Gene Summary

Gene:NR4A2; nuclear receptor subfamily 4, group A, member 2
Aliases: NOT, RNR1, HZF-3, NURR1, TINUR
Summary:This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcription factor. Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson disease, schizophernia, and manic depression. Misregulation of this gene may be associated with rheumatoid arthritis. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:nuclear receptor subfamily 4 group A member 2
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (34)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Oncogene Fusion Proteins
  • Nuclear Receptor Subfamily 4, Group A, Member 3
  • Dinoprostone
  • Western Blotting
  • Neoplastic Cell Transformation
  • Oligonucleotide Array Sequence Analysis
  • Nerve Tissue Proteins
  • Cell Proliferation
  • DNA-Binding Proteins
  • Sodium-Potassium-Exchanging ATPase
  • Adrenocortical Cancer
  • Zona Glomerulosa
  • Transcription Factors
  • Staging
  • Cell Survival
  • Base Sequence
  • Nuclear Receptor Subfamily 4, Group A, Member 2
  • Immunoenzyme Techniques
  • Receptors, Cytoplasmic and Nuclear
  • Mutation
  • Gene Expression
  • Receptors, Thyroid Hormone
  • Orphan Nuclear Receptors
  • Tumor Markers
  • NR4A2
  • Chromosome 2
  • Cancer Gene Expression Regulation
  • Transfection
  • Nuclear Proteins
  • Nuclear Receptor Subfamily 4, Group A, Member 1
  • Signal Transduction
  • Gene Expression Profiling
  • Antineoplastic Agents
  • Tumor Burden
  • Immunohistochemistry
  • Apoptosis
  • Receptors, Steroid
  • Cervical Cancer
  • Colorectal Cancer
  • Messenger RNA
  • beta Catenin
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NR4A2 (cancer-related)

Roshan-Moniri M, Hsing M, Butler MS, et al.
Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers.
Cancer Treat Rev. 2014; 40(10):1137-52 [PubMed] Related Publications
Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.

Yin K, Sturm RA, Smith AG
MC1R and NR4A receptors in cellular stress and DNA repair: implications for UVR protection.
Exp Dermatol. 2014; 23(7):449-52 [PubMed] Related Publications
Ultraviolet radiation (UVR) is the most common mutagen that melanocytes are exposed to. UVR causes a diverse range of DNA photolesions contributing to genome instability and promotes melanoma and non-melanoma development. Melanocytes are pigment-producing cells that synthesise the photoprotective melanins when the melanocortin-1 receptor (MC1R) is activated. MC1R is a G-protein-coupled receptor expressed predominantly in melanocytes. Its signalling pathway has been directly linked to melanogenesis, enhanced cytoprotection against UV damage and augmented DNA repair response. Interestingly, previous studies have revealed that MC1R signalling induces the transcription of the NR4A subfamily of orphan nuclear receptors in response to UV. In line with this, studies have also observed that NR4A receptors are recruited to distinct nuclear foci in response to cellular stress, independent of their transcriptional roles. Here, we review the regulated expression of NR4A2 and its potential roles upon cellular stress conditions. Current work in developing synthetic NR4A2 agonists further provides exciting avenues for exploring the potential role of NR4A2 as an antiskin cancer drug target.

Safe S, Jin UH, Hedrick E, et al.
Minireview: role of orphan nuclear receptors in cancer and potential as drug targets.
Mol Endocrinol. 2014; 28(2):157-72 [PubMed] Free Access to Full Article Related Publications
The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.

Johannessen CM, Johnson LA, Piccioni F, et al.
A melanocyte lineage program confers resistance to MAP kinase pathway inhibition.
Nature. 2013; 504(7478):138-42 [PubMed] Free Access to Full Article Related Publications
Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF-MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF-MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF-MEK-ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.

Berthon A, Drelon C, Ragazzon B, et al.
WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production.
Hum Mol Genet. 2014; 23(4):889-905 [PubMed] Related Publications
Primary aldosteronism (PA) is the main cause of secondary hypertension, resulting from adrenal aldosterone-producing adenomas (APA) or bilateral hyperplasia. Here, we show that constitutive activation of WNT/β-catenin signalling is the most frequent molecular alteration found in 70% of APA. We provide evidence that decreased expression of the WNT inhibitor SFRP2 may be contributing to deregulated WNT signalling and APA development in patients. This is supported by the demonstration that mice with genetic ablation of Sfrp2 have increased aldosterone production and ectopic differentiation of zona glomerulosa cells. We further show that β-catenin plays an essential role in the control of basal and Angiotensin II-induced aldosterone secretion, by activating AT1R, CYP21 and CYP11B2 transcription. This relies on both LEF/TCF-dependent activation of AT1R and CYP21 regulatory regions and indirect activation of CYP21 and CYP11B2 promoters, through increased expression of the nuclear receptors NURR1 and NUR77. Altogether, these data show that aberrant WNT/β-catenin activation is associated with APA development and suggest that WNT pathway may be a good therapeutic target in PA.

Misund K, Selvik LK, Rao S, et al.
NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells.
PLoS One. 2013; 8(9):e76234 [PubMed] Free Access to Full Article Related Publications
The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.

