RARB

Gene Summary

Gene:RARB; retinoic acid receptor beta
Aliases: HAP, RRB2, NR1B2, MCOPS12, RARbeta1
Location:3p24.2
Summary:This gene encodes retinoic acid receptor beta, a member of the thyroid-steroid hormone receptor superfamily of nuclear transcriptional regulators. This receptor localizes to the cytoplasm and to subnuclear compartments. It binds retinoic acid, the biologically active form of vitamin A which mediates cellular signalling in embryonic morphogenesis, cell growth and differentiation. It is thought that this protein limits growth of many cell types by regulating gene expression. The gene was first identified in a hepatocellular carcinoma where it flanks a hepatitis B virus integration site. Alternate promoter usage and differential splicing result in multiple transcript variants. [provided by RefSeq, Mar 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:retinoic acid receptor beta
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (26)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RARB (cancer-related)

Bouras E, Karakioulaki M, Bougioukas KI, et al.
Gene promoter methylation and cancer: An umbrella review.
Gene. 2019; 710:333-340 [PubMed] Related Publications
Gene promoter methylation is a common epigenetic event, taking place in the early phase of tumorigenesis, which has a great potential as a diagnostic and prognostic cancer biomarker. In this umbrella review, we provide an overview on the association between gene-promoter methylation of protein-coding genes and cancer risk based on currently available meta-analyses data on gene promoter methylation. We searched MEDLINE via PubMed and the Cochrane Database of Systematic Reviews for meta-analyses that examine the association between gene-promoter methylation and cancer, published until January 2019 in English. We used AMSTAR to assess the quality of the included studies and applied a set of pre-specified criteria to evaluate the magnitude of each association. We provide a comprehensive overview of 80 unique combinations between 22 different genes and 18 cancer outcomes, all of which indicated a positive association between promoter hypermethylation and cancer. In total, the 70 meta-analyses produced significant results under a random-effects model with odds ratios that ranged from 1.94 to 26.60, with the summary effect being in favor of the unmethylated group in all cases. Three of the strong evidence associations involve RASSF1 methylation on bladder cancer risk (OR = 18.46; 95% CI: 12.69-26.85; I

Oue N, Sentani K, Sakamoto N, et al.
Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells.
Int J Clin Oncol. 2019; 24(7):771-778 [PubMed] Related Publications
Gastric cancer (GC), one of the most common human cancers, is a heterogeneous disease with different phenotypes, prognoses, and responses to treatment. Understanding the pathogenesis of GC at the molecular level is important for prognosis prediction and determining treatments. Microsatellite instability (MSI), silencing of MLH1, MGMT, and CDKN2A genes by DNA hypermethylation, KRAS mutation, APC mutation, and ERBB2 amplification are frequently found in intestinal type GC. Inactivation of CDH1 and RARB by DNA hypermethylation, and amplification of FGFR and MET, are frequently detected in diffuse type GC. In addition, BST2 and PCDHB9 genes are overexpressed in intestinal type GC. Both genes are associated with GC progression. GC can be divided into gastric/intestinal mucin phenotypes according to mucin expression. MSI, alterations of TP73, CDH1 mutation, and DNA methylation of MLH are detected frequently in the gastric mucin phenotype. TP53 mutation, deletion of APC, and DNA methylation of MGMT are detected frequently in the intestinal mucin phenotype. FKTN is overexpressed in the intestinal mucin phenotype, and IQGAP3 is overexpressed in the gastric mucin phenotype. These genes are involved in GC progression. To characterize cancer stem cells, a useful method is spheroid colony formation. KIFC1 and KIF11 genes show more than twofold higher expression in spheroid-forming cells than that in parental cells. Both KIF genes are overexpressed in GC, and knockdown of these genes inhibits spheroid formation. Alterations of these molecules may be useful to understand gastric carcinogenesis. Specific inhibitors of these molecules may also be promising anticancer drugs.

