However, HMGB3 has been little studied. We analyzed the co-expression network between HMGB3 and differentially-expressed genes in the GSE17187 database, identifying the relevant transcription factors, and the conserved domain of HMGB3 to understand the underlying regulation mechanisms involved in gastric cancer. Thirty-one relationships between 11 differentially-expressed genes were included in a co-expression network; many of these genes have been identified as related to cancer, including TBX5 and TFR2. Further analysis identified nine transcription factors, these being GATA3, MZF1, GATA1, GATA2, SRY, REL, NFYB, NFYC, and NFYA, which could interact with HMGB3 to regulate target gene expression and consequently regulate gastric cancer cell proliferation, migration and invasion. The HMG-box domain was very similar in various species, with only a few amino acid changes, indicating conserved functions in HMG-box. This information helps to provide insight into the molecular mechanisms of HMGB3 in human gastric cancer.

Wei JS, Johansson P, Chen L, et al.
Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma.
PLoS One. 2013; 8(10):e77731 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Neuroblastoma is one of the most genomically heterogeneous childhood malignances studied to date, and the molecular events that occur during the course of the disease are not fully understood. Genomic studies in neuroblastoma have showed only a few recurrent mutations and a low somatic mutation burden. However, none of these studies has examined the mutations arising during the course of disease, nor have they systemically examined the expression of mutant genes. Here we performed genomic analyses on tumors taken during a 3.5 years disease course from a neuroblastoma patient (bone marrow biopsy at diagnosis, adrenal primary tumor taken at surgical resection, and a liver metastasis at autopsy). Whole genome sequencing of the index liver metastasis identified 44 non-synonymous somatic mutations in 42 genes (0.85 mutation/MB) and a large hemizygous deletion in the ATRX gene which has been recently reported in neuroblastoma. Of these 45 somatic alterations, 15 were also detected in the primary tumor and bone marrow biopsy, while the other 30 were unique to the index tumor, indicating accumulation of de novo mutations during therapy. Furthermore, transcriptome sequencing on the 3 tumors demonstrated only 3 out of the 15 commonly mutated genes (LPAR1, GATA2, and NUFIP1) had high level of expression of the mutant alleles, suggesting potential oncogenic driver roles of these mutated genes. Among them, the druggable G-protein coupled receptor LPAR1 was highly expressed in all tumors. Cells expressing the LPAR1 R163W mutant demonstrated a significantly increased motility through elevated Rho signaling, but had no effect on growth. Therefore, this study highlights the need for multiple biopsies and sequencing during progression of a cancer and combinatorial DNA and RNA sequencing approach for systematic identification of expressed driver mutations.

West RR, Hsu AP, Holland SM, et al.
Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation.
Haematologica. 2014; 99(2):276-81 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Inherited or sporadic heterozygous mutations in the transcription factor GATA2 lead to a clinical syndrome characterized by non-tuberculous mycobacterial and other opportunistic infections, a severe deficiency in monocytes, B cells and natural killer cells, and progression from a hypocellular myelodysplastic syndrome to myeloid leukemias. To identify acquired somatic mutations associated with myeloid transformation in patients with GATA2 mutations, we sequenced the region of the ASXL1 gene previously associated with transformation from myelodysplasia to myeloid leukemia. Somatic, heterozygous ASXL1 mutations were identified in 14/48 (29%) of patients with GATA2 deficiency, including four out of five patients who developed a proliferative chronic myelomonocytic leukemia. Although patients with GATA2 mutations had a similarly high incidence of myeloid transformation when compared to previously described patients with ASXL1 mutations, GATA2 deficiency patients with acquired ASXL1 mutation were considerably younger, almost exclusively female, and had a high incidence of transformation to a proliferative chronic myelomonocytic leukemia. These patients may benefit from allogeneic hematopoietic stem cell transplantation before the development of acute myeloid leukemia or chronic myelomonocytic leukemia. ( identifier NCT00018044, NCT00404560, NCT00001467, NCT00923364.).