Williams TA, Monticone S, Schack VR, et al.
Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas.
Hypertension. 2014; 63(1):188-95 [PubMed] Related Publications
Aldosterone-producing adenomas (APAs) cause a sporadic form of primary aldosteronism and somatic mutations in the KCNJ5 gene, which encodes the G-protein-activated inward rectifier K(+) channel 4, GIRK4, account for ≈40% of APAs. Additional somatic APA mutations were identified recently in 2 other genes, ATP1A1 and ATP2B3, encoding Na(+)/K(+)-ATPase 1 and Ca(2+)-ATPase 3, respectively, at a combined prevalence of 6.8%. We have screened 112 APAs for mutations in known hotspots for genetic alterations associated with primary aldosteronism. Somatic mutations in ATP1A1, ATP2B3, and KCNJ5 were present in 6.3%, 0.9%, and 39.3% of APAs, respectively, and included 2 novel mutations (Na(+)/K(+)-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg). CYP11B2 gene expression was higher in APAs harboring ATP1A1 and ATP2B3 mutations compared with those without these or KCNJ5 mutations. Overexpression of Na(+)/K(+)-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg in HAC15 adrenal cells resulted in upregulation of CYP11B2 gene expression and its transcriptional regulator NR4A2. Structural modeling of the Na(+)/K(+)-ATPase showed that the Gly99Arg substitution most likely interferes with the gateway to the ion binding pocket. In vitro functional assays demonstrated that Gly99Arg displays severely impaired ATPase activity, a reduced apparent affinity for Na(+) activation of phosphorylation and K(+) inhibition of phosphorylation that indicate decreased Na(+) and K(+) binding, respectively. Moreover, whole cell patch-clamp studies established that overexpression of Na(+)/K(+)-ATPase Gly99Arg causes membrane voltage depolarization. In conclusion, somatic mutations are common in APAs that result in an increase in CYP11B2 gene expression and may account for the dysregulated aldosterone production in a subset of patients with sporadic primary aldosteronism.

Monticone S, Hattangady NG, Penton D, et al.
a Novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III.
J Clin Endocrinol Metab. 2013; 98(11):E1861-5 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Primary aldosteronism is a heterogeneous group of disorders comprising both sporadic and familial forms. Mutations in the KCNJ5 gene, which encodes the inward rectifier K(+) channel 4 (G protein-activated inward rectifier K(+) channel 4, Kir3.4), cause familial hyperaldosteronism type III (FH-III) and are involved in the pathogenesis of sporadic aldosterone-producing adenomas.
OBJECTIVE: The objective of the study was to characterize the effects of a newly described KCNJ5 mutation in vitro.
PATIENTS AND METHODS: The index case is a 62-year-old woman affected by primary aldosteronism, who underwent left adrenalectomy after workup for adrenal adenoma. Exon 1 of KCNJ5 was PCR amplified from adrenal tissue and peripheral blood and sequenced. Electrophysiological and gene expression studies were performed to establish the functional effects of the new mutation on the membrane potential and adrenal cell CYP11B2 expression.
RESULTS: KCNJ5 sequencing in the index case revealed a new p.Y152C germline mutation; interestingly, the phenotype of the patient was milder than most of the previously described FH-III families. The tyrosine-to-cysteine substitution resulted in pathological Na(+) permeability, cell membrane depolarization, and disturbed intracellular Ca(2+) homeostasis, effects similar, albeit smaller, to the ones demonstrated for other KCNJ5 mutations. Gene expression studies revealed an increased expression of CYP11B2 and its transcriptional regulator NR4A2 in HAC15 adrenal cells overexpressing KCNJ5(Y152C) compared to the wild-type channel. The effect was clearly Ca(2+)-dependent, because it was abolished by the calcium channel blocker nifedipine.
CONCLUSIONS: Herein we describe a new germline mutation in KCNJ5 responsible for FH-III.

Yin H, Lo JH, Kim JY, et al.
Expression profiling of nuclear receptors identifies key roles of NR4A subfamily in uterine fibroids.
Mol Endocrinol. 2013; 27(5):726-40 [PubMed] Free Access to Full Article Related Publications
Uterine fibroids (UFs), also known as uterine leiomyomas, are benign, fibrotic smooth muscle tumors. Although the GnRH analog leuprolide acetate that suppresses gonadal steroid hormones is used as a treatment, it has significant side effects, thereby limiting its use. Availability of more effective therapy is limited because of a lack of understanding of molecular underpinnings of the disease. Although ovarian steroid hormones estrogen and progesterone and their receptors are clearly involved, the role of other nuclear receptors (NRs) in UFs is not well defined. We used quantitative real-time PCR to systematically profile the expression of 48 NRs and identified several NRs that were aberrantly expressed in UFs. Among others, expression of NR4A subfamily members including NGFIB (NR4A1), NURR1 (NR4A2), and NOR1 (NR4A3) were dramatically suppressed in leiomyoma compared with the matched myometrium. Restoration of expression of each of these NR4A members in the primary leiomyoma smooth muscle cells decreased cell proliferation. Importantly, NR4As regulate expressions of the profibrotic factors including TGFβ3 and SMAD3, and several collagens that are key components of the extracellular matrix. Finally, we identify NR4A members as targets of leuprolide acetate treatment. Together, our results implicate several NRs including the NR4A subfamily in leiomyoma etiology and identify NR4As as potential therapeutic targets for treating fibrotic diseases.

Llopis S, Singleton B, Duplessis T, et al.
Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer.
BMC Cancer. 2013; 13:139 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: NR4A orphan nuclear receptors are involved in multiple biological processes which are important in tumorigenesis such as cell proliferation, apoptosis, differentiation, and glucose utilization. The significance of NR4A family member NURR1 (NR4A2) in breast cancer etiology has not been elucidated. The purpose of this study was to ascertain the impact of NURR1 expression on breast transformation, tumor growth, and breast cancer patient survival.
METHODS: We determined the expression of NURR1 in normal breast versus breast carcinoma in tissue microarrays (immunohistochemistry), tissue lysates (immunoblot), and at the mRNA level (publically available breast microarrays). In addition NURR1 expression was compared among breast cancer patients in cohorts based on p53 expression, estrogen receptor α expression, tumor grade, and lymph node metastases. Kaplan-Meier survival plots were used to determine the correlation between NURR1 expression and relapse free survival (RFS). Using shRNA-mediated silencing, we determined the effect of NURR1 expression on tumor growth in mouse xenografts.
RESULTS: Results from breast cancer tissue arrays demonstrate a higher NURR1 expression in the normal breast epithelium compared to breast carcinoma cells (p ≤ 0.05). Among cases of breast cancer, NURR1 expression in the primary tumors was inversely correlated with lymph node metastases (p ≤ 0.05) and p53 expression (p ≤ 0.05). Clinical stage and histological grade were not associated with variation in NURR1 expression. In gene microarrays, 4 of 5 datasets showed stronger mean expression of NURR1 in normal breast as compared to transformed breast. Additionally, NURR1 expression was strongly correlated with increase relapse free survival (HR = 0.7) in a cohort of all breast cancer patients, but showed no significant difference in survival when compared among patients whom have not been treated systemically (HR = 0.91). Paradoxically, NURR1 silenced breast xenografts showed significantly decreased growth in comparison to control, underscoring a biphasic role for NURR1 in breast cancer progression.
CONCLUSIONS: NURR1 function presents a dichotomy in breast cancer etiology, in which NURR1 expression is associated with normal breast epithelial differentiation and efficacy of systemic cancer therapy, but silencing of which attenuates tumor growth. This provides a strong rationale for the potential implementation of NURR1 as a pharmacologic target and biomarker for therapeutic efficacy in breast cancer.

Watanuki Y, Takayasu S, Kageyama K, et al.
Involvement of Nurr-1/Nur77 in corticotropin-releasing factor/urocortin1-induced tyrosinase-related protein 1 gene transcription in human melanoma HMV-II cells.
Mol Cell Endocrinol. 2013; 370(1-2):42-51 [PubMed] Related Publications
Recent molecular and biochemical analyses have revealed the presence of corticotropin-releasing factor (CRF) and urocortin (Ucn), together with their corresponding receptors in mammalian skin. The melanosomal enzyme tyrosinase-related protein 1 (TRP1) is involved in modulation of pigment production in response to stressors. Although CRF and Ucn are thought to have potent effects on the skin system, their possible roles and regulation have yet to be fully determined. This study aimed to explore the effects of CRF and Ucn on TRP1 gene expression using human melanoma HMV-II cells. The mRNA of CRF, Ucn1, Ucn2, and CRF receptor type 1 (CRF1 receptor) was detected in HMV-II cells. CRF and Ucn1 stimulated TRP1 gene transcription via the CRF1 receptor, and increased both Nurr-1 and Nur77 mRNA expression levels. Both CRF- and Ucn1-induced Nurr-1/Nur77 acted via a NGFI-B response element on the TRP1 promoter. The combination of Nurr-1/Nur77 and microphthalmia-associated transcription factor, a melanocyte-specific transcription factor gene induced by α-melanocyte-stimulating hormone, had additive effects on activation of TRP1 gene transcription. The findings suggest that in human melanoma HMV-II cells both CRF and Ucn1 regulate TRP1 gene expression via Nurr-1/Nur77 production, independent of pro-opiomelanocortin or α-melanocyte-stimulating hormone stimulation.

Han YF, Cao GW
Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers.
World J Gastroenterol. 2012; 18(47):6865-73 [PubMed] Free Access to Full Article Related Publications
NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily. It was originally considered to be essential in the generation and maintenance of dopaminergic neurons, and associated with neurological disorders such as Parkinson's disease. Recently, NR4A2 has been found to play a critical role in some inflammatory diseases and cancer. NR4A2 can be efficiently trans-activated by some proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β, and vascular endothelial growth factor (VEGF). The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells. NR4A2 can trans-activate Foxp3, a hallmark specifically expressed in regulatory T (Treg) cells, and plays a critical role in the differentiation, maintenance, and function of Treg cells. NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions. High density of Foxp3(+) Treg cells is significantly associated with gastrointestinal inflammation, tumor immune escape, and disease progression. NR4A2 is produced at high levels in CD133(+) colorectal carcinoma (CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E(2) in a cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent manner in CRC cells. The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer. NR4A2 trans-activates osteopontin, a direct target of the Wnt/β-catenin pathway associated with CRC invasion, metastasis, and poor prognosis. Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation, migration and in vivo angiogenesis. Taken together, NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer, especially CRC, and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.

Monticone S, Hattangady NG, Nishimoto K, et al.
Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells.
J Clin Endocrinol Metab. 2012; 97(8):E1567-72 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA).
OBJECTIVE: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells.
METHODS: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA.
RESULTS: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2.
CONCLUSIONS: KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production.

Deutsch AJ, Angerer H, Fuchs TE, Neumeister P
The nuclear orphan receptors NR4A as therapeutic target in cancer therapy.
Anticancer Agents Med Chem. 2012; 12(9):1001-14 [PubMed] Related Publications
NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (Nor-1) are three members of the orphan nuclear receptor (NR) family referred to as NR4A family. This subgroup activates gene expression in a constitutive ligand-independent manner. These nuclear receptors are classified as early response genes that are induced by a diverse range of signals. These orphan NRs have been implicated in cell cycle regulation, apoptosis, inflammation, metabolism and more recently in carcinogenesis. The ultimate growth of a tumor depends not only on the rate of tumor cell proliferation, but also the rate of apoptosis and NR4A1 controls both, survival and death of cancer cells. It has been demonstrated that NR4A1 activities are regulated through its subcellular localisation. In the nucleus, NR4A1 can function in a context dependent manner either as an oncogenic survival factor, promoting cancer cell growth or as the opposite through the activation of apoptosis. Additionally, in an atypical fashion, it is a potent killer when migrating to the mitochondria, where it binds to Bcl-2 and converts its survival phenotype, triggering cytochrome c release and apoptosis. The most convincing evidence that nuclear orphan receptors function as critical tumor suppressors is the observation that the NR4A1 and NR4A3 double knock out mouse develops rapidly acute myeloid leukemia. Down regulation of NR4A1 and NR4A3 was a common feature in leukemic blasts from human AML patients. In particular, the recent identification of pro-apoptotic agents inducing NR4A expression or acting as agonists suggests that these members could serve as potential targets for cancer therapy.

Li X, Lee SO, Safe S
Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3'-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells.
Biochem Pharmacol. 2012; 83(10):1445-55 [PubMed] Free Access to Full Article Related Publications
NR4A2 (Nurr1) is an orphan nuclear receptor with no known endogenous ligands and is highly expressed in many cancer cell lines including Panc1 and Panc28 pancreatic cancer cells. Structure-dependent activation of NR4A2 by a series of 1,1-bis(3'-indolyl)-1-(aromatic)methane (C-DIM) analogs was determined in pancreatic cancer cells transfected with yeast GAL4-Nurr1 chimeras and a UASx5-luc reporter gene or constructs containing response elements that bind NR4A2. Among 23 different structural analogs, phenyl groups containing p-substituted trifluoromethyl, t-butyl, cyano, bromo, iodo and trifluoromethoxy groups were the most active compounds in transactivation assay. The p-bromophenyl analog (DIM-C-pPhBr) was used as a model for structure-activity studies among a series of ortho-, meta- and para-bromophenyl isomers and the corresponding indole 2- and N-methyl analogs. Results show that NR4A2 activation was maximal with the p-bromophenyl analog and methylation of the indole NH group abrogated activity. Moreover, using GAL4-Nurr1 (full length) or GAL-Nurr1-A/B and GAL4-Nurr1-(C-F) chimeras expressing N- and C-terminal domains of Nurr1, respectively, DIM-C-pPhBr activated all three constructs and these responses were differentially affected by kinase inhibitors. DIM-C-pPhBr also modulated expression of several Nurr1-regulated genes in pancreatic cancer cells including vasoactive intestinal peptide (VIP), and the immunohistochemical and western blot analyses indicated that DIM-C-pPhBr activates nuclear NR4A2.

Wang C, Uray IP, Mazumdar A, et al.
SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE).
Breast Cancer Res Treat. 2012; 134(1):101-15 [PubMed] Free Access to Full Article Related Publications
Estrogen signaling is a critical pathway that plays a key role in the pathogenesis of breast cancer. In a previous transcriptional profiling study, we identified a novel panel of estrogen-induced genes in breast cancer. One of these genes is solute carrier family 22 member 5 (SLC22A5), which encodes a polyspecific organic cation transporter (also called OCTN2). In this study, we found that estrogen stimulates SLC22A5 expression robustly in an estrogen receptor (ER)-dependent manner and that SLC22A5 expression is associated with ER status in breast cancer cell lines and tissue specimens. Although the SLC22A5 proximal promoter is not responsive to estrogen, a downstream intronic enhancer confers estrogen inducibility. This intronic enhancer contains a newly identified estrogen-responsive element (ERE) (GGTCA-CTG-TGACT) and other transcription factor binding sites, such as a half ERE and a nuclear receptor related 1 (NR4A2/Nurr1) site. Estrogen induction of the luciferase reporter was dependent upon both the ERE and the NR4A2 site within the intronic enhancer. Small interfering RNA against either ER or Nurr1 inhibited estrogen induction of SLC22A5 expression, and chromatin immunoprecipitation assays confirmed the recruitment of both ER and Nurr1 to this enhancer. In functional assays, knockdown of SLC22A5 inhibited L: -carnitine intake, resulted in lipid droplet accumulation, and suppressed the proliferation of breast cancer cells. These results demonstrate that SLC22A5 is an estrogen-dependent gene regulated via a newly identified intronic ERE. Since SLC22A5 is a critical regulator of carnitine homeostasis, lipid metabolism, and cell proliferation, SLC22A5 may serve as a potential therapeutic target for breast cancer in the future.

Ham A, Lee HJ, Hong SS, et al.
Moracenin D from Mori Cortex radicis protects SH-SY5Y cells against dopamine-induced cell death by regulating nurr1 and α-synuclein expression.
Phytother Res. 2012; 26(4):620-4 [PubMed] Related Publications
In our efforts to find neuroprotective materials of plant origin, several compounds were isolated from Mori Cortex Radicis. The protective effect against dopamine-induced cell death was examined, and the subsequent effects on the levels of expression of Parkinson's disease-associated nurr1 and α-synuclein were evaluated in a dopamine-induced system. Five compounds were isolated and moracenin D protected cell death against dopamine-induction in human neuroblastoma SH-SY5Y cells. The effects of moracenin D on the levels of mRNA and protein expression of nurr1 and α-synuclein were subsequently examined using reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Treatment with moracenin D resulted in an up-regulation of nurr1 mRNA levels and a down-regulation of α-synuclein mRNA levels. Additionally, the α-synuclein protein expression was decreased in accordance with an increase in nurr1 protein expression. These results demonstrate that the protective effects of moracenin D were presumably due to the correlative effects on the up-regulation of nurr1 and down-regulation of α-synuclein expressions against dopamine induction. Therefore, moracenin D can be considered as a candidate for therapy for Parkinson's disease.

Puglisi MA, Barba M, Corbi M, et al.
Identification of Endothelin-1 and NR4A2 as CD133-regulated genes in colon cancer cells.
J Pathol. 2011; 225(2):305-14 [PubMed] Related Publications
Several in vitro assays have been proposed to identify cancer stem cells (CSCs), including immunophenotyping, sphere assay and side population (SP) assay. CD133 antigen has been proposed as a CSC marker in colon cancer (CC). However, no functional data are available to date and conflicting results have been reported regarding its role as true CSC marker. Here we set out to identify a molecular signature associated with potential CSC. CD133(+) cells isolated from the CaCo-2 CC cell line were analysed by microarray molecular profiling compared to CD133(-) counterparts. Various differentially expressed genes were identified and the most relevant transcripts found to be over-expressed in CD133(+) cells were evaluated by quantitative RT-PCR in the CD133(+) fractions isolated from several CC cell lines. In the attempt to find a correlation between putative CSCs, isolated by means of CD133 immunophenotyping and the SP approach, we demonstrated a significant enrichment of CD133(+) cells within the SP fraction of CC cells, and comparison of the gene expression profiles revealed that Endothelin-1 (END-1) and nuclear receptor subfamily 4, group A, member 2 (NR4A2) transcripts are highly expressed in both CD133(+) and SP fractions of CC cells. Moreover, depletion of CD133 by siRNA induced a significant attenuation of END-1 and NR4A2 expression levels in CaCo-2 cells, while expression of all three molecules decreased during sodium butyrate-induced differentiation. In conclusion, we have identified a molecular signature associated with potential CSCs and showed for the first time the existence of a functional relationship between CD133, END-1 and NR4A2 expression in colon cancer cells.

Holla VR, Wu H, Shi Q, et al.
Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer.
J Biol Chem. 2011; 286(34):30003-9 [PubMed] Free Access to Full Article Related Publications
Although cancer cells have traditionally been thought to rely on the glycolytic pathway to generate ATP, recent studies suggest that cancer cells can shift to the fatty acid oxidation pathway as an alternative energy source. All of the factors that induce and regulate this adaptive shift in metabolism are not known. Cyclooxygenase-2-derived prostaglandin E(2) (PGE(2)) is produced at high levels in colon cancer, and multiple lines of evidence from human-, animal-, and cell line-based studies indicate that PGE(2) plays a pro-oncogenic role in colorectal cancer progression. We have shown previously that exposure of colon cancer cells to PGE(2) promotes cell survival, in part by inducing the expression of the nuclear orphan receptor NR4A2. Here, we report that PGE(2)-induced NR4A2 increased fatty acid oxidation by inducing the expression of multiple proteins in the fatty acid oxidation pathway. NR4A2 was found to bind directly to Nur77-binding response elements located within the regulatory region of these genes. Nur77-binding response element binding also resulted in the recruitment of transcriptional coactivators and induction of gene expression. Collectively, our findings suggest that NR4A2 plays a key role as a transcriptional integration point between the eicosanoid and fatty acid metabolic pathways. Thus, PGE(2) is a potential regulator of the adaptive shift to energy utilization via fatty acid oxidation that has been observed in several types of cancer.

Smith AG, Lim W, Pearen M, et al.
Regulation of NR4A nuclear receptor expression by oncogenic BRAF in melanoma cells.
Pigment Cell Melanoma Res. 2011; 24(3):551-63 [PubMed] Related Publications
Activating mutations in the MAPK pathway effectors, NRAS or BRAF, are detected in over 70% of melanomas. Accordingly, the identification of downstream targets of constitutive MAPK signalling in melanoma represents a major goal in understanding the genesis of this disease. We report here the regulation of members of the NR4A family of nuclear receptors by the BRAF-MEK-ERK cascade in melanoma cells. Expression profiling of melanoma cells in which both the NR4A1 and NR4A2 family members have been down-regulated by siRNA revealed alterations in genes associated with proliferation, survival and invasiveness of tumour cells. Notably, the up-regulation of Wnt/β-catenin pathway antagonists, DACT1 and CITED1, following NR4A1/2 ablation suggests a possible link between NR4A and β-catenin activity in melanoma cells. Taken together, these data suggest that dysregulation of NR4A nuclear receptors expression and function by the MAPK pathway may contribute to melanoma tumourigenicity.

Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM
Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice.
Blood. 2011; 117(9):2681-90 [PubMed] Free Access to Full Article Related Publications
The NR4A subfamily of nuclear receptors (NR4A1, NR4A2, and NR4A3) function as transcription factors that transduce diverse extracellular signals into altered gene transcription to coordinate apoptosis, proliferation, cell cycle arrest, and DNA repair. We previously discovered that 2 of these receptors, NR4A1 and NR4A3, are potent tumor suppressors of acute myeloid leukemia (AML); they are silenced in human AML, and abrogation of both genes in mice leads to rapid postnatal development of AML. Reduced expression of NR4As is also a common feature of myelodysplastic syndromes (MDSs). Here we show that reduced gene dosage of NR4A1 and NR4A3 in hypoallelic (NR4A1(+/-)NR4A3(-/-) or NR4A1(-/-)NR4A3(+/-)) mice below a critical threshold leads to a chronic myeloid malignancy that closely recapitulates the pathologic features of mixed myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) with progression to AML in rare cases. Enhanced proliferation and excessive apoptosis of hematopoietic stem cells and myeloid progenitors, together with elevated DNA damage, contribute to MDS/MPN disease. We identify the myeloid tumor suppressor genes Egr1 and JunB and the DNA damage checkpoint kinase, polo-like kinase 2 (Plk2) as deregulated genes whose disrupted signaling probably contributes to MDS/MPN. These mice provide a novel model to elucidate the molecular pathogenesis of MDS/MPN and for therapeutic evaluation.

Komiya T, Coxon A, Park Y, et al.
Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer.
Oncogene. 2010; 29(11):1672-80 [PubMed] Related Publications
Activation of Crtc1 (also known as Mect1/Torc1) by a t(11;19) chromosomal rearrangement underlies the etiology of malignant salivary gland tumors. As LKB1 is a target for mutational inactivation in lung cancer and was recently shown to regulate hepatic Crtc2/CREB transcriptional activity in mice, we now present evidence suggesting disruption of an LKB1/Crtc pathway in cancer. Although Crtc1 is preferentially expressed in adult brain tissues, we observed elevated levels of steady-state Crtc1 in thoracic tumors. In addition, we show that somatic loss of LKB1 is associated with underphosphorylation of endogenous Crtc1, enhanced Crtc1 nuclear localization and enhanced expression of the Crtc prototypic target gene, NR4A2/Nurr1. Inhibition of NR4A2 was associated with growth suppression of LKB1 null tumors, but showed little effect on LKB1-wildtype cells. These data strengthen the role of dysregulated Crtc as a bona fide cancer gene, present a new element to the complex LKB1 tumorigenic axis, and suggest that Crtc genes may be aberrantly activated in a wider range of common adult malignancies.

Ragazzon B, Cazabat L, Rizk-Rabin M, et al.
Inactivation of the Carney complex gene 1 (protein kinase A regulatory subunit 1A) inhibits SMAD3 expression and TGF beta-stimulated apoptosis in adrenocortical cells.
Cancer Res. 2009; 69(18):7278-84 [PubMed] Related Publications
The cyclic AMP signaling pathway can be altered at multiple levels in endocrine tumors. Its central component is the protein kinase A (PKA). Carney complex (CNC) is a hereditary multiple neoplasia syndrome resulting from inactivating mutations of the gene encoding the PKA type I alpha regulatory subunit (PRKAR1A). Primary pigmented nodular adrenocortical disease is the most frequent endocrine tumor of CNC. Transforming growth factor beta (TGFbeta) regulates adrenal cortex physiology and signals through SMAD2/3. We used an interference approach to test the effects of PRKAR1A inactivation on PKA and TGFbeta pathways and on apoptosis in adrenocortical cells. PRKAR1A silencing stimulates PKA activity and increases transcriptional activity of a PKA reporter construct and expression of the endogenous PKA target, NR4A2, under basal conditions or after forskolin stimulation. PRKAR1A inactivation also decreased SMAD3 mRNA and protein levels via PKA, altering the cellular response to TGFbeta. SMAD3 expression was also inhibited by adrenocorticorticotropic hormone in the mouse adrenal gland and by forskolin in H295R cells. TGFbeta stimulates apoptosis in H295R cells, and this effect was counteracted by PRKAR1A inactivation. PRKAR1A silencing decreased the percentage of apoptotic cells and the cleavage of apoptosis mediators [caspase-3, poly(ADP-ribose) polymerase, and lamin A/C]. Inactivating mutations of PRKAR1A observed in adrenocortical tumors alter SMAD3, leading to resistance to TGFbeta-induced apoptosis. This cross-talk between the PKA and the TGFbeta signaling pathways reveals a new mechanism of endocrine tumorigenesis.

