FOXM1; forkhead box M1 (12p13)

Gene Summary

Gene:FOXM1; forkhead box M1
Aliases: MPP2, TGT3, HFH11, HNF-3, INS-1, MPP-2, PIG29, FKHL16, FOXM1B, HFH-11, TRIDENT, MPHOSPH2
Summary:The protein encoded by this gene is a transcriptional activator involved in cell proliferation. The encoded protein is phosphorylated in M phase and regulates the expression of several cell cycle genes, such as cyclin B1 and cyclin D1. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:forkhead box protein M1
Updated:14 December, 2014


What does this gene/protein do?
Show (40)

Cancer Overview

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Notable (5)

Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Liver CancerFOXM1 and Liver Cancer View Publications30
Breast CancerFOXM1 and Breast Cancer View Publications28
Lung CancerFOXM1 and Lung Cancer View Publications26
Cervical CancerFOXM1 and Cervical Cancer View Publications7
Ewing's SarcomaFOXM1 upregulation by EWSR1/FLI1 in Ewing's Sarcoma
Christensen et al (2013) reported that FOXM1 is expressed in Ewing primary tumors and cell lines. They found that reduced FOXM1 expression in Ewing's cell lines resulted in reduced potential for anchorage independent growth. FOXM1 expression was enhanced by the EWS/FLI1 fusion protein and the authors suggest that FOXM1 and may prove to be a useful therapeutic target in Ewing's tumors.
View Publications2

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Related Links

Latest Publications: FOXM1 (cancer-related)

Li XR, Chu HJ, Lv T, et al.
miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer.
FEBS Lett. 2014; 588(17):3298-307 [PubMed] Related Publications
FOXM1 is a well-established oncogenic factor that has been reported to be involved in multiple biological processes including cell proliferation, growth, angiogenesis, migration and invasion. It can also be regulated by miRNAs. In this study, we reported that FOXM1 is directly targeted by miR-342-3p, which is down-regulated along with its host gene, EVL, in human cervical cancer tissues compared to the adjacent normal tissues. Functional studies suggested that the overexpression of miR-342-3p inhibits cell proliferation, migration and invasion in cervical cell lines. FOXM1 is upregulated and negatively correlates with miR-342-3p in cervical cancer tissues, and the overexpression of FOXM1 rescues the phenotype changes induced by the overexpression of miR-342-3p.

Related: Cervical Cancer

Kido T, Lo RC, Li Y, et al.
The potential contributions of a Y-located protooncogene and its X homologue in sexual dimorphisms in hepatocellular carcinoma.
Hum Pathol. 2014; 45(9):1847-58 [PubMed] Related Publications
There is a significant sex disparity favoring males among hepatocellular carcinoma (HCC) patients. Although various risk factors have been identified, the exact etiology of such sexual dimorphism(s) in HCC is uncertain. Previous studies showed that overexpression of the Y-located protooncogene, testis-specific protein Y encoded (TSPY), promotes cell proliferation and oncogenesis whereas its X-located homologue, TSPYhomologue X (TSPX), retards cell cycle and oncogenic progression. Furthermore, TSPX promotes proteasomal degradation of hepatitis B virus-encoded X oncoprotein and hence could serve as a tumor suppressor in virus-associated HCC. Using immunohistochemistry and reverse-transcription polymerase chain reaction analysis, we had examined the expression of TSPY and TSPX with reference to other established biomarkers in HCC and related liver cancers. Our results demonstrated that 55 (19.2%) of 287 male cases were TSPY positive in immunohistochemistry of tissue arrays, and 15 (46.9%) of 32 male cases were TSPY positive in reverse-transcription polymerase chain reaction analysis of clinical samples. TSPY expression was closely associated with the expression of HCC biomarkers, such as glypican 3. In contrast, TSPX expression was down-regulated in 54.5% of total tumor/nontumorous paired samples (18/33) and negatively associated with those of TSPY, glypican 3, and forkhead box M1 (FOXM1) and was positively associated with that of a tumor suppressor, insulin-like growth factor binding protein 3. The present findings support the hypothesis that the oncogenic events leading to an ectopic activation of the Y-located protooncogene TSPY and/or inactivating mutation/epigenetic silencing of the X-located tumor suppressor gene TSPX could collectively contribute to the sexual dimorphism(s) in HCC and related liver cancers in male-biased manners.