Callahan CL, Bonner MR, Nie J, et al.
Active and secondhand smoke exposure throughout life and DNA methylation in breast tumors.
Cancer Causes Control. 2019; 30(1):53-62 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
PURPOSE: Tobacco smoke exposure has been associated with altered DNA methylation. However, there is a paucity of information regarding tobacco smoke exposure and DNA methylation of breast tumors.
METHODS: We conducted a case-only analysis using breast tumor tissue from 493 postmenopausal and 225 premenopausal cases in the Western New York Exposures and Breast Cancer (WEB) study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A, CCND2, BRCA1, FHIT, and SYK) was measured with pyrosequencing. Participants reported their secondhand smoke (SHS) and active smoking exposure for seven time periods. Unconditional logistic regression was used to estimate odds ratios (OR) of having methylation higher than the median.
RESULTS: SHS exposure was associated with tumor DNA methylation among postmenopausal but not premenopausal women. Active smoking at certain ages was associated with increased methylation of GSTP1, FHIT, and CDKN2A and decreased methylation of SCGB3A1 and BRCA1 among both pre- and postmenopausal women.
CONCLUSION: Exposure to tobacco smoke may contribute to breast carcinogenesis via alterations in DNA methylation. Further studies in a larger panel of genes are warranted.

Lubecka K, Kaufman-Szymczyk A, Cebula-Obrzut B, et al.
Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells.
Int J Mol Sci. 2018; 19(12) [PubMed] Article available free on PMC after 07/01/2020 Related Publications
An epigenetic component, especially aberrant DNA methylation pattern, has been shown to be frequently involved in sporadic breast cancer development. A growing body of literature demonstrates that combination of agents, i.e. nucleoside analogues with dietary phytochemicals, may provide enhanced therapeutic effects in epigenetic reprogramming of cancer cells. Clofarabine (2-chloro-2'-fluoro-2'-deoxyarabinosyladenine, ClF), a second-generation 2'-deoxyadenosine analogue, has numerous anti-cancer effects, including potential capacity to regulate epigenetic processes. Our present study is the first to investigate the combinatorial effects of ClF (used at IC

Jian Z, Cheng T, Zhang Z, et al.
Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma.
Cell Mol Gastroenterol Hepatol. 2018; 6(4):429-449 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Background & Aims: Although nearly half of pancreatic ductal adenocarcinoma (PDAC) patients have diabetes mellitus with episodes of hyperglycemia, its tumor microenvironment is hypoglycemic. Thus, it is crucial for PDAC cells to develop adaptive mechanisms dealing with oscillating glucose levels. So far, the biological impact of such glycemic variability on PDAC biology remains unknown.
Methods: Murine PDAC cells were cultured in low- and high-glucose medium to investigate the molecular, biochemical, and metabolic influence of glycemic variability on tumor behavior. A set of in vivo functional assays including orthotopic implantation and portal and tail vein injection were used. Results were further confirmed on tissues from PDAC patients.
Results: Glycemic variability has no significant effect on PDAC cell proliferation. Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization. Increased metastatic colonization under hyperglycemia is due to increased expression of runt related transcription factor 3 (Runx3), which further activates expression of collagen, type VI, alpha 1 (Col6a1), forming a glycemic pro-metastatic pathway. Through epigenetic machinery, retinoic acid receptor beta (Rarb) expression fluctuates according to glycemic variability, acting as a critical sensor relaying the glycemic signal to Runx3/Col6a1. Moreover, the signal axis of Rarb/Runx3/Col6a1 is pharmaceutically accessible to a widely used antidiabetic substance, metformin, and Rar modulator. Finally, PDAC tissues from patients with diabetes show an increased expression of COL6A1.
Conclusions: Glycemic variability promotes both local invasion and metastatic colonization of PDAC. A pro-metastatic signal axis Rarb/Runx3/Col6a1 whose activity is controlled by glycemic variability is identified. The therapeutic relevance of this pathway needs to be explored in PDAC patients, especially in those with diabetes.

Karpinski P, Patai AV, Hap W, et al.
Multilevel omic data clustering reveals variable contribution of methylator phenotype to integrative cancer subtypes.
Epigenomics. 2018; 10(10):1289-1299 [PubMed] Related Publications
AIM: We aimed to assess to what extent CpG island methylator phenotype (CIMP) contributes to cancer subtypes obtained by multilevel omic data analysis.
MATERIALS & METHODS: 16 The Cancer Genome Atlas datasets encompassing three data layers in 4688 tumor samples were analyzed. We identified cancer integrative subtypes (ISs) by the use of similarity network fusion and consensus clustering. CIMP high (CIMP-H) associated ISs were profiled by gene sets and transcriptional regulators enrichment analysis.
RESULTS & CONCLUSION: In nine out of 16 cancer datasets CIMP-H clusters significantly overlaped with unique ISs. The contribution of CIMP-H on integrative molecular profiling is variable; therefore, only in a subset of cancer types does CIMP-H contribute to homogenous integrative subtype. CIMP-H associated ISs are heterogenous groups with regard to deregulated pathways and transcriptional regulators.