Li X, Tai HH
Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells.
Carcinogenesis. 2009; 30(9):1606-13 [PubMed] Related Publications
Previous studies implicate that activation of thromboxane A(2) receptor (TP) induced cell proliferation and transformation in several cell lines. We report here that the activation of TP by its agonist, [1S-[1alpha, 2alpha (Z), 3beta (1E, 3S*), 4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo [2.2.1] hept-2-yl]-5-heptenoic acid (I-BOP), induced Nurr1 expression and stimulated proliferation of human lung cancer cells. Nurr1, an orphan nuclear receptor in the nuclear receptor subfamily 4A subfamily, has been implicated in cell proliferation, differentiation and apoptosis. I-BOP markedly induced Nurr1 messenger RNA and protein levels as compared with other subfamily members, Nur77 and Nor-1. The signaling pathways of I-BOP-induced Nurr1 expression were examined by using various inhibitors of signaling molecules. The induction of Nurr1 expression by I-BOP appeared to be mediated through protein kinase A (PKA)/cAMP response element binding (CREB), protein kinase C and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways and not related to epidermal growth factor receptor and prostaglandin E(2) pathways. Transcriptional activation of Nurr1 gene by I-BOP was further investigated at the promoter level in H157 cells. 5'-Deletion analysis, site-directed mutagenesis and luciferase reporter assay demonstrated that Nurr1 expression was induced by I-BOP in a PKA/CREB-dependent manner. Further studies have revealed that Nurr1 may mediate cyclin D1 expression and I-BOP-induced cell proliferation in H157 cells since small interfering RNA of Nurr1 blocked I-BOP-induced cyclin D1 expression and cell proliferation and also decreased cell growth rate. These results provide strong evidence that Nurr1 plays a significant role in cell proliferation and may mediate TP agonist-induced proliferation in lung cancer cells.

Chang W, Ma L, Lin L, et al.
Identification of novel hub genes associated with liver metastasis of gastric cancer.
Int J Cancer. 2009; 125(12):2844-53 [PubMed] Related Publications
Understanding hub genes involved in gastric cancer (GC) metastasis could lead to effective approaches to diagnose and treat cancer metastasis. In this study, 272 differentially expressed genes between synchronous liver metastasis and the paired GC were selected from microarray assays. KEGG pathway analysis indicated that of 13 enriched pathways, 8 were involved in cancer metastasis. Literature-based annotations showed that the differentially expressed genes significantly enriched known metastasis-related genes. With the use of protein-protein interaction network, we found a subnetwork significantly enriching the metastasis-related genes and hubs. Unannotated hubs in this subnetwork were predicted to be novel metastasis-associated genes. Nine hubs in this subnetwork were validated by using quantitative RT-PCR, and 4 hubs were further validated by immunohistochemistry. NR4A2 was significantly down-regulated in synchronous liver metastasis compared with the paired GC at both transcriptional and translational levels. NR4A2 immunostaining was apparent in the mesenchymal cells of pathologically normal gastric mucosa and in the epithelial cells of primary GC. HSP90AA1 was not only up-regulated in the metastatic GC compared with primary GC at both transcriptional and translational levels, but also up-regulated in primary GC compared with the normal mucosa at the translational level. NR4A2, NR3C1, ARF3, XAB2, and alternatively spliced variants of NR4A2, SP8 and SP-novel, were significantly down-regulated, whereas CCNE1 significantly up-regulated, in primary GC compared with the normal gastric mucosa. Conclusively, NR4A2 and HSP90AA1 stand out as promising diagnostic markers and therapeutic targets for liver metastasis of GC. CCNE1 and NR3C1 indicate primary GC, rather than distant metastasis.

Zagani R, Hamzaoui N, Cacheux W, et al.
Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4A2-new therapeutic targets for colorectal cancers.
Gastroenterology. 2009; 137(4):1358-66.e1-3 [PubMed] Related Publications
BACKGROUND & AIMS: Cyclooxygenase-2 inhibitors reduce colon cancer risk by mechanisms that are not fully understood. We performed microarray analysis of adenomas from Apc(Delta14/+) mice to identify genes that respond to these drugs.
METHODS: Apc(Delta14/+) mice were given a single daily injection of parecoxib for up to 9 weeks; intestinal tracts of these and control mice were analyzed by microarray analysis, immunohistochemistry, in situ hybridization, and quantitative real-time polymerase chain reaction. Findings were further assessed using Apc(lox/lox)vil-CreER(T2) mice, the CT26 cancer cell line, and human colon tumor samples.
RESULTS: Microarray analysis revealed that osteopontin, a marker of colon cancer progression, was down-regulated in polyps from Apc(Delta14/+) mice given parecoxib compared with controls. Apc(Delta14/+) mice given parecoxib had longer survival times and reduced polyp burdens. Osteopontin was quickly down-regulated by parecoxib in intestinal polyps from Apc(Delta14/+) mice, and 2 components of the osteopontin regulatory network-the orphan nuclear receptor NR4A2 and Wnt/beta-catenin signaling-were sequentially repressed. NR4A2 activated the osteopontin promoter in CT26 cells; this effect was blocked by mutation of the NR4A2 binding response element, cotransfection of a dominant-negative form of NR4A2, and small inhibitory RNA against NR4A2. NR4A2 levels were increased throughout tumor progression in Apc(Delta14/+) mice but, unlike osteopontin, did not correlate with tumor stage. NR4A2 levels were reduced in adenomas from patients treated with rofecoxib.
CONCLUSIONS: Down-regulation of osteopontin, probably through blockade of NR4A2 and Wnt signaling, is an important component of the antitumor activity of cyclooxygenase-2 inhibitors. These factors might be developed as therapeutic targets for intestinal cancers.