Mandoli A, Singh AA, Jansen PW, et al.
CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia.
Leukemia. 2014; 28(4):770-8 [PubMed] Related Publications
Different mechanisms for CBFβ-MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFβ-MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFβ-MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFβ-MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFβ-MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFβ-MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype.

Coma S, Allard-Ratick M, Akino T, et al.
GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2.
Angiogenesis. 2013; 16(4):939-52 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.

Seo WY, Jeong BC, Yu EJ, et al.
CCAR1 promotes chromatin loading of androgen receptor (AR) transcription complex by stabilizing the association between AR and GATA2.
Nucleic Acids Res. 2013; 41(18):8526-36 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Androgen receptor (AR), a ligand-dependent transcription factor, plays a critical role in prostate cancer onset and progression, and its transcriptional function is mediated largely by distinct nuclear receptor co-regulators. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1) functions as an AR co-activator. CCAR1 interacted with and enhanced the transcriptional activity of AR. Depletion of CCAR1 caused reduction in androgen-dependent expression of a subset of AR target genes. We further showed that CCAR1 is required for recruitment of AR, MED1 and RNA polymerase II to the enhancers of AR target genes and for androgen-induced long-range prostate specific antigen enhancer-promoter interaction. The molecular mechanism underlying CCAR1 function in AR-mediated transcription involves CCAR1-mediated enhanced recruitment of GATA2, a pioneer factor for AR, to AR-binding sites. CCAR1 stabilized the interaction between AR and GATA2 by interacting directly with both proteins, thereby facilitating AR and GATA2 occupancy on the enhancers. Furthermore, CCAR1 depletion inhibited the growth, migration, invasion of prostate cancer cells and reduced the tumorigenicity of prostate cancer cells in vivo. Our results firmly established CCAR1 as an AR co-activator that plays a key role in AR transcription complex assembly and has an important physiological role in androgen signaling and prostate tumorigenesis.

Grossmann V, Haferlach C, Nadarajah N, et al.
CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76·8% of cases with TET2 and GATA2 alterations impacting prognosis.
Br J Haematol. 2013; 161(5):649-58 [PubMed] Related Publications
Acute myeloid leukaemia (AML) with CEBPA mutations is listed as a provisional entity in the current World Health Organization classification. A difference in clinical outcome between single- (sm) and double-mutated (dm) cases has been reported, whereupon CEBPAdm cases were shown to be associated with better overall survival (OS). The occurrence and prognostic impact of concomitant molecular mutations in addition to CEBPAdm has not been assessed until now with exception of GATA2 mutations. Here, we investigated a cohort of 95 AML CEBPAdm cases for concomitant mutations. TET2 was found to be most frequently mutated (34·0%) gene, followed by GATA2 (21·0%), WT1 (13·7%), DNMT3A (9·6%), ASXL1 (9·5%), NRAS (8·4%), KRAS (3·2%), IDH1/2 (6·3%), FLT3-internal tandem duplication (6·3%), FLT3-tyrosine kinase domain (2·1%), NPM1 (2·1%), and RUNX1 (1/94). Patients harbouring additional mutations in the TET2 gene showed significantly worse OS than TET2 wild-type cases (P = 0·035), whereas GATA2-mutated patients showed improved OS (P = 0·032). Serial analyses were performed for 39 CEBPAdm cases with concomitant mutations. Here, we observed that CEBPA mutations present the primary pathogenetic event in the majority of cases (76·9%). Further, a distinct gene expression profile (GEP) was confirmed for CEBPAdm versus CEBPAsm or CEBPA wild-type cases while no significant changes in GEP were observed related to additional mutations within the CEBPAdm AML.

Purisch SE, Shanis D, Zerbe C, et al.
Management of uterine bleeding during hematopoietic stem cell transplantation.
Obstet Gynecol. 2013; 121(2 Pt 2 Suppl 1):424-7 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Hematopoietic stem cell transplant is an effective treatment strategy for a variety of hematologic disorders, but patients are at risk for dysfunctional coagulation and abnormal bleeding. Gynecologists are often consulted before transplant for management of abnormal uterine bleeding, which may be particularly challenging in this context.
CASE: A premenopausal woman with MonoMAC (a rare adult-onset immunodeficiency syndrome characterized by monocytopenia and Mycobacterium avium complex infections resulting from mutations in GATA2, a crucial gene in early hematopoiesis) presented with pancytopenia, evolving leukemia, and recent strokes, necessitating anticoagulation. During preparation for hematopoietic stem cell transplant, she experienced prolonged menorrhagia requiring transfusions. Surgical therapy was contraindicated, and medical management was successful only when combined with balloon tamponade.
CONCLUSION: Balloon tamponade may be a potentially life-saving adjunct to medical therapy for control of uterine hemorrhage before hematopoietic stem cell transplant.

Chen L, Jiang B, Wang Z, et al.
Expression and prognostic significance of GATA-binding protein 2 in colorectal cancer.
Med Oncol. 2013; 30(2):498 [PubMed] Related Publications
GATA-binding protein 2 (GATA2) is a nuclear transcription factor that plays a critical role in tumorigenesis. High levels of GATA2 expression are correlated with poor survival outcomes in many types of cancer. However, the expression and prognostic significance of GATA2 in colorectal cancer remain unknown. In this study, GATA2 protein expression was examined using immunohistochemistry in 307 colorectal cancer tissues, and its association with clinicopathological features and prognosis was analyzed. The expression of GATA2 was found to be significantly higher in colorectal cancer tissues than in matched adjacent noncancerous tissues (60.3 vs. 9.0 %, P < 0.0001). The expression of GATA2 was significantly correlated with tumor location (P = 0.005), histological type (P = 0.019), and recurrence (P = 0.009). Kaplan-Meier survival analysis demonstrated that patients with high levels of GATA2 expression had worse disease-free survival outcomes than those with low levels of GATA2 expression (P = 0.016). Univariate analysis showed high levels of GATA2 expression to be significantly associated with shorter periods of disease-free survival (HR 2.196; 95 % CI 1.142-4.226; P = 0.018). Multivariate analysis showed GATA2 expression to be an independent prognostic factor for patients with colorectal cancer (HR 1.952; 95 % CI 1.010-3.775; P = 0.047). These findings suggest that high levels of GATA2 expression may be a useful indicator of disease recurrence after curative colorectal cancer treatment.

Diffner E, Beck D, Gudgin E, et al.
Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia.
Blood. 2013; 121(12):2289-300 [PubMed] Related Publications
Aberrant transcriptional programs in combination with abnormal proliferative signaling drive leukemic transformation. These programs operate in normal hematopoiesis where they are involved in hematopoietic stem cell (HSC) proliferation and maintenance. Ets Related Gene (ERG) is a component of normal and leukemic stem cell signatures and high ERG expression is a risk factor for poor prognosis in acute myeloid leukemia (AML). However, mechanisms that underlie ERG expression in AML and how its expression relates to leukemic stemness are unknown. We report that ERG expression in AML is associated with activity of the ERG promoters and +85 stem cell enhancer and a heptad of transcription factors that combinatorially regulate genes in HSCs. Gene expression signatures derived from ERG promoter-stem cell enhancer and heptad activity are associated with clinical outcome when ERG expression alone fails. We also show that the heptad signature is associated with AMLs that lack somatic mutations in NPM1 and confers an adverse prognosis when associated with FLT3 mutations. Taken together, these results suggest that transcriptional regulators cooperate to establish or maintain primitive stem cell-like signatures in leukemic cells and that the underlying pattern of somatic mutations contributes to the development of these signatures and modulate their influence on clinical outcome.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GATA2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999