Related: Liver Cancer GPC3

Inoguchi S, Seki N, Chiyomaru T, et al.
Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer.
FEBS Lett. 2014; 588(17):3170-9 [PubMed] Related Publications
Here, we found that microRNA-24-1 (miR-24-1) is significantly reduced in bladder cancer (BC) tissues, suggesting that it functions as a tumour suppressor. Restoration of mature miR-24-1 inhibits cancer cell proliferation and induces apoptosis. Forkhead box protein M1 (FOXM1) is a direct target gene of miR-24-1, as shown by genome-wide gene expression analysis and luciferase reporter assay. Overexpressed FOXM1 is confirmed in BC clinical specimens, and silencing of FOXM1 induces apoptosis in cancer cell lines. Our data demonstrate that the miR-24-1-FOXM1 axis contributes to cancer cell proliferation in BC, and elucidation of downstream signalling will provide new insights into the molecular mechanisms of BC oncogenesis.

Related: Bladder Cancer Bladder Cancer - Molecular Biology

Loddo M, Andryszkiewicz J, Rodriguez-Acebes S, et al.
Pregnancy-associated plasma protein A regulates mitosis and is epigenetically silenced in breast cancer.
J Pathol. 2014; 233(4):344-56 [PubMed] Related Publications
Aberrant mitosis is a common feature of cancer, yet little is known about the altered genes causing mitotic defects. We screened human tumours for cells with morphological signatures of highly specific mitotic defects previously assigned to candidate genes in a genome-wide RNA interference screen carried out in HeLa cells (www.mitocheck.org). We discovered a striking enrichment of early mitotic configurations indicative of prophase/prometaphase delay in breast cancer. Promoter methylation analysis of MitoCheck candidate genes assigned to the corresponding 'mitotic delay' class linked this defect to epigenetic silencing of the gene encoding pregnancy-associated plasma protein-A (PAPPA), a secreted protease. PAPPA silencing was highly prevalent in precursor lesions and invasive breast cancer. Experimental manipulation of PAPPA protein levels in human mammary epithelial cells and in breast cancer cell lines demonstrates that progression through early mitosis is dependent on PAPPA function, and that breast cancer cells become more invasive after down-regulation of this protease. PAPPA regulates mitotic progression through modulating the IGF-1 signalling pathway resulting in activation of the forkhead transcription factor FoxM1, which drives a transcriptional cluster of essential mitotic genes. Our results show that PAPPA has a critical function in normal cell division and is targeted early in breast cancer development.

Related: Breast Cancer IGF1 Signal Transduction

Li L, Li Z, Kong X, et al.
Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and β-catenin signaling in pancreatic ductal adenocarcinoma cells.
Gastroenterology. 2014; 147(2):485-97.e18 [PubMed] Related Publications
BACKGROUND & AIMS: Dysregulation of β-catenin and the transcriptional activator FOXM1 mediate oncogenesis, but it is not clear how these proteins become dysregulated in tumors that do not typically carry mutations in adenomatous polyposis coli (APC) or β-catenin, such as pancreatic ductal adenocarcinomas (PDACs). We searched for microRNAs that regulate levels of FOXM1 in PDAC cells and samples from patients.
METHODS: We identified microRNAs that affect levels of FOXM1 in PDACs using bioinformatic, genetic, and pharmacologic approaches. We altered expression of the microRNA-494 (miR-494) in PDAC cell lines (AsPC-1 and PANC-1) and examined the effects on FOXM1 and β-catenin signaling and cell proliferation and colony formation. The cells were injected into immunocompromised mice and growth of xenograft tumors and liver metastases were measured. We performed immunohistochemical analyses of 10 paired PDAC and nontumor pancreatic tissue samples collected from untreated patients during surgery.
RESULTS: We identified miR-494 as a negative regulator of FOXM1 levels in PDAC cells, and found that levels of this microRNA were reduced in PDAC specimens, compared with nontumor tissues. Loss of response of PDAC cells to transforming growth factor β, owing to SMAD4 deficiency, reduced expression of miR-494. Transgenic expression of miR-494 in PDAC cells produced the same effects as reducing expression of FOXM1 or blocking nuclear translocation of β-catenin, reducing cell proliferation, migration, and invasion, and increasing their sensitivity to gemcitabine. Reduced expression of miR-494 correlated with PDAC metastasis and reduced survival times of patients.
CONCLUSIONS: Loss of SMAD4 in PDAC cells leads to reduced levels of miR-494, increased levels of FOXM1, and nuclear localization of β-catenin. miR-494 might be developed as a prognostic marker for patients with PDAC or a therapeutic target.

Related: Cancer of the Pancreas Pancreatic Cancer Signal Transduction MADH4 CTNNB1 gene Gemcitabine

Aytes A, Mitrofanova A, Lefebvre C, et al.
Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy.
Cancer Cell. 2014; 25(5):638-51 [PubMed] Article available free on PMC after 12/05/2015 Related Publications
To identify regulatory drivers of prostate cancer malignancy, we have assembled genome-wide regulatory networks (interactomes) for human and mouse prostate cancer from expression profiles of human tumors and of genetically engineered mouse models, respectively. Cross-species computational analysis of these interactomes has identified FOXM1 and CENPF as synergistic master regulators of prostate cancer malignancy. Experimental validation shows that FOXM1 and CENPF function synergistically to promote tumor growth by coordinated regulation of target gene expression and activation of key signaling pathways associated with prostate cancer malignancy. Furthermore, co-expression of FOXM1 and CENPF is a robust prognostic indicator of poor survival and metastasis. Thus, genome-wide cross-species interrogation of regulatory networks represents a valuable strategy to identify causal mechanisms of human cancer.