Bragoszewski P, Kupryjanczyk J, Bartnik E, et al.
Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer.
BMC Cancer. 2008; 8:292 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In recent years, numerous studies have investigated somatic mutations in mitochondrial DNA in various tumours. The observed high mutation rates might reflect mitochondrial deregulation; consequently, mutation analyses could be clinically relevant. The purpose of this study was to determine if mutations in the mitochondrial D-loop region and/or the level of mitochondrial gene expression could influence the clinical course of human ovarian carcinomas.
METHODS: We sequenced a 1320-base-pair DNA fragment of the mitochondrial genome (position 16,000-750) in 54 cancer samples and in 44 corresponding germline control samples. In addition, six transcripts (MT-ATP6, MT-CO1, MT-CYB, MT-ND1, MT-ND6, and MT-RNR1) were quantified in 62 cancer tissues by real-time RT-PCR.
RESULTS: Somatic mutations in the D-loop sequence were found in 57% of ovarian cancers. Univariate analysis showed no association between mitochondrial DNA mutation status or mitochondrial gene expression and any of the examined clinicopathologic parameters. A multivariate logistic regression model revealed that the expression of the mitochondrial gene RNR1 might be used as a predictor of tumour sensitivity to chemotherapy.
CONCLUSION: In contrast to many previously published papers, our study indicates rather limited clinical relevance of mitochondrial molecular analyses in ovarian carcinomas. These discrepancies in the clinical utility of mitochondrial molecular tests in ovarian cancer require additional large, well-designed validation studies.

Albino D, Scaruffi P, Moretti S, et al.
Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory.
Cancer. 2008; 113(6):1412-22 [PubMed] Related Publications
BACKGROUND: Neuroblastic tumors (NTs) are largely comprised of neuroblastic (Nb) cells with various quantities of Schwannian stromal (SS) cells. NTs show a variable genetic heterogeneity. NT gene expression profiles reported so far have not taken into account the cellular components. The authors reported the genome-wide expression analysis of whole tumors and microdissected Nb and SS cells.
METHODS: The authors analyzed gene expression profiles of 10 stroma-poor NTs (NTs-SP) and 9 stroma-rich NTs (NTs-SR) by microarray technology. Nb and SS cells were isolated by laser microdissection from NTs-SP and NTs-SR and probed with microarrays. Gene expression data were analyzed by the Significance Analysis of Microarrays (SAM) and Game Theory (GT) methods, the latter applied for the first time to microarray data evaluation.
RESULTS: SAM identified 84 genes differentially expressed between NTs-SP and NTs-SR, whereas 50 were found by GT. NTs-SP mainly express genes associated with cell replication, nervous system development, and antiapoptotic pathways, whereas NTs-SR express genes of cell-cell communication and apoptosis. Combining SAM and GT, the authors found 16 common genes driving the separation between NTs-SP and NTs-SR. Five genes overexpressed in NTs-SP encode for nuclear proteins (CENPF, EYA1, PBK, TOP2A, TFAP2B), whereas only 1 of 11 highly expressed genes in NTs-SR encodes for a nuclear receptor (NR4A2).
CONCLUSIONS: The results showed that NT-SP and NT-SR gene signatures differ for a set of genes involved in distinct pathways, and the authors demonstrated a low intratumoral heterogeneity at the mRNA level in both NTs-SP and NTs-SR. The combination of SAM and GT methods may help to better identify gene expression profiling in NTs.

Pan T, Zhu W, Zhao H, et al.
Nurr1 deficiency predisposes to lactacystin-induced dopaminergic neuron injury in vitro and in vivo.
Brain Res. 2008; 1222:222-9 [PubMed] Related Publications
Parkinson's disease (PD) has been proposed to result from a combination of genetic susceptibility and environmental exposure. Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in neuron degeneration and in pathogenesis of PD. Nurr1, a member of nuclear receptor superfamily, is a potential susceptibility gene for PD. In this in vitro and in vivo study, we investigated whether Nurr1 deficiency may predispose to environmental proteasome inhibitors-induced neuron injury. We found that lactacystin, an irreversible proteasome inhibitor, caused greater injury to SH-SY5Y cells that Nurr1 expression has been suppressed by small interference RNA (siRNA). On the contrary, the Nurr1 overexpressed SH-SY5Y cells by Nurr1 expression vector transfection rescued the lactacystin-induced injury. In vivo, stereotactic microinjection with lactacystin into right median forebrain bundle (MFB) of mice caused significant inhibition of the proteasome activity in both Nurr1 knock out heterozygous (Nurr1 +/-) mice and their littermate wild-type (Nurr1 +/+) mice. At same time, we found that there was a severer loss of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) and greater reduction of striatal dopamine (DA) levels in Nurr1 +/- mice as compared with that in Nurr1 +/+ mice. Furthermore, lactacystin-induced increase of cleaved PARP, cleaved caspase3 and p53 and decrease of bcl-2 in SN was significantly enhanced in Nurr1 +/- mice. These findings suggest that reduction in Nurr1 expression increases susceptibility to DAergic neuron injury induced by UPS impairment.

Yang YX, Latchman DS
Nurr1 transcriptionally regulates the expression of alpha-synuclein.
Neuroreport. 2008; 19(8):867-71 [PubMed] Related Publications
Parkinson's disease is one of the most common neurodegenerative disorders and still remains incurable. The condition is linked to mutations and alterations in expression in several genes, in particular that encoding alpha-synuclein. Mutations in Nurr1 leading to a reduction in expression were also found to lead to Parkinson's disease. In view of the importance of gene regulation in Parkinson's disease, we examined the effect of changes in Nurr1 expression on alpha-synuclein expression. Nurr1 was shown to be involved in the regulation of alpha-synuclein, as decreased expression of Nurr1, which has been found in Parkinson's disease patients with Nurr1 mutations, was shown to transcriptionally increase alpha-synuclein expression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NR4A2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999