Walter RFH, Rozynek P, Casjens S, et al.
Methylation of L1RE1, RARB, and RASSF1 function as possible biomarkers for the differential diagnosis of lung cancer.
PLoS One. 2018; 13(5):e0195716 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Lung cancer is the major cause of cancer-related deaths worldwide. Differential diagnosis can be difficult, especially when only small samples are available. Epigenetic changes are frequently tissue-specific events in carcinogenesis and hence may serve as diagnostic biomarkers.
MATERIAL AND METHODS: 138 representative formalin-fixed, paraffin-embedded (FFPE) tissues (116 lung cancer cases and 22 benign controls) were used for targeted DNA methylation analysis via pyrosequencing of ten literature-derived methylation markers (APC, CDH1, CDKN2A, EFEMP1, FHIT, L1RE1, MGMT, PTEN, RARB, and RASSF1). Methylation levels were analyzed with the Classification and Regression Tree Algorithm (CART), Conditional Interference Trees (ctree) and ROC. Validation was performed with additional 27 lung cancer cases and 38 benign controls. TCGA data for 282 lung cancer cases was included in the analysis.
RESULTS: CART and ctree analysis identified the combination of L1RE1 and RARB as well as L1RE1 and RASSF1 as independent methylation markers with high discriminative power between tumor and benign tissue (for each combination, 91% specificity and 100% sensitivity). L1RE1 methylation associated significantly with tumor type and grade (p<0.001) with highest methylation in the control group. The opposite was found for RARB (p<0.001). RASSF1 methylation increased with tumor type and grade (p<0.001) with strongest methylation in neuroendocrine tumors (NET).
CONCLUSION: Hypomethylation of L1RE1 is frequent in tumors compared to benign controls and associates with higher grade, whereas increasing methylation of RARB is an independent marker for tumors and higher grade. RASSF1 hypermethylation was frequent in tumors and most prominent in NET making it an auxiliary marker for separation of NSCLC and NET. L1RE1 in combination with either RARB or RASSF1 could function as biomarkers for separating lung cancer and non-cancerous tissue and could be useful for samples of limited size such as biopsies.

Ribeiro IP, Rodrigues JM, Mascarenhas A, et al.
Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis.
J Oral Sci. 2018; 60(1):70-81 [PubMed] Related Publications
Oral carcinoma develops from squamous epithelial cells by the acquisition of multiple (epi) genetic alterations that target different genes and molecular pathways. Herein, we performed a comprehensive genomic and epigenetic characterization of the HSC-3 cell line through karyotyping, multicolor fluorescence in situ hybridization, array comparative genomic hybridization, and methylation-specific multiplex ligation-dependent probe amplification. HSC-3 turned out to be a near-triploid cell line with a modal number of 61 chromosomes. Banding and molecular cytogenetic analyses revealed that nonrandom gains of chromosomal segments occurred more frequently than losses. Overall, gains of chromosome 1, 3q, 5p, 7p, 8q, 9q, 10, 11p, 11q13, 12, 13, 14, 17, 18p, 20, Yp, and Xq were observed. The largest region affected by copy number loss was observed at chromosome 18q. Several of the observed genomic imbalances and their mapped genes were already associated with oral carcinoma and/or adverse prognosis, invasion, and metastasis in cancer. The most common rearrangements observed were translocations in the centromeric/near-centromeric regions. RARB, ESR1, and CADM1 genes were methylated and showed copy number losses, whereas TP73 and GATA5 presented with methylation and copy number gains. Thus, the current study presents a comprehensive characterization of the HSC-3 cell line; the use of this cell line may contribute to enriching the resources available for oral cancer research, especially for the testing of therapeutic agents.

Wu HC, Do C, Andrulis IL, et al.
Breast cancer family history and allele-specific DNA methylation in the legacy girls study.
Epigenetics. 2018; 13(3):240-250 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Family history, a well-established risk factor for breast cancer, can have both genetic and environmental contributions. Shared environment in families as well as epigenetic changes that also may be influenced by shared genetics and environment may also explain familial clustering of cancers. Epigenetic regulation, such as DNA methylation, can change the activity of a DNA segment without a change in the sequence; environmental exposures experienced across the life course can induce such changes. However, genetic-epigenetic interactions, detected as methylation quantitative trait loci (mQTLs; a.k.a. meQTLs) and haplotype-dependent allele-specific methylation (hap-ASM), can also contribute to inter-individual differences in DNA methylation patterns. To identify differentially methylated regions (DMRs) associated with breast cancer susceptibility, we examined differences in white blood cell DNA methylation in 29 candidate genes in 426 girls (ages 6-13 years) from the LEGACY Girls Study, 239 with and 187 without a breast cancer family history (BCFH). We measured methylation by targeted massively parallel bisulfite sequencing (bis-seq) and observed BCFH DMRs in two genes: ESR1 (Δ4.9%, P = 0.003) and SEC16B (Δ3.6%, P = 0.026), each of which has been previously implicated in breast cancer susceptibility and pubertal development. These DMRs showed high inter-individual variability in methylation, suggesting the presence of mQTLs/hap-ASM. Using single nucleotide polymorphisms data in the bis-seq amplicon, we found strong hap-ASM in SEC16B (with allele specific-differences ranging from 42% to 74%). These findings suggest that differential methylation in genes relevant to breast cancer susceptibility may be present early in life, and that inherited genetic factors underlie some of these epigenetic differences.

Laco J, Kovarikova H, Chmelarova M, et al.
Analysis of DNA methylation and microRNA expression in NUT (nuclear protein in testis) midline carcinoma of the sinonasal tract: a clinicopathological, immunohistochemical and molecular genetic study.
Neoplasma. 2018; 65(1):113-123 [PubMed] Related Publications
The aim of this study was a detailed clinicopathological investigation of sinonasal NUT midline carcinoma (NMC), including analysis of DNA methylation and microRNA (miRNA) expression. Three (5%) cases of NMC were detected among 56 sinonasal carcinomas using immunohistochemical screening and confirmed by fluorescence in situ hybridization. The series comprised 2 males and 1 female, aged 46, 60, and 65 years. Two tumors arose in the nasal cavity and one in the maxillary sinus. The neoplasms were staged pT1, pT3, and pT4a (all cN0M0). All patients were treated by radical resection with adjuvant radiotherapy. Two patients died 3 and 8 months after operation, but one patient (pT1 stage; R0 resection) experienced no evidence of disease at 108 months. Microscopically, all tumors consisted of infiltrating nests of polygonal cells with vesicular nuclei, prominent nucleoli and basophilic cytoplasm. Abrupt keratinization was present in only one case. Immunohistochemically, there was a diffuse expression of cytokeratin (CK) cocktail, CK7, p40, p63, and SMARCB1/INI1. All NMCs tested negative for EBV and HPV infection. Two NMCs showed methylation of RASSF1 gene. All other genes (APC, ATM, BRCA1, BRCA2, CADM1, CASP8, CD44, CDH13, CDKN1B, CDKN2A, CDKN2B, CHFR, DAPK1, ESR1, FHIT, GSTP1, HIC1, KLLN, MLH1a, MLH1b, RARB, TIMP3, and VHL) were unmethylated. All NMCs showed upregulation of miR-9 and downregulation of miR-99a and miR-145 and two cases featured also upregulation of miR-21, miR-143, and miR-484. In summary, we described three cases of sinonasal NMCs with novel findings on DNA methylation and miRNA expression, which might be important for new therapeutic strategies in the future.

Callahan CL, Bonner MR, Nie J, et al.
Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors.
Environ Res. 2018; 161:418-424 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: We previously reported increased risk of breast cancer associated with early life exposure to two measures of air pollution exposure, total suspended particulates (TSP) and traffic emissions (TE), possible proxies for exposure to polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs has been shown to be associated with aberrant patterns of DNA methylation in peripheral blood of healthy individuals. Exposure to PAHs and methylation in breast tumor tissue has received little attention. We examined the association of early life exposure to TSP and TE with patterns of DNA methylation in breast tumors.
METHODS: We conducted a study of women enrolled in the Western New York Exposures and Breast Cancer (WEB) Study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A CCND2, BRCA1, FHIT, and SYK) was assessed using bisulfite-based pyrosequencing. TSP exposure at each woman's home address at birth, menarche, and when she had her first child was estimated. TE exposure was modeled for each woman's residence at menarche, her first birth, and twenty and ten years prior to diagnosis. Unconditional logistic regression was employed to estimate odds ratios (OR) of having methylation greater than the median value, adjusting for age, secondhand smoke exposure before age 20, current smoking status, and estrogen receptor status.
RESULTS: Exposure to higher TSP at a woman's first birth was associated with lower methylation of SCGB3A1 (OR = 0.48, 95% CI: 0.23-0.99) and higher methylation of SYK (OR = 1.86, 95% CI: 1.03-3.35). TE at menarche was associated with increased methylation of SYK (OR = 2.37, 95% CI: 1.05-5.33). TE at first birth and ten years prior to diagnosis was associated with decreased methylation of CCND2 (OR ten years prior to diagnosis=0.48, 95% CI: 0.26-0.89). Although these associations were nominally significant, none were significant after adjustment for multiple comparisons (p < 0.01).
CONCLUSIONS: We observed suggestive evidence that exposure to ambient air pollution throughout life, measured as TSP and TE, may be associated with DNA methylation of some tumor suppressor genes in breast tumor tissue. Future studies with a larger sample size that assess methylation of more sites are warranted.

Fischer-Huchzermeyer S, Dombrowski A, Wilke G, et al.
MEK inhibitors enhance therapeutic response towards ATRA in NF1 associated malignant peripheral nerve sheath tumors (MPNST) in-vitro.
PLoS One. 2017; 12(11):e0187700 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
OBJECTIVE: Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome characterized by an increased risk of malignant peripheral nerve sheath tumors (MPNST). Chemotherapy of MPNST is still insufficient. In this study, we investigated whether human tumor Schwann cells derived from NF1 associated MPNST respond to all-trans retinoic acid (ATRA). We analyzed effects of ATRA and MEK inhibitor (MEKi) combination therapy.
METHODS: MPNST cell lines S462, T265, NSF1 were treated with ATRA and MEKi U0126 and PD0325901. We assessed cell viability, proliferation, migration, apoptosis and differentiation as well as mRNA expression of RAR and RXR subtypes and ATRA target genes such as CRABP2, CYP26A1, RARB and PDK1. We also analyzed CRABP2 methylation in cell lines and performed immunohistochemistry of human MPNST specimens.
RESULTS: ATRA therapy reduced viability and proliferation in S462 and T265 cells, accompanied by differentiation, apoptosis and reduced migration. NSF1 cells which lacked RXRG expression did not respond to ATRA. We furthermore demonstrated that ATRA signaling was functional for common targets, and that mRNA expression of CRABP2 and its targets was raised by ATRA therapy, whereas alternative pathways via FABP5 were not induced. Finally, combination of ATRA and MEKi demonstrated additively reduced viability of T265 and S462 cells.
CONCLUSIONS: We observed therapeutic effects in two of three MPNST cell lines pronounced by combination therapy. These data point to a potentially successful treatment of MPNST by combined application of ATRA and MEK inhibitors such as U0126 or PD0325901.

Alsofyani AA, Alsiary RA, Samkari A, et al.
Prognostic potential of KLOTHO and SFRP1 promoter methylation in head and neck squamous cell carcinoma.
J Appl Genet. 2017; 58(4):459-465 [PubMed] Related Publications
Hypermethylation in the CpG island promoter regions of tumor suppressors is known to play a significant role in the development of HNSCC and the detection of which can aid the classification and prognosis of HNSCC. This study aims to profile the methylation patterns in a panel of key genes including CDKN2A, CDKN2B, KLOTHO (KL), RASSF1A, RARB, SLIT2, and SFRP1, in a group of HNSCC samples from Saudi Arabia. The extent of methylation in these genes is determined using the MethyLight assay and correlated with known clinicopathological parameters in our samples of 156 formalin-fixed and paraffin-embedded HNSCC tissues. SLIT2 methylation had the highest frequency (64.6%), followed by RASSF1A (41.3%), RARB (40.7%), SFRP1 (34.9), KL (30.7%), CKDN2B (29.6%), and CKDN2A (29.1%). KL and SFRP1 methylation were more predominant in nasopharyngeal tumors (P = 0.001 and P = 0.031 respectively). Kaplan Meier analysis showed that patients with moderately differentiated tumors who display SFRP1 methylation have significantly worse overall survival in comparison with other samples. In contrast, better clinical outcomes were seen in patients with KL methylation. In conclusion, our findings suggest that the detection of frequent methylation in SFRP1 and KL genes' promoters could serve as prognostic biomarkers for HNSCC.

Wu VM, Mickens J, Uskoković V
Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma.
ACS Appl Mater Interfaces. 2017; 9(31):25887-25904 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Osteosarcoma (OS) is one of the most common neoplasia among children, and its survival statistics have been stagnating since the combinatorial anticancer therapy triad was first introduced. Here, we report on the assessment of the effect of hydroxyapatite (HAp) nanoparticles loaded with medronate, the simplest bisphosphonate, as a bone-targeting agent and JQ1, a small-molecule bromodomain inhibitor, as a chemotherapeutic in different 2D and 3D K7M2 OS in vitro models. Both additives decreased the crystallinity of HAp, but the effect was more intense for medronate because of its higher affinity for HAp. As the result of PO

Kettunen E, Hernandez-Vargas H, Cros MP, et al.
Asbestos-associated genome-wide DNA methylation changes in lung cancer.
Int J Cancer. 2017; 141(10):2014-2029 [PubMed] Related Publications
Previous studies have revealed a robust association between exposure to asbestos and human lung cancer. Accumulating evidence has highlighted the role of epigenome deregulation in the mechanism of carcinogen-induced malignancies. We examined the impact of asbestos on DNA methylation. Our genome-wide studies (using Illumina HumanMethylation450K BeadChip) of lung cancer tissue and paired normal lung from 28 asbestos-exposed or non-exposed patients, mostly smokers, revealed distinctive DNA methylation changes. We identified a number of differentially methylated regions (DMR) and differentially variable, differentially methylated CpGs (DVMC), with individual CpGs further validated by pyrosequencing in an independent series of 91 non-small cell lung cancer and paired normal lung. We discovered and validated BEND4, ZSCAN31 and GPR135 as significantly hypermethylated in lung cancer. DMRs in genes such as RARB (FDR 1.1 × 10

Rasmussen SL, Krarup HB, Sunesen KG, et al.
Hypermethylated DNA, a circulating biomarker for colorectal cancer detection.
PLoS One. 2017; 12(7):e0180809 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers in the western world. Screening is an efficient method of reducing cancer-related mortality. Molecular biomarkers for cancer in general and CRC in particular have been proposed, and hypermethylated DNA from stool or blood samples are already implemented as biomarkers for CRC screening. We aimed to evaluate the performance of proven hypermethylated DNA promoter regions as plasma based biomarkers for CRC detection.
METHODS: We conducted a cross-sectional case-control study of 193 CRC patients and 102 colonoscopy-verified healthy controls. Using methylation specific polymerase chain reaction, we evaluated 30 DNA promoter regions previously found to be CRC specific. We used multivariable logistic regression with stepwise backwards selection, and subsequent leave-pair-out cross validation, to calculate the optimism corrected area under the receiver operating characteristics curve (AUC) for all stage as well as early stage CRC.
RESULTS: None of the individual DNA promoter regions provided an overall sensitivity above 30% at a reasonable specificity. However, seven hypermethylated promoter regions (ALX4, BMP3, NPTX2, RARB, SDC2, SEPT9, and VIM) along with the covariates sex and age yielded an optimism corrected AUC of 0.86 for all stage CRC and 0.85 for early stage CRC. Overall sensitivity for CRC detection was 90.7% at 72.5% specificity using a cut point value of 0.5.
CONCLUSIONS: Individual hypermethylated DNA promoter regions have limited value as CRC screening markers. However, a panel of seven hypermethylated promoter regions show great promise as a model for CRC detection.

Liang Z, Wang H, Guo B, et al.
Inhibition of prostate cancer RM1 cell growth in vitro by hydroxyapatite nanoparticle‑delivered short hairpin RNAs against Stat3.
Mol Med Rep. 2017; 16(1):459-465 [PubMed] Related Publications
The present study investigated the effect of signal transducer and activator of transcription 3 (Stat3) interference on RM1 prostate cancer cell viability in vitro, using plasmid‑based Stat3 specific short hairpin RNA (sh‑Stat3) delivered by hydroxyapatite nanoparticles (HAP). HAP carrying sh‑Stat3 plasmids were transfected into tumor cells. MTT assays were used to measure RM1 cell viability 24 and 48 h following transfection, and the apoptosis rate and cell cycle phase distribution were determined by flow cytometry. Stat3 mRNA expression levels were measured by reverse transcription‑quantitative polymerase chain reaction and Stat3, Cyclin D1, B cell lymphoma 2 apoptosis regulator (Bcl‑2), vascular endothelial growth factor (VEGF), Bcl‑2 associated X apoptosis regulator (Bax) and cleaved‑caspase‑3 protein expression levels were detected using western blot analysis. The results demonstrated that HAP‑delivered sh‑Stat3 significantly decreased RM1 cell viability through the promotion of cell cycle arrest and apoptosis. Stat3 mRNA and protein expression levels were significantly downregulated in RM1 cells. Bcl‑2, VEGF and Cyclin D1 were also significantly downregulated, but cleaved‑caspase‑3 and Bax mRNA and protein expression levels were significantly upregulated. HAP‑delivered sh‑Stat3 decreased RM1 cell viability in vitro, and HAP assisted plasmid‑based delivery of shRNA into tumor cells. The present results suggest that HAP may be a useful method for successful shRNA delivery into tumors.

Yang M, Xiao X, Xing X, et al.
KRAS and VEGF gene 3'-UTR single nucleotide polymorphisms predicted susceptibility in colorectal cancer.
PLoS One. 2017; 12(3):e0174140 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Single nucleotide polymorphisms (SNPs) in tumor-related genes have been reported to play important roles in cancer development. Recent studies have shown that 3'-untranslated regions (UTR) polymorphisms are associated with the occurrence and prognosis of cancers. The aim of this study is to analyze the association between KRAS and VEGF gene 3'-UTR SNPs and genetic susceptibility to colorectal cancer (CRC). In this case-control study of 371 CRC cases and 246 healthy controls, we analyzed the association between one SNP (rs1137188G > A) in the KRAS gene and four SNPs (rs3025039C > T, rs3025040C > T, rs3025053G > A and rs10434A > G) in the VEGF gene and CRC susceptibility by the improved multiplex ligase detection reaction (iMLDR) method. We checked the selected SNPs' minor allele frequency and its distribution in the frequency of Chinese people by Hap-map database and Hardy-Weinberg equilibrium, and used multivariate logistic regression models to estimate adjusted odds ratios (AORs) and 95% confidence intervals (95% CIs). We found that the rs3025039C variant genotype in the VEGF gene was associated with a significant protection for CRC (AOR = 0.693, 95% CI = 0.485-0.989; P = 0.043 for CC and CT+TT). Nevertheless, the difference was no longer significant after Bonferroni correction (Bonferroni-adjusted P = 0.172). In genetic polymorphisms analysis, we found that the KRAS rs1137188 variant AA genotype had higher portion of tumor size (≥ 5 cm) (P = 0.01; Bonferroni-adjusted P = 0.04), which suggested that the rs1137188 variant AA genotype may significantly be associated with increased progression of CRC. In conclusion, our study suggested that these five SNPs in the KRAS gene and the VEGF gene were not associated with CRC susceptibility in Han Chinese in Sichuan province.

Laco J, Chmelařová M, Vošmiková H, et al.
SMARCB1/INI1-deficient sinonasal carcinoma shows methylation of RASSF1 gene: A clinicopathological, immunohistochemical and molecular genetic study of a recently described entity.
Pathol Res Pract. 2017; 213(2):133-142 [PubMed] Related Publications
The aim of the study was detailed clinicopathological investigation of SMARCB1/INI1-deficient sinonasal carcinomas, including molecular genetic analysis of mutational status and DNA methylation of selected protooncogenes and tumor suppressor genes by means of next generation sequencing (NGS) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). A total of 4/56 (7%) cases of SMARCB1/INI1-deficient carcinomas were detected among 56 sinonasal carcinomas diagnