Gene Summary

Gene:HDAC3; histone deacetylase 3
Aliases: HD3, RPD3, RPD3-2
Summary:Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the histone deacetylase/acuc/apha family. It has histone deacetylase activity and represses transcription when tethered to a promoter. It may participate in the regulation of transcription through its binding with the zinc-finger transcription factor YY1. This protein can also down-regulate p53 function and thus modulate cell growth and apoptosis. This gene is regarded as a potential tumor suppressor gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:histone deacetylase 3
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (37)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HDAC3 (cancer-related)

Cacan E
Epigenetic-mediated immune suppression of positive co-stimulatory molecules in chemoresistant ovarian cancer cells.
Cell Biol Int. 2017; 41(3):328-339 [PubMed] Related Publications
The immunological response against cancer is a critical balance between immune-activating and immune-suppressing mechanisms. Ovarian cancer creates a suppressive microenvironment to escape immune elimination; however, the molecular mechanisms are poorly understood, and it is unclear whether chemotherapeutic drugs exert an immunoreactive or immunosuppressive effect on the tumor microenvironment. 4-1BB ligand (4-1BBL/CD157) and OX-40 ligand (OX-40L/CD252) are important regulators of effector cytotoxic T-cells activity. This study demonstrates that expression of positive co-stimulatory molecules, OX-40L and 4-1BBL, is suppressed while expression of immunosuppressive molecule programmed death ligand-1 (PD-L1/CD274) is enhanced in chemoresistant cells compared to parental chemosensitive ovarian cancer cells. Here, the molecular mechanisms of silencing of OX-40L and 4-1BBL expression were investigated in chemoresistant A2780-AD ovarian cancer cells. The suppression of OX-40L and 4-1BBL are due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to gene silencing during cancer progression. We identify important epigenetic regulators, histone deacetylase 1/3 (HDAC1/HDAC3) and DNA methyltransferase 1 (DNMT1), that exhibit aberrant association with OX-40L and 4-1BBL promoters in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 expression, and pharmacological inhibition of DNMT or HDAC enzymatic activity, significantly increase OX-40L and 4-1BBL expression in chemoresistant cells. This study suggests that loss of histone acetylation and accumulation of DNA methylation correlates with suppressed expression of OX-40L and 4-1BBL in chemoresistant ovarian cancer cells. This study marks the first report of the regulation of these two molecules by histone deacetylation and DNA methylation in chemoresistant ovarian cancer cells.

Zhang L, Hong Z, Zhang RR, et al.
Bakkenolide A inhibits leukemia by regulation of HDAC3 and PI3K/Akt-related signaling pathways.
Biomed Pharmacother. 2016; 83:958-966 [PubMed] Related Publications
Leukemia has been the third type of cancer killing many people across the world. Bakkenolide A (Bak), extracted from Petasites tricholobus, has been suggested to against cancer and display protective effects on inflammatory cytokines formation. And increasing evidences suggest that histone deacetylase 3 (HDAC3) plays vital roles in cancer formation and persistence via cell death, apoptosis and inflammation. But the function of Bakkenolide A in regulating leukemia is not understood yet, particularly via HDAC3. Here, we found that HDAC3 is up-regulated in clinical samples of leukemia compared with adjacent normal tissues. Then the expression of HDAC3 was knocked down via RNA interference in K562 cells. And inhibition of HDAC3 expression is able to improve leukemia invasion, migration and proliferation. Further, we also found HDAC3 bound to IκBα, affecting subsequent inflammation response. Moreover, Bakkenolide A was found to inhibit inflammation, induce apoptosis and cell death in leukemia cells via PI3K-regulated signaling pathway, down-regulating IKKs expression and suppressing in proinflammatory cytokines of IL-1β, IL-18 and TNF-α. Up-regulation of Caspase3/7 was observed in cells of HDAC3-knockdown and Bakkenolide A treatment, inducing leukemia cell apoptosis. Also, the expression of Akt and GSK were activated by HDAC3-knockdown and Bakkenolide A-treatment. Thus, these results indicated that Bakkenolide A-mediated HDAC3 sensitization in leukemia cells seem to be associated with activation of effector IKKs, Akt/GSK, and caspases through induction of the PI3K pathway, leading to inflammation, cell death, and apoptosis.

Li ZY, Li QZ, Chen L, et al.
Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-κB-Dependent Transcription in Glioblastoma Cell Lines.
Neurochem Res. 2016; 41(12):3192-3205 [PubMed] Related Publications
Glioblastoma (GBM) is the most frequent and aggressive tumour in the central nervous system. Many studies have demonstrated that upregulation of the NF-κB onco-pathway is accompanied by the acquisition of Temozolomide (TMZ) resistance in GBM cells. Here, we show that RGFP109, a selective histone deacetylase (HDAC1 and HDAC3) inhibitor, overcomes TMZ resistance and downregulates the expression of NF-κB-regulated pro-survival genes in a TMZ-resistant (TR) GBM cell line. RGFP109 did not alter the phosphorylation levels of NF-κB/p65 or inhibitory κBα (IκBα). Immunofluorescence microscopy showed that RGFP109 does not block the nuclear translocation of NF-κB/p65. However, co-immunoprecipitation assays revealed that RGFP109 induces the hyperacetylation of NF-κB/p65 and histones, and blocks interactions between NF-κB/p65 and its coactivators, p300 and p300/CBP-associated factor (PCAF). These results indicate that RGFP109-mediated post-translational nuclear acetylation may be involved in the regulation of NF-κB. Electrophoretic mobility shift assays revealed that RGFP109 reduces NF-κB/p65 binding to κB-DNA and decreased the transcriptional level of κB-mediated genes, suggesting that RGFP109-induced hyperacetylation leads to attenuated transcription of the κB gene. In addition, RGFP109 elevates the expression of inhibitor of growth 4 (ING4), which is typically downregulated in GBM cells. Importantly, we found that RGFP109 enhances ING4 recognition and binding to NF-κB/p65, which may be positively correlated with reduced interactions between NF-κB/p65 and p300/PCAF, thereby effecting transcription of the κB gene. Finally, we show that knockdown of ING4 with plasmids containing pcDNA3.1-ING4 shRNA abolished the effect of RGFP109. Therefore, ING4 may act as a corepressor and facilitate RGFP109-triggered suppression of the NF-κB pathway. Taken together, our data show that RGFP109, an HDAC inhibitor, in combination with TMZ may be a therapeutic candidate for patients with temozolomide-resistant GBM.

Buurman R, Sandbothe M, Schlegelberger B, Skawran B
HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma.
Eur J Med Res. 2016; 21(1):26 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Histone deacetylation, a common hallmark in malignant tumors, strongly alters the transcription of genes involved in the control of proliferation, cell survival, differentiation and genetic stability. We have previously shown that HDAC1, HDAC2, and HDAC3 (HDAC1-3) genes encoding histone deacetylases 1-3 are upregulated in primary human hepatocellular carcinoma (HCC). The aim of this study was to characterize the functional effects of HDAC1-3 downregulation and to identify functionally important target genes of histone deacetylation in HCC.
METHODS: Therefore, HCC cell lines were treated with the histone deacetylase inhibitor (HDACi) trichostatin A and by siRNA-knockdown of HDAC1-3. Differentially expressed mRNAs were identified after siRNA-knockdown of HDAC1-3 using mRNA expression profiling. Findings were validated after siRNA-mediated silencing of HDAC1-3 using qRTPCR and Western blotting assays.
RESULTS: mRNA profiling identified apoptotic protease-activating factor 1 (Apaf1) to be significantly upregulated after HDAC inhibition (HLE siRNA#1/siRNA#2 p < 0.05, HLF siRNA#1/siRNA#2 p < 0.05). As a component of the apoptosome, a caspase-activating complex, Apaf1 plays a central role in the mitochondrial caspase activation pathway of apoptosis. Using annexin V, a significant increase in apoptosis could also be shown in HLE (siRNA #1 p = 0.0034) and HLF after siRNA against HDAC1-3 (Fig. 3a, b). In parallel, caspase-9 activity was increased after siRNA-knockdown of HDAC1-3 leading to enhanced apoptosis after HDAC inhibition (Fig. 3c, d).
CONCLUSIONS: The present data show that siRNA-knockdown of HDAC1-3 plays a major role in mediating apoptotic response to HDAC inhibitors through regulation of Apaf1.

Zhao N, Li S, Wang R, et al.
Expression of microRNA-195 is transactivated by Sp1 but inhibited by histone deacetylase 3 in hepatocellular carcinoma cells.
Biochim Biophys Acta. 2016; 1859(7):933-42 [PubMed] Related Publications
MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcription start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells.

Edderkaoui M, Xu S, Chheda C, et al.
HDAC3 mediates smoking-induced pancreatic cancer.
Oncotarget. 2016; 7(7):7747-60 [PubMed] Free Access to Full Article Related Publications
Smoking is a major risk factor for developing pancreatic adenocarcinoma (PDAC); however, little is known about the mechanisms involved. Here we employed a genetic animal model of early stages of PDAC that overexpresses oncogenic Kras in the pancreas to investigate the mechanisms of smoking-induced promotion of the disease in vivo. We confirmed the regulation of the interactions between the tumor microenvironment cells using in vitro cellular systems. Aerial exposure to cigarette smoke stimulated development of pancreatic intraepithelial neaoplasia (PanIN) lesions associated with a tumor microenvironment-containing features of human PDAC including fibrosis, activated stellate cells, M2-macrophages and markers of epithelial-mesenchymal transition (EMT). The pro-cancer effects of smoking were prevented by Histone Deacetylase HDAC I/II inhibitor Saha. Smoking decreased histone acetylation associated with recruitment of and phenotypic changes in macrophages; which in turn, stimulated survival and induction of EMT of the pre-cancer and cancer cells. The interaction between the cancer cells and macrophages is mediated by IL-6 produced under the regulation of HDAC3 translocation to the nucleus in the cancer cells. Pharmacological and molecular inhibitions of HDAC3 decreased IL-6 levels in cancer cells. IL-6 stimulated the macrophage phenotype change through regulation of the IL-4 receptor level of the macrophage. This study demonstrates a novel pathway of interaction between cancer cells and tumor promoting macrophages involving HDAC3 and IL-6. It further demonstrates that targeting HDAC3 prevents progression of the disease and could provide a strategy for treating the disease considering that the HDAC inhibitor we used is FDA approved for a different disease.

Liu GF, Lu JY, Zhang YJ, et al.
C/EBPα negatively regulates SIRT7 expression via recruiting HDAC3 to the upstream-promoter of hepatocellular carcinoma cells.
Biochim Biophys Acta. 2016; 1859(2):348-54 [PubMed] Related Publications
Mammalian Sirtuin proteins (SIRTs) are homologs of yeast Sir2, and characterized as class III histone deacetylases of NAD(+) dependence. Unlike their lower counterparts that are directly involved in the extending of lifespan, mammalian SIRTs mainly function in metabolism and cellular homeostasis, among them, SIRT7 is the least understood. SIRT7 is localized in the nucleus and rich in nucleoli associated with RNA polymerase I, and correlated with cell proliferation. In contrast, SIRT7 has recently been demonstrated to specifically deacetylate H3K18ac in the chromatin, and in most cases represses proliferation. Although MicroRNA as miR-125b has been reported to down-regulate SIRT7 by binding to its 3'UTR, however, how SIRT7 gene is regulated remains unclear. Here, we identified the transcription initiation site of human SIRT7 gene at the upstream 23rd A nucleotide respective to the translational codon, and the SIRT7 is a TATA-less and initiator-less gene. The sequences in the upstream region between -256 and -129 bp are identical with important functions in the three species detected. A C/EBPα responding element is found that binds both C/EBPα and C/EBPβ in vitro. We showed TSA induced SIRT7 gene transcription and only the HDAC3, but not its catalytic domain depleted mutant, interacted with C/EBPα to occupy the C/EBPα element and repressed SIRT7 gene in the hepatocellular carcinoma cells. To our knowledge, this is the first report on the regulation mechanism of SIRT7 gene, in which, HDAC3 collaborated with C/EBPα to occupy its responding element in the upstream region of SIRT7 gene and repressed its expression in human cells.

Cacan E, Greer SF, Garnett-Benson C
Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases.
Int J Oncol. 2015; 47(6):2264-75 [PubMed] Related Publications
Radiation treatment is a pivotal therapy for several cancer types, including colorectal cancer. It has been shown that sublethal doses of radiation modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. We have recently shown that low dose radiation enhances expression of multiple death receptors (Fas, DR4 and DR5) and co-stimulatory molecules (4-1BBL and OX-40L) in colorectal cancer (CRC) cells; however, it is unclear how ionizing radiation (IR) enhances expression of these molecules mechanistically. In the present study, we elucidate the molecular mechanisms by which radiation controls expression of these molecules in CRC. Here we report that, enhanced expression of these genes following radiation treatment of CRC cells is due, in part, to changes in DNA methylation and histone acetylation. We observed that radiation (5 Gy) significantly increased histone acetylation at the promoter regions of 4-1BBL, Fas and DR5 but not OX-40L. However, radiation did not induce changes in the global levels of acetylated histone H3 suggesting specificity of IR-induced changes. Furthermore, evaluation of epigenetic controlling enzymes revealed that IR did not alter overall cellular levels of HDACs (HDAC1, HDAC2 or HDAC3) or DNMTs (DNMT1, DNMT3a, or DNMT3b). Instead, radiation decreased binding of HDAC2 and HDAC3 at the promoter regions of Fas and 4-1BBL, respectively. Radiation also resulted in reduced DNMT1 at both the Fas and 4-1BBL promoter regions but not a control gene. We conclude that single dose radiation can influence the expression of immune response relevant genes in colorectal tumor cells by altering the binding of epigenetic enzymes, and modulating histone acetylation, at specific gene promoters.

Jang SM, An JH, Kim CH, et al.
Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.
Biochem Biophys Res Commun. 2015; 463(4):961-7 [PubMed] Related Publications
Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.

Choi HK, Choi Y, Park ES, et al.
Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response.
Nat Commun. 2015; 6:7390 [PubMed] Free Access to Full Article Related Publications
The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5(WT) in PDCD5(-/-) MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions.

Wei TT, Lin YC, Lin PH, et al.
Induction of c-Cbl contributes to anti-cancer effects of HDAC inhibitor in lung cancer.
Oncotarget. 2015; 6(14):12481-92 [PubMed] Free Access to Full Article Related Publications
Here we found loss of c-Cbl, an E3 ligase, expression in non-small cell lung cancer (NSCLC) compared with its adjacent normal tissue in patient specimens. HDAC inhibition by WJ or knockdown of HDAC 1, HDAC2, HDAC3 or HDAC6 all induced c-Cbl. Ectopic expression of c-Cbl induced decreased EGFR, inhibited growth in NSCLC cells. Knockdown of EGFR inhibited NSCLC growth. Mutation of EGFR at Y1045 decreased WJ-induced growth inhibition as well as in vivo anti-cancer effect and EGFR degradation mediated by WJ. Time-lapse confocal analysis showed co-localization of c-Cbl and EGFR after WJ treatment. Furthermore, WJ inhibited lung tumor growth through c-Cbl induction in orthotopic and tail vein injected models. C-Cbl up-regulation induced by HDACi is a potential strategy for NSCLC treatment.

You L, Wang Z, Li H, et al.
The role of STAT3 in autophagy.
Autophagy. 2015; 11(5):729-39 [PubMed] Free Access to Full Article Related Publications
Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.

Liu X, Wang JH, Li S, et al.
Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway.
Cancer Sci. 2015; 106(7):857-66 [PubMed] Free Access to Full Article Related Publications
Vasculogenic mimicry (VM) refers to the process by which highly aggressive tumor cells mimic endothelial cells to form vessel-like structures that aid in supplying enough nutrients to rapidly growing tumors. Histone deacetylases (HDACs) regulate the expression and activity of numerous molecules involved in cancer initiation and progression. Notably, HDAC3 is overexpressed in the majority of carcinomas. However, thus far, no data are available to support the role of HDAC3 in VM. In this study, we subjected glioma specimens to immunohistochemical and histochemical double-staining methods and found that VM and HDAC3 expression were related to the pathological grade of gliomas. The presence of VM correlated with HDAC3 expression in glioma tissues. The formation of tubular structures, as determined by the tube formation assay to evaluate VM, was impaired in U87MG cells when transfected by siRNA or treated with an HDAC3 inhibitor. Importantly, the expression of VM-related molecules such as MMP-2/14 and laminin5γ2 was also affected when HDAC3 expression was altered. Furthermore, U87MG cells were treated with a phosphoinositide 3-kinase (PI3K) inhibitor or/and ERK inhibitor and found that the PI3K and ERK signaling pathways play key roles in VM; whereas, in VM, the two signaling pathways did not act upstream or downstream from each other. Taken together, our findings showed that HDAC3 contributed to VM in gliomas, possibly through the PI3K/ERK-MMPs-laminin5γ2 signaling pathway, which could potentially be a novel therapeutic target for gliomas.

Kato M, Muromoto R, Togi S, et al.
PML suppresses IL-6-induced STAT3 activation by interfering with STAT3 and HDAC3 interaction.
Biochem Biophys Res Commun. 2015; 461(2):366-71 [PubMed] Related Publications
The promyelocytic leukemia protein PML acts as a tumor suppressor by forming transcription-regulatory complexes with a variety of repressor proteins. In the present study, we found that endogenous PML suppresses interleukin (IL)-6-induced gene expression as well as phosphorylation and transcriptional activation of STAT3 in hepatoma cells. We also found that PML-mediated suppression of IL-6-induced STAT3 activation by disrupting interactions between STAT3 and HDAC3. These results indicate that PML modulates IL-6-induced STAT3 activation and hepatoma cell growth by interacting with HDAC3.

Tu J, Chen Y, Cai L, et al.
Functional Proteomics Study Reveals SUMOylation of TFII-I is Involved in Liver Cancer Cell Proliferation.
J Proteome Res. 2015; 14(6):2385-97 [PubMed] Related Publications
SUMOylation has emerged as a new regulatory mechanism for proteins involved in multiple physiological and pathological processes. However, the detailed function of SUMOylation in liver cancer is still elusive. This study reveals that the SUMOylation-activating enzyme UBA2 is highly expressed in liver cancer cells and clinical samples. Silencing of UBA2 expression could to some extent suppress cell proliferation. To elucidate the function of UBA2, we used a large scale proteomics strategy to identify SUMOylation targets in HepG2 cells. We characterized 827 potential SUMO1-modified proteins that were not present in the control samples. These proteins were enriched in gene expression processes. Twelve candidates were validated as SUMO1-modified proteins by immunoprecipitation-Western blotting. We further characterized SUMOylated protein TFII-I that was identified in this study and determined that TFII-I was modified by SUMO1 at K221 and K240. PIAS4 was an E3 ligase for TFII-I SUMOylation, and SENP2 was responsible for deSUMOylating TFII-I in HepG2 cells. SUMOylation reduced TFII-I binding to its repressor HDAC3 and thus promoted its transcriptional activity. We further show that SUMOylation is critical for TFII-I to promote cell proliferation and colony formation. Our findings contribute to understanding the role of SUMOylation in liver cancer development.

Dali-Youcef N, Froelich S, Moussallieh FM, et al.
Gene expression mapping of histone deacetylases and co-factors, and correlation with survival time and 1H-HRMAS metabolomic profile in human gliomas.
Sci Rep. 2015; 5:9087 [PubMed] Free Access to Full Article Related Publications
Primary brain tumors are presently classified based on imaging and histopathological techniques, which remains unsatisfaying. We profiled here by quantitative real time PCR (qRT-PCR) the transcripts of eighteen histone deacetylases (HDACs) and a subset of transcriptional co-factors in non-tumoral brain samples from 15 patients operated for epilepsia and in brain tumor samples from 50 patients diagnosed with grade II oligodendrogliomas (ODII, n = 9), grade III oligodendrogliomas (ODIII, n = 22) and glioblastomas (GL, n = 19). Co-factor transcripts were significantly different in tumors as compared to non-tumoral samples and distinguished different molecular subgroups of brain tumors, regardless of tumor grade. Among all patients studied, the expression of HDAC1 and HDAC3 was inversely correlated with survival, whereas the expression of HDAC4, HDAC5, HDAC6, HDAC11 and SIRT1 was significantly and positively correlated with survival time of patients with gliomas. (1)H-HRMAS technology revealed metabolomically distinct groups according to the expression of HDAC1, HDAC4 and SIRT1, suggesting that these genes may play an important role in regulating brain tumorigenesis and cancer progression. Our study hence identified different molecular fingerprints for subgroups of histopathologically similar brain tumors that may enable the prediction of outcome based on the expression level of co-factor genes and could allow customization of treatment.

Alinari L, Mahasenan KV, Yan F, et al.
Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation.
Blood. 2015; 125(16):2530-43 [PubMed] Free Access to Full Article Related Publications
Epigenetic events that are essential drivers of lymphocyte transformation remain incompletely characterized. We used models of Epstein-Barr virus (EBV)-induced B-cell transformation to document the relevance of protein arginine methyltransferase 5 (PRMT5) to regulation of epigenetic-repressive marks during lymphomagenesis. EBV(+) lymphomas and transformed cell lines exhibited abundant expression of PRMT5, a type II PRMT enzyme that promotes transcriptional silencing of target genes by methylating arginine residues on histone tails. PRMT5 expression was limited to EBV-transformed cells, not resting or activated B lymphocytes, validating it as an ideal therapeutic target. We developed a first-in-class, small-molecule PRMT5 inhibitor that blocked EBV-driven B-lymphocyte transformation and survival while leaving normal B cells unaffected. Inhibition of PRMT5 led to lost recruitment of a PRMT5/p65/HDAC3-repressive complex on the miR96 promoter, restored miR96 expression, and PRMT5 downregulation. RNA-sequencing and chromatin immunoprecipitation experiments identified several tumor suppressor genes, including the protein tyrosine phosphatase gene PTPROt, which became silenced during EBV-driven B-cell transformation. Enhanced PTPROt expression following PRMT5 inhibition led to dephosphorylation of kinases that regulate B-cell receptor signaling. We conclude that PRMT5 is critical to EBV-driven B-cell transformation and maintenance of the malignant phenotype, and that PRMT5 inhibition shows promise as a novel therapeutic approach for B-cell lymphomas.

Li Y, Ke Q, Shao Y, et al.
GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling.
Oncotarget. 2015; 6(6):4345-56 [PubMed] Free Access to Full Article Related Publications
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions, resulting in the acquisition of migratory and invasive properties. E-cadherin is a major component of intercellular junctions and the reduction or loss of its expression is a hallmark of EMT. Transcription factor GATA1 has a critical anti-apoptotic role in breast cancer, but its function for metastasis has not been investigated. Here, we found that GATA1, as a novel E-cadherin repressor, promotes EMT in breast cancer cells. GATA1 binds to E-cadherin promoter, down-regulates E-cadherin expression, disrupts intercellular junction and promotes metastasis of breast cancer cell in vivo. Moreover, GATA1 is a new substrate of p21-activated kinase 5 (PAK5), which is phosphorylated on serine 161 and 187 (S161 and S187). GATA1 recruits HDAC3/4 to E-cadherin promoter, which is reduced by GATA1 S161A S187A mutant. These data indicate that phosphorylated GATA1 recruits more HDAC3/4 to promote transcriptional repression of E-cadherin, leading to the EMT of breast cancer cells. Our findings provide insights into the novel function of GATA1, contributing to a better understanding of the EMT, indicating that GATA1 and its phosphorylation may play an important role in the metastasis of breast cancer.

Valdez BC, Li Y, Murray D, et al.
Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: Enhancement of cytotoxicity with epigenetic modulators.
Exp Hematol. 2015; 43(6):448-61.e2 [PubMed] Free Access to Full Article Related Publications
Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) combinations are efficacious in hematopoietic stem cell transplantation for myeloid leukemia. We sought to determine whether the more affordable drug cladribine (Clad) can provide a viable alternative to Clo, with or without panobinostat (Pano) and 5-aza-2'-deoxycytidine (DAC). Both Clad+Flu+Bu and Clo+Flu+Bu combinations showed synergistic cytotoxicity in KBM3/Bu250(6), HL60, and OCI-AML3 cell lines. Cell exposure to these drug combinations resulted in 60%-80% inhibition of proliferation; activation of the ATM pathway; increase in histone modifications; decrease in HDAC3, HDAC4, HDAC5 and SirT7 proteins; decrease in mitochondrial membrane potential; activation of apoptosis and stress signaling pathways; and downregulation of the AKT pathway. These drug combinations activated DNA-damage response and apoptosis in primary cell samples from AML patients. At lower concentrations of Clad/Clo, Flu, and Bu, inclusion of Pano and DAC enhanced cell killing, increased histone modifications and DNA demethylation, and increased the levels of P16/INK4a, P15/INK4b and P21/Waf1/Cip1 proteins. The observed DNA demethylating activity of Clad and Clo may complement DAC activity; increase demethylation of the gene promoters for SFRP1, DKK3, and WIF1; and cause degradation of β-catenin in cells exposed to Clad/Clo+Flu+Bu+DAC+Pano. The overlapping activities of Clad/Clo+Flu+Bu, Pano, and DAC in DNA-damage formation and repair, histone modifications, DNA demethylation, and apoptosis may underlie their synergism. Our results provide a basis for supplanting Clo with Clad and for including epigenetic modifiers in the pre-hematopoietic stem cell transplantation conditioning regimen for myeloid leukemia patients.

Koumangoye RB, Andl T, Taubenslag KJ, et al.
SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal cancer cells.
Mol Cancer. 2015; 14:24 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. However, the molecular mechanisms through which microRNAs regulate metastasis and cancer progression remain unclear.
METHODS: We analyzed the reciprocal expression regulation of miR-31 and SOX4 in esophageal squamous and adenocarcinoma cell lines by qRT-PCR and Western blotting using overexpression and shRNA knock-down approaches. Furthermore, methylation studies were used to assess epigenetic regulation of expression. Functionally, we determined the cellular consequences using migration and invasion assays, as well as proliferation assays. Immunoprecipitation and ChIP were used to identify complex formation of SOX4 and co-repressor components.
RESULTS: Here, we report that SOX4 promotes esophageal tumor cell proliferation and invasion by silencing miR-31 via activation and stabilization of a co-repressor complex with EZH2 and HDAC3. We demonstrate that miR-31 is significantly decreased in invasive esophageal cancer cells, while upregulation of miR-31 inhibits growth, migration and invasion of esophageal adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) cell lines. miR-31, in turn, targets SOX4 for degradation by directly binding to its 3'-UTR. Additionally, miR-31 regulates EZH2 and HDAC3 indirectly. SOX4, EZH2 and HDAC3 levels inversely correlate with miR-31 expression in ESCC cell lines. Ectopic expression of miR-31 in ESCC and EAC cell lines leads to down regulation of SOX4, EZH2 and HDAC3. Conversely, pharmacologic and genetic inhibition of SOX4 and EZH2 restore miR-31 expression. We show that SOX4, EZH2 and HDAC3 form a co-repressor complex that binds to the miR-31 promoter, repressing miR-31 through an epigenetic mark by H3K27me3 and by histone acetylation. Clinically, when compared to normal adjacent tissues, esophageal tumor samples show upregulation of SOX4, EZH2, and HDAC3, and EZH2 expression is significantly increased in metastatic ESCC tissues.
CONCLUSIONS: Thus, we identified a novel molecular mechanism by which the SOX4, EZH2 and miR-31 circuit promotes tumor progression and potential therapeutic targets for invasive esophageal carcinomas.

Ye CG, Liu L, Chen GG, et al.
ZBP-89 reduces histone deacetylase 3 by degrading IkappaB in the presence of Pin1.
J Transl Med. 2015; 13:23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Histone deacetylase 3 (HDAC3) is overexpressed in cancers and its inhibition enhances anti-tumor chemotherapy. ZBP-89, a transcription factor, can induce pro-apoptotic Bak and reduce HDAC3 but the mechanism is unknown. Pin1, a molecular switch that determines the fate of phosphoproteins, is known to interact with HDAC3. The aim of this study was to investigate the mechanism how ZBP-89 downregulated HDAC3.
METHODS: In this study, liver cells, Pin1-knockout Pin1(-/-) and Pin1 wild-typed Pin(+/+) cells were used to explore how ZBP-89 reduced HDAC3. The overexpression of ZBP-89 was achieved by infecting cells with Ad-ZBP-89, an adenoviral construct containing ZBP-89 gene. The role of NF-κB was determined using CAY10576, MG132 and SN50, the former two being inhibitors of IκB degradation and SN50 being an inhibitor of p65/p50 translocation. A xenograft tumor model was used to confirm the in vitro data.
RESULTS: ZBP-89 reduced HDAC3, and it could form a complex with IκB and induce IκB phosphorylation to inhibit IκB. Furthermore, ZBP-89-mediated HDAC3 reduction was suppressed by IκB degradation inhibitors CAY10576 and MG132 but not by p65/p50 translocation inhibitor SN50, indicating that IκB decrease rather than the elevated activity of NF-κB contributed to HDAC3 reduction. ZBP-89-mediated HDAC3 or IκB reduction was significantly less obvious in Pin1(-/-) cells compared with Pin1(+/+) cells. In Ad-ZBP-89-infected Pin1(+/+) cancer cells, Pin1 siRNA increased HDAC3 but decreased Bak, compared with cells without ZBP-89 infection. These findings indicate that Pin1 participates in ZBP-89-mediated HDAC3 downregulation and Bak upregulation. The cell culture result was confirmed by in vivo mouse tumor model experiments.
CONCLUSIONS: ZBP-89 attenuates HDAC3 by increasing IκB degradation. Such attenuation is independent of NF-κB activity but partially depends on Pin1. The novel pathway identified may help generate new anti-cancer strategy by targeting HDAC3 and its related molecules.

Ren YB, Luo T, Li J, et al.
p28(GANK) associates with p300 to attenuate the acetylation of RelA.
Mol Carcinog. 2015; 54(12):1626-35 [PubMed] Related Publications
Oncoprotein p28(GANK), overexpressed in hepatocellular carcinomas (HCC), binds to RelA and retains NF-κB in the cytoplasm to suppress NF-κB transactivation. However, the mechanism has not yet been elucidated. In this study, we clarified the mechanism of NF-κB regulated by p28(GANK). p28(GANK) reduced TNF-α-induced nuclear translocation of RelA/NF-κB independent of HDAC3. p28(GANK) interacted with p300 to attenuate assembly of RelA with p300, which lessened acetylation of RelA on the lysine 310 sites. Moreover, overexpression of p28(GANK) attenuated the capability of NF-κB binding to the target gene IκBα promoter, but also weakened adriamycin-induced NF-κB pro-apoptotic gene Fas and FasL expression, which subsequently made p53-deficient tumor cells resistance to adriamycin. These results present mechanistic insight into the key role of p28(GANK) in post-translational regulation of RelA/NF-κB.

Lakshmaiah KC, Jacob LA, Aparna S, et al.
Epigenetic therapy of cancer with histone deacetylase inhibitors.
J Cancer Res Ther. 2014 Jul-Sep; 10(3):469-78 [PubMed] Related Publications
Epigenetics is the study of heritable alterations in gene expression that are not accompanied by the corresponding change in DNA sequence. Three interlinked epigenetic processes regulate gene expression at the level of chromatin, namely DNA methylation, nucleosomal remodeling and histone covalent modifications. Post-translational modifications that occur on certain amino acid residues of the tails of histone proteins modify chromatin structure and form the basis for "histone code". The enzymes Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC) control the level of acetylation of histones and thereby alter gene expression. In many cancers, the balance between HAT and HDAC is altered. HDAC enzymes are grouped into four different classes namely Class I (HDAC1, HDAC2, HDAC3, and HDAC8), Class II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10), Class III HDAC and Class IV (HDAC11). Histone Deacetylase Inhibitors (HDACI) exert anticancer activity by promoting acetylation of histones as well as by promoting acetylation of non-histone protein substrates. The effects of HDACI on gene transcription are complex. They cause cell cycle arrest, inhibit DNA repair, induce apoptosis and acetylate non histone proteins causing downstream alterations in gene expression. HDACI are a diverse group of compounds, which vary in structure, biological activity, and specificity. In general, HDACIs contain a zinc-binding domain, a capping group, and a straight chain linker connecting the two. They are classified into four classes namely short chain fatty acids, hydroxamic acids, cyclic peptides and synthetic benzamides. This review describes the clinical utility of HDACI as monotherapy as well as combination therapy with other treatment modalities such as chemotherapy and radiotherapy. Adverse effects and shortcomings of treatment with HDACI are also discussed in detail.

Shi QQ, Zuo GW, Feng ZQ, et al.
Effect of trichostatin A on anti HepG2 liver carcinoma cells: inhibition of HDAC activity and activation of Wnt/β-Catenin signaling.
Asian Pac J Cancer Prev. 2014; 15(18):7849-55 [PubMed] Related Publications
PURPOSE: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms.
MATERIALS AND METHODS: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of β-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for β-catenin, HDAC1and HDAC3 was tested by q-PCR. β-Catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit.
RESULTS: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/ G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was 6.22±0.25%, which increased to 7.17±0.20% and 18.1±0.42% in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of β-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of β-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of β-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased.
CONCLUSIONS: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/β-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Wang L, Zhang C, Guo Y, et al.
Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway.
AAPS J. 2014; 16(6):1214-25 [PubMed] Free Access to Full Article Related Publications
Increasing numbers of natural products have been found to possess anticancer effects. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator of the antioxidative stress response, and our previous studies found that epigenetic modification of the Nrf2 gene appears to be a critical mechanism. Salvia miltiorrhiza, a Chinese herbal medicine widely used in Asian countries, has been shown to possess anticancer and antioxidant effects. Tanshinone IIA (TIIA), an active component in S. miltiorrhiza, has been reported to activate Nrf2 pathway. The objective of this study was to investigate the epigenetic regulation of Nrf2 by TIIA in mouse skin epidermal JB6 cells and the functional consequences for cell transformation. TIIA was found to induce antioxidant response element-luciferase and upregulate the mRNA and protein levels of Nrf2 and Nrf2 downstream target genes HO-1 and NQO-1. TIIA decreased the colony formation of JB6 cells by approximately 80%. TIIA decreased the protein levels of DNMT1, DNMT3a, DNMT3b, and HDAC3 and inhibited the enzymatic activity of HDACs. Bisulfite genomic sequencing indicated that TIIA demethylated the first five CpGs in the promoter region of the Nrf2 gene. Chromatin immunoprecipitation assays showed that TIIA treatment increased the recruitment of RNA polymerase II at Nrf2 transcription start site but had limited effects on enrichment of Ac-H3 in Nrf2 promoter. Taken together, our results show that TIIA activates the Nrf2 signaling pathway and induces epigenetic demethylation of the CpGs of Nrf2. The epigenetic reactivation of the Nrf2 signaling pathway by TIIA could potentially contribute to the attenuation of JB6 cellular transformation and anticancer effects.

Reiche K, Kasack K, Schreiber S, et al.
Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.
PLoS One. 2014; 9(9):e106076 [PubMed] Free Access to Full Article Related Publications
Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.

Kim Y, Kim H, Park H, et al.
miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs.
J Biol Chem. 2014; 289(40):28019-39 [PubMed] Free Access to Full Article Related Publications
Histone modification is known to be associated with multidrug resistance phenotypes. Cancer cell lines that are resistant or have been made resistant to anti-cancer drugs showed lower expression levels of histone deacetylase-3 (HDAC3), among the histone deacetylase(s), than cancer cell lines that were sensitive to anti-cancer drugs. Celastrol and Taxol decreased the expression of HDAC3 in cancer cell lines sensitive to anti-cancer drugs. HDAC3 negatively regulated the invasion, migration, and anchorage-independent growth of cancer cells. HDAC3 conferred sensitivity to anti-cancer drugs in vitro and in vivo. TargetScan analysis predicted miR-326 as a negative regulator of HDAC3. ChIP assays and luciferase assays showed a negative feedback loop between HDAC3 and miR-326. miR-326 decreased the apoptotic effect of anti-cancer drugs, and the miR-326 inhibitor increased the apoptotic effect of anti-cancer drugs. miR-326 enhanced the invasion and migration potential of cancer cells. The miR-326 inhibitor negatively regulated the tumorigenic, metastatic, and angiogenic potential of anti-cancer drug-resistant cancer cells. HDAC3 showed a positive feedback loop with miRNAs such as miR-200b, miR-217, and miR-335. miR-200b, miR-217, and miR-335 negatively regulated the expression of miR-326 and the invasion and migration potential of cancer cells while enhancing the apoptotic effect of anti-cancer drugs. TargetScan analysis predicted miR-200b and miR-217 as negative regulators of cancer-associated gene, a cancer/testis antigen, which is known to regulate the response to anti-cancer drugs. HDAC3 and miR-326 acted upstream of the cancer-associated gene. Thus, we show that the miR-326-HDAC3 feedback loop can be employed as a target for the development of anti-cancer therapeutics.

Yao R, Jiang H, Ma Y, et al.
PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer.
Cancer Res. 2014; 74(19):5656-67 [PubMed] Related Publications
Epithelial-to-mesenchymal transition (EMT) enables metastasis. E-cadherin loss is a hallmark of EMT, but there remains an incomplete understanding of the epigenetics of this process. The protein arginine methyltransferase PRMT7 functions in various physiologic processes, including mRNA splicing, DNA repair, and neural differentiation, but its possible roles in cancer and metastasis have not been explored. In this report, we show that PRMT7 is expressed at higher levels in breast carcinoma cells and that elevated PRMT7 mediates EMT and metastasis. PRMT7 could inhibit the expression of E-cadherin by binding to its proximal promoter in a manner associated with altered histone methylation, specifically with elevated H4R3me2s and reduced H3K4me3, H3Ac, and H4Ac, which occurred at the E-cadherin promoter upon EMT induction. Moreover, PRMT7 interacted with YY1 and HDAC3 and was essential to link these proteins to the E-cadherin promoter. Silencing PRMT7 restored E-cadherin expression by repressing H4R3me2s and by increasing H3K4me3 and H4Ac, attenuating cell migration and invasion in MDA-MB-231 breast cancer cells. Overall, our results define PRMT7 as an inducer of breast cancer metastasis and present the opportunity for applying PRMT7-targeted therapeutics to treat highly invasive breast cancers.

Jiao F, Hu H, Yuan C, et al.
Histone deacetylase 3 promotes pancreatic cancer cell proliferation, invasion and increases drug-resistance through histone modification of P27, P53 and Bax.
Int J Oncol. 2014; 45(4):1523-30 [PubMed] Related Publications
Pancreatic cancer is one of the most aggressive solid malignancies with a dismal survival rate. Recent studies have shown that high expression levels of histone deacetylase 3 (HDAC3) correlate with malignant phenotype. However, the expression patterns and biological role of HDAC3 in pancreatic cancer remain unclear. In this study, our data showed that a higher level of HDAC3 protein expression was found in pancreatic cancer as compared to paired paracancerous tissues. Consistently, higher expression level of HDAC3 was found in all of the eight pancreatic cancer cell lines relative to human pancreatic ductal epithelial cells (HPDE). In addition, further function analysis revealed that HDAC3 can function as oncogenic protein, which could promote pancreatic cancer cell proliferation, migration and invasion, and may increase drug resistance. Moreover, the functional involvement of HDAC3 was partially correlated with post-induction repression of P53, P27 and Bax gene transcription, acting via H3K9 deacetylation. Taken together, our data suggest that HDAC3 participates in the pathogenesis and progression of pancreatic cancer through histone modification, which might be a pivotal epigenetic target against this devastating disease.

Ha K, Fiskus W, Choi DS, et al.
Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells.
Oncotarget. 2014; 5(14):5637-50 [PubMed] Free Access to Full Article Related Publications
There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces 'BRCAness' and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HDAC3, Cancer Genetics Web: http://www.cancer-genetics.org/HDAC3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999