Related: Prostate Cancer Signal Transduction

Li Z, Ying X, Chen H, et al.
MicroRNA-194 inhibits the epithelial-mesenchymal transition in gastric cancer cells by targeting FoxM1.
Dig Dis Sci. 2014; 59(9):2145-52 [PubMed] Related Publications
AIM: We hypothesized that miR-194 may control Forkhead box protein M1 (FoxM1) expression in gastric cancer cells and therefore may have therapeutic potential in gastric cancer.
METHODS: The expression level of miR-194 was examined using real-time PCR in human gastric cancer and noncancerous gastric tissues, gastric cancer cell and normal gastric mucosal epithelial cell. We examined whether the miR-194 regulates cell migration and invasion, and the epithelial-mesenchymal transition Phenotype by inhibiting FoxM1 in gastric cancer cells.
RESULTS: The expression of miR-194 was significantly lower in gastric cancer compared with non-cancerous gastric tissues and cells. Exogenous expression of miR-194 inhibited cell migration, invasion, and the epithelial-mesenchymal transition phenotype in gastric cancer cells. Moreover, we discovered a novel post-transcriptional regulatory mechanism of FoxM1 expression that is mediated by miR-194.
CONCLUSION: Our study clearly demonstrates that miR-194 inhibits the acquisition of the EMT phenotype in gastric cancer cells by downregulating FoxM1, thereby inhibiting cell migration and invasion during cancer progression.

Related: Stomach Cancer Gastric Cancer

Miao L, Xiong X, Lin Y, et al.
Down-regulation of FoxM1 leads to the inhibition of the epithelial-mesenchymal transition in gastric cancer cells.
Cancer Genet. 2014; 207(3):75-82 [PubMed] Related Publications
Emerging evidence suggests that FoxM1 may have a crucial role in the development and progression of human gastric cancer. Therefore, we sought to determine the role of FoxM1 in gastric cancer epithelial-mesenchymal transition (EMT). The down-regulation of FoxM1 expression by the transfection of cells with FoxM1 siRNA decreased cell migration, invasion, and proliferation. Moreover, the over-expression of FoxM1 promoted cell migration, invasion, and proliferation, which led to the acquisition of an EMT phenotype by up-regulating the protein expression of the mesenchymal cell markers ZEB1, ZEB2, and vimentin and by down-regulating the epithelial cell marker E-cadherin in gastric epithelial cells. More important, the depletion of FoxM1 levels in gastric cancer cells led to significant decreases in the NF-κB p65 subunit, cyclin D1, Hes-1, VEGF, and EpCAM protein levels. Real-time PCR examination showed that the down-regulation of FoxM1 expression significantly inhibited vimentin and N-cadherin expression compared to that in control cells. Most important, cells transfected with FoxM1 siRNA displayed an elongated/irregular fibroblastoid morphology and reduction of the vimentin expression. Our current study strongly suggests that FoxM1 signaling has important roles in tumor cell aggressiveness through the acquisition of the EMT phenotype in gastric cancer cells.

Related: Stomach Cancer Gastric Cancer

Liu G, Sun Y, Ji P, et al.
MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer.
J Pathol. 2014; 233(3):308-18 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Ovarian carcinoma is the most lethal gynaecological malignancy. Better understanding of the molecular pathogenesis of this disease and effective targeted therapies are needed to improve patient outcomes. MicroRNAs play important roles in cancer progression and have the potential for use as either therapeutic agents or targets. Studies in other cancers have suggested that miR-506 has anti-tumour activity, but its function has yet to be elucidated. We found that deregulation of miR-506 in ovarian carcinoma promotes an aggressive phenotype. Ectopic over-expression of miR-506 in ovarian cancer cells was sufficient to inhibit proliferation and to promote senescence. We also demonstrated that CDK4 and CDK6 are direct targets of miR-506, and that miR-506 can inhibit CDK4/6-FOXM1 signalling, which is activated in the majority of serous ovarian carcinomas. This newly recognized miR-506-CDK4/6-FOXM1 axis provides further insight into the pathogenesis of ovarian carcinoma and identifies a potential novel therapeutic agent.

Related: CDK4 CDK6 gene Ovarian Cancer Signal Transduction

Liu Y, Gong Z, Sun L, Li X
FOXM1 and androgen receptor co-regulate CDC6 gene transcription and DNA replication in prostate cancer cells.
Biochim Biophys Acta. 2014; 1839(4):297-305 [PubMed] Related Publications
CDC6 is a key component of the DNA replication initiation machinery, and its transcription is regulated by E2F or androgen receptor (AR) alone or in combination in prostate cancer (PCa) cells. Through both overexpression and knockdown approaches, we found that in addition to its effects on the E2F pathway, the cell proliferation specific transcription factor FOXM1 stimulated CDC6 transcription in cooperation with AR. We have identified a forkhead box motif in the CDC6 proximal promoter that is occupied by FOXM1 and is sufficient to drive FOXM1-regulated transcription. Indirectly, FOXM1 elevated AR protein levels and AR dependent transcription. Furthermore, FOXM1 and AR proteins physically interact. Using synchronized cultures, we observed that CDC6 expression is elevated near S phase of the cell cycle, at a time coinciding with elevated FOXM1 and AR expression and CDC6 promoter occupancy by both AR and FOXM1 proteins. Androgen increased the binding of AR protein to CDC6 promoter, and AR and FOXM1 knockdown decreased AR binding. These results provided new evidence for the regulatory mechanism of aberrant CDC6 oncogene transcription by FOXM1 and AR, two highly expressed transcription factors in PCa cells. Functionally, the cooperation of FOXM1 and AR accelerated DNA synthesis and cell proliferation by affecting CDC6 gene expression. Furthermore, siomycin A, a proteasome inhibitor known to inhibit FOXM1 expression and activity, inhibited PCa cell proliferation and its effect was additive to that of bicalutamide, an antiandrogen commonly used to treat PCa patients.

Related: Prostate Cancer

Liu LL, Zhang DH, Mao X, et al.
Over-expression of FoxM1 is associated with adverse prognosis and FLT3-ITD in acute myeloid leukemia.
Biochem Biophys Res Commun. 2014; 446(1):280-5 [PubMed] Related Publications
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4-11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4-11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4-11 and THP1 cells. TST induced the apoptosis of MV4-11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.

Related: Apoptosis Acute Myeloid Leukemia (AML) FLT3 gene

Wang S, Zhang S, Li J, et al.
CXCL12-induced upregulation of FOXM1 expression promotes human glioblastoma cell invasion.
Biochem Biophys Res Commun. 2014; 447(1):1-6 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor; it is highly aggressive and is associated with a poor prognosis. Binding of the chemokine CXCL12 to its receptors (CXCR4 and CXCR7) contributes to the activation of many downstream signaling pathways and promotes the invasion of various malignant tumor cells, including GBM cells. FOXM1, a transcription factor involved in cell cycle regulation, is overexpressed in GBM and is involved in GBM progression. However, the molecular mechanisms by which CXCL12 promotes the invasion of human GBM cells remain unclear. In this study, we demonstrate that CXCL12 increases the production of FOXM1 by binding to CXCR4 in GBM cell lines. Furthermore, pretreatment with an inhibitor of the PI3K/AKT pathway abrogated the CXCL12-induced expression of FOXM1. In addition, there was a positive correlation between CXCL12/CXCR4 expression and FOXM1 expression in human malignant glioma tissues. Finally, a functional assay revealed that CXCL12 does not stimulate GBM cell invasion when FOXM1 expression is silenced using a small interfering RNA (siRNA). Collectively, these findings suggest that CXCL12 promotes GBM cell invasion in part by increasing the expression of FOXM1, which is mediated in part by a PI3K/AKT-dependent mechanism in vitro.

Related: AKT1 Signal Transduction

Zhu S, Wang Z, Zhang Z, et al.
PTPLAD2 is a tumor suppressor in esophageal squamous cell carcinogenesis.
FEBS Lett. 2014; 588(6):981-9 [PubMed] Related Publications
Esophageal squamous cell carcinomas (ESCCs) are highly invasive and have poor prognoses. We investigated the role of PTPLAD2, a protein tyrosine phosphatase-like A domain (PTPLAD) family member, in ESCC carcinogenesis. Survival analysis was performed using patient data. ESCC tissue samples lost PTPLAD2 heterozygosity and had decreased PTPLAD2 expression. Low PTPLAD2 expression and high p-STAT3 correlated with poor prognosis. Overexpression of PTPLAD2 in ESCC cells reduced STAT3 phosphorylation, decreased FoxM1, inhibited proliferation and decreased in mouse xenograft tumor formation. Therefore, PTPLAD2 is a potential tumor suppressor and prognostic indicator that reduces STAT3 phosphorylation. PTPLAD2 is a possible clinical target for ESCC treatment.

Related: Cancer of the Esophagus Esophageal Cancer

Salhia B, Kiefer J, Ross JT, et al.
Integrated genomic and epigenomic analysis of breast cancer brain metastasis.
PLoS One. 2014; 9(1):e85448 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.

Related: Breast Cancer

Huang C, Du J, Xie K
FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis.
Biochim Biophys Acta. 2014; 1845(2):104-16 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Pancreatic cancer is a devastating disease with an overall 5-year survival rate less than 5%. Multiple signaling pathways are implicated in the pathogenesis of pancreatic cancer, such as Wnt/β-catenin, Notch, Hedgehog, hypoxia-inducible factor, signal transducer and activator of transcription, specificity proteins/Krüppel-like factors, and Forkhead box (FOX). Recently, increasing evidence has demonstrated that the transcription factor FOXM1 plays important roles in the initiation, progression, and metastasis of a variety of human tumors, including pancreatic cancer. In this review, we focus on the current understanding of the molecular pathogenesis of pancreatic cancer with a special focus on the function and regulation of FOXM1 and rationale for FOXM1 as a novel molecular target for pancreatic cancer prevention and treatment.

Related: Cancer of the Pancreas Pancreatic Cancer Signal Transduction

Xue J, Lin X, Chiu WT, et al.
Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis.
J Clin Invest. 2014; 124(2):564-79 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
A key feature of TGF-β signaling activation in cancer cells is the sustained activation of SMAD complexes in the nucleus; however, the drivers of SMAD activation are poorly defined. Here, using human and mouse breast cancer cell lines, we found that oncogene forkhead box M1 (FOXM1) interacts with SMAD3 to sustain activation of the SMAD3/SMAD4 complex in the nucleus. FOXM1 prevented the E3 ubiquitin-protein ligase transcriptional intermediary factor 1 γ (TIF1γ) from binding SMAD3 and monoubiquitinating SMAD4, which stabilized the SMAD3/SMAD4 complex. Loss of FOXM1 abolished TGF-β-induced SMAD3/SMAD4 formation. Moreover, the interaction of FOXM1 and SMAD3 promoted TGF-β/SMAD3-mediated transcriptional activity and target gene expression. We found that FOXM1/SMAD3 interaction was required for TGF-β-induced breast cancer invasion, which was the result of SMAD3/SMAD4-dependent upregulation of the transcription factor SLUG. Importantly, the function of FOXM1 in TGF-β-induced invasion was not dependent on FOXM1's transcriptional activity. Knockdown of SMAD3 diminished FOXM1-induced metastasis. Furthermore, FOXM1 levels correlated with activated TGF-β signaling and metastasis in human breast cancer specimens. Together, our data indicate that FOXM1 promotes breast cancer metastasis by increasing nuclear retention of SMAD3 and identify crosstalk between FOXM1 and TGF-β/SMAD3 pathways. This study highlights the critical interaction of FOXM1 and SMAD3 for controlling TGF-β signaling during metastasis.

Related: Signal Transduction SMAD3 MADH4 TRIM33 gene

Tian T, Li J, Li B, et al.
Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells.
Tumour Biol. 2014; 35(5):4137-45 [PubMed] Related Publications
Genistein, a major isoflavone constituent in soybeans, has been reported to exhibit multiple anti-tumor effects, such as inducing cell cycle arrest, triggering apoptosis, and inactivating critical signaling pathways in a few human cancer cells. Here, we investigated the anti-tumor effects of genistein on the small-cell lung cancer (SCLC) cell line H446 and the underlying molecular mechanisms. H446 cells were treated with various concentrations of genistein, and experiments including CCK-8 assay, colony formation assay, flow cytometry analysis, wound healing assay, real-time polymerase chain reaction (PCR), western blot analysis, and plasmid transfection were used to investigate the influence of genistein on cell proliferation, migration ability, apoptosis, cell cycle progression, as well as the mRNA and protein alterations of FoxM1 pathway molecules. We found that genistein significantly inhibited the proliferation and migration ability of H446 cell, accompanied by apoptosis and G2/M phase cell cycle arrest. In addition, genistein enhanced the anti-proliferative effect of cisplatin on H446 cells. Importantly, genistein led to attenuation of the FoxM1 protein and down-regulated a series of FoxM1 target genes regulating cell cycle and apoptosis including Cdc25B, cyclin B1, and survivin. In addition, up-regulation of FoxM1 by cDNA transfection prior to genistein treatment could reduce genistein-induced H446 proliferation inhibition. Thus, for the first time, we demonstrated that genistein exerted multiple anti-tumor effects in H446 SCLC cell line at least partly mediated by the down-regulation of FoxM1. FoxM1 has the potential as a novel therapeutic agent in SCLC and is worthy of further study.

Related: Cisplatin Lung Cancer Small Cell Lung Cancer

Parikh N, Hilsenbeck S, Creighton CJ, et al.
Effects of TP53 mutational status on gene expression patterns across 10 human cancer types.
J Pathol. 2014; 232(5):522-33 [PubMed] Related Publications
Mutations in the TP53 tumour suppressor gene occur in half of all human cancers, indicating its critical importance in inhibiting cancer development. Despite extensive studies, the mechanisms by which mutant p53 enhances tumour progression remain only partially understood. Here, using data from the Cancer Genome Atlas (TCGA), genomic and transcriptomic analyses were performed on 2256 tumours from 10 human cancer types. We show that tumours with TP53 mutations have altered gene expression profiles compared to tumours retaining two wild-type TP53 alleles. Among 113 known p53-up-regulated target genes identified from cell culture assays, 10 were consistently up-regulated in at least eight of 10 cancer types that retain both copies of wild-type TP53. RPS27L, CDKN1A (p21(CIP1)) and ZMAT3 were significantly up-regulated in all 10 cancer types retaining wild-type TP53. Using this p53-based expression analysis as a discovery tool, we used cell-based assays to identify five novel p53 target genes from genes consistently up-regulated in wild-type p53 cancers. Global gene expression analyses revealed that cell cycle regulatory genes and transcription factors E2F1, MYBL2 and FOXM1 were disproportionately up-regulated in many TP53 mutant cancer types. Finally, > 93% of tumours with a TP53 mutation exhibited greatly reduced wild-type p53 messenger expression, due to loss of heterozygosity or copy neutral loss of heterozygosity, supporting the concept of p53 as a recessive tumour suppressor. The data indicate that tumours with wild-type TP53 retain some aspects of p53-mediated growth inhibitory signalling through activation of p53 target genes and suppression of cell cycle regulatory genes.

Related: Cancer Prevention and Risk Reduction Signal Transduction TP53

Rotblat B, Grunewald TG, Leprivier G, et al.
Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers.
Oncotarget. 2013; 4(12):2577-90 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.

Related: Cancer Prevention and Risk Reduction

Quan M, Wang P, Cui J, et al.
The roles of FOXM1 in pancreatic stem cells and carcinogenesis.
Mol Cancer. 2013; 12:159 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.

Related: Signal Transduction

Radovich M, Clare SE, Atale R, et al.
Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.
Breast Cancer Res Treat. 2014; 143(1):57-68 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

Geng S, Wang X, Xu X, et al.
Steroid receptor co-activator-3 promotes osteosarcoma progression through up-regulation of FoxM1.
Tumour Biol. 2014; 35(4):3087-94 [PubMed] Related Publications
Increasing evidence suggests that the three homologous members of steroid receptor co-activator (SRC) family (SRC-1, SRC-2, and SRC-3) play key roles in enhancing cell proliferation in various human cancers, such as breast, prostate, and hepatocellular carcinoma. However, the function of SRC-3 in osteosarcoma remains largely unexplored. In the current study, we found that SRC-3, but not SRC-1 and SRC-2, was dramatically up-regulated in human osteosarcoma tissues, compared with adjacent normal tissues. To explore the functions of SRC-3 in osteosarcoma, in vitro studies were performed in MG63 and U2OS cells. SRC-3 overexpression promoted osteosarcoma cell proliferation, whereas knockdown of SRC-3 inhibits its proliferation. In support of these findings, we further demonstrated that SRC-3 up-regulated FoxM1 expression through co-activation of C/EBPγ. Together our results show that SRC-3 drives osteosarcoma progression and imply it as a therapeutic target to abrogate osteosarcoma.

Related: Bone Cancers Osteosarcoma

Qian J, Luo Y, Gu X, et al.
Twist1 promotes gastric cancer cell proliferation through up-regulation of FoxM1.
PLoS One. 2013; 8(10):e77625 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
Twist-related protein 1 (Twist1), also known as class A basic helix-loop-helix protein 38 (bHLHa38), has been implicated in cell lineage determination and differentiation. Previous studies demonstrate that Twist1 expression is up-regulated in gastric cancer with poor clinical outcomes. Besides, Twist1 is suggested to be involved in progression of human gastric cancer. However, its biological functions remain largely unexplored. In the present study, we show that Twist 1 overexpression leads to a significant up-regulation of FoxM1, which plays a key role in cell cycle progression in gastric cancer cells. In contrast, knockdown of Twist 1 reduces FoxM1 expression, suggesting that FoxM1 might be a direct transcriptional target of Twist 1. At the molecular level, we further reveal that Twist 1 could bind to the promoter region of FoxM1, and subsequently recruit p300 to induce FoxM1 mRNA transcription. Therefore, our results uncover a previous unknown Twist 1/FoxM1 regulatory pathway, which may help to understand the mechanisms of gastric cancer proliferation.

Related: Stomach Cancer Gastric Cancer TWIST1

DeCaprio JA
Human papillomavirus type 16 E7 perturbs DREAM to promote cellular proliferation and mitotic gene expression.
Oncogene. 2014; 33(31):4036-8 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
The study of the small DNA tumor viruses continues to provide valuable new insights into oncogenesis and fundamental biological processes. Although much has already been revealed about how the human papillomaviruses (HPVs) can transform cells and contribute to cervical and oropharyngeal cancer, there clearly is much more to learn. In this issue of Oncogene, Pang et al., doi:10.1038/onc.2013.426, demonstrate that the high-risk HPV16 E7 oncogene can promote cellular proliferation by interacting with the DREAM (DP, RB-like, E2F and MuvB) complex at two distinct phases of the cell cycle. Consistent with earlier work, HPV16 E7 can bind to the retinoblastoma tumor suppressor (RB) family member p130 (RBL2) protein and promote its proteasome-mediated destruction thereby disrupting the DREAM complex and can prevent exit from the cell cycle into quiescence. In addition, they demonstrate that HPV16 E7 can bind to MuvB core complex in association with BMYB and FOXM1 and activate gene expression during the G2 and M phase of the cell cycle. Thus, HPV16 E7 acts to prevent exit from the cell cycle entry and promotes mitotic proliferation and may account for the high levels of FOXM1 often observed in poor-risk cervical cancers.

Related: Cervical Cancer MYBL2 v-myb avian myeloblastosis viral oncogene homolog-like 2

Du WZ, Feng Y, Wang XF, et al.
Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI1 signaling pathway in vitro and vivo.
CNS Neurosci Ther. 2013; 19(12):926-36 [PubMed] Related Publications
AIMS: To study the role of curcumin on glioma cells via the SHH/GLI1 pathway in vitro and vivo.
METHODS: The effects of curcumin on proliferation, migration, apoptosis, SHH/GLI1 signaling, and GLI1 target genes expression were evaluated in multiple glioma cell lines in vitro. A U87-implanted nude mice model was used to study the role of curcumin on tumor volume and the suppression efficacy of GLI1.
RESULTS: Curcumin showed cytotoxic effects on glioma cell lines in vitro. Both mRNA and protein levels of SHH/GLI1 signaling (Shh, Smo, GLI1) were downregulated in a dose- and time-dependent manner. Several GLI1-dependent target genes (CyclinD1, Bcl-2, Foxm1) were also downregulated. Curcumin treatment prevented GLI1 translocating into the cell nucleus and reduced the concentration of its reporter. Curcumin suppressed cell proliferation, colony formation, migration, and induced apoptosis which was mediated partly through the mitochondrial pathway after an increase in the ratio of Bax to Bcl2. Intraperitoneal injection of curcumin in vivo reduced tumor volume, GLI1 expression, the number of positively stained cells, and prolonged the survival period compared with the control group.
CONCLUSION: This study shows that curcumin holds a great promise for SHH/GLI1 targeted therapy against gliomas.

Related: Apoptosis Signal Transduction GLI

Pang CL, Toh SY, He P, et al.
A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c).
Oncogene. 2014; 33(31):4039-49 [PubMed] Related Publications
High-risk human papillomaviruses are causative agents of cervical cancer. Viral protein E7 is required to establish and maintain the pro-oncogenic phenotype in infected cells, but the molecular mechanisms by which E7 promotes carcinogenesis are only partially understood. Our transcriptome analyses in primary human fibroblasts transduced with the viral protein revealed that E7 activates a group of mitotic genes via the activator B-Myb-MuvB complex. We show that E7 interacts with the B-Myb, FoxM1 and LIN9 components of this activator complex, leading to cooperative transcriptional activation of mitotic genes in primary cells and E7 recruitment to the corresponding promoters. E7 interaction with LIN9 and FoxM1 depended on the LXCXE motif, which is also required for pocket protein interaction and degradation. Using E7 mutants for the degradation of pocket proteins but intact for the LXCXE motif, we demonstrate that E7 functional interaction with the B-Myb-MuvB complex and pocket protein degradation are two discrete functions of the viral protein that cooperate to promote acute transcriptional activation of mitotic genes. Transcriptional level of E7 in patient's cervical lesions at different stages of progression was shown to correlate with those of B-Myb and FoxM1 as well as other mitotic gene transcripts, thereby linking E7 with cellular proliferation and progression in cervical cancer in vivo. E7 thus can directly activate the transcriptional levels of cell cycle genes independently of pocket protein stability.

Related: Cervical Cancer MYBL2 v-myb avian myeloblastosis viral oncogene homolog-like 2

Tompkins VS, Han SS, Olivier A, et al.
Identification of candidate B-lymphoma genes by cross-species gene expression profiling.
PLoS One. 2013; 8(10):e76889 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.

Hwang S, Mahadevan S, Qadir F, et al.
Identification of FOXM1-induced epigenetic markers for head and neck squamous cell carcinomas.
Cancer. 2013; 119(24):4249-58 [PubMed] Related Publications
BACKGROUND: Epigenetic reprogramming of the methylome has been implicated in all stages of cancer evolution. It is now well accepted that cancer cells exploit epigenetic reprogramming, a mechanism that regulates stem/progenitor cell renewal and differentiation, to promote cancer initiation and progression. The oncogene FOXM1 has been implicated in all major forms of human cancer.
METHODS: We have recently shown that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a number of FOXM1-induced epigenetic markers. Differential promoter methylation and gene expression in clinical specimens were measured using commercially available bisulfite conversion kits and absolute quantitative PCR, respectively.
RESULTS: Here, we investigated 8 FOXM1-induced differentially methylated genes, SPCS1, FLNA, CHPF, GLT8D1, C6orf136, MGAT1, NDUFA10, and PAFAH1B3, using human head and neck tissue specimens donated by 2 geographically independent patient cohorts from Norway and the United Kingdom. Two genes (GLT8D1 and C6orf136) were found to be differentially expressed in head and neck squamous cell carcinomas (HNSCCs). Using methylation-specific quantitative PCR, we confirmed that the promoters of GLT8D1 and C6orf136 were hypo- and hypermethylated, respectively, in HNSCC tissues.
CONCLUSIONS: Given that epigenetic change precedes gene expression, methylation status of candidate genes identified from this study may represent a signature of premalignancy, rendering them potentially useful predictive biomarkers for precancer screening and/or therapeutic targets for cancer prevention.

Related: Head and Neck Cancers Head and Neck Cancers - Molecular Biology

Yungang W, Xiaoyu L, Pang T, et al.
miR-370 targeted FoxM1 functions as a tumor suppressor in laryngeal squamous cell carcinoma (LSCC).
Biomed Pharmacother. 2014; 68(2):149-54 [PubMed] Related Publications
microRNAs, a family of small non-coding RNAs, involve in the pathogenesis of several types of cancers, including laryngeal squamous cell carcinoma (LSCC). MiR-370 is frequently aberrant expressed in various types of human cancer including LSCC. However, the role for miR-370 in LSCC remains elusive. Here, we demonstrate that miR-370 was down-regulated in human LSCC tissues. Furthermore, there was an inverse relationship between Forkhead Box ml (FoxM1), which was up-regulated and miR-370 expression in LSCC tissues. FoxM1 was subsequently predicted by bioinformatics and verified to be a target of miR-370 by Luciferase reporter assay. Restored expression of miR-370 in Hep2 cells significantly inhibited cell proliferation. In conclusion, our results suggest that miR-370 may function as a tumor suppressor in LSCC through downregulation of FoxM1, suggesting that miR-370 could serve as a novel potential maker for LSCC therapy.

Related: Cancer of the Larynx Laryngeal Cancer - Molecular Biology

Li X, Qiu W, Liu B, et al.
Forkhead box transcription factor 1 expression in gastric cancer: FOXM1 is a poor prognostic factor and mediates resistance to docetaxel.
J Transl Med. 2013; 11:204 [PubMed] Article available free on PMC after 01/01/2015 Related Publications
BACKGROUND: Forkhead box transcription factor 1 (FOXM1) has been reported to overexpress and correlate with pathogenesis in a variety of human malignancies. However, little research has been done to investigate its clinical significance in gastric cancer.
METHODS: We examined the expression of FOXM1 in 103 postoperational gastric cancer tissues and 5 gastric cell lines by immunohistochemistry and western blot analysis respectively. Data on clinic-pathological features and relevant prognostic factors in these patients were then analyzed. Moreover, the association of FOXM1 expression and chemosensitivity to docetaxel in gastric cancer cells was further explored.
RESULTS: Our study demonstrated that the level of FOXM1 expression was significantly higher in gastric cancer than in para-cancer tissues (P < 0.001) and normal gastric cell lines (P = 0.026). No significant association was found between FOXM1 expression and any clinical pathological features (P > 0.1). FOXM1 amplification was identified as an independent prognostic factor in gastric cancer (P = 0.001), and its affection is more significant in patients with tumor size larger than 5 cm (P = 0.004), pT3-4 (P = 0.003) or pIII-IV (P = 0.001). Additionally, shown to mediate docetaxel resistance in gastric cancers by our research, FOXM1 was revealed to alter microtubule dynamics in response to the treatment of docetaxel, and the drug resistance could be reversed with FOXM1 inhibitor thiostrepton treatment.
CONCLUSIONS: FOXM1 can be a useful marker for predicting patients' prognosis and monitoring docetaxel response, and might be a new therapeutic target in docetaxel resistant gastric cancer.

Related: Apoptosis Stomach Cancer Gastric Cancer Docetaxel


Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FOXM1, Cancer Genetics Web: http://www.cancerindex.org/geneweb/FOXM1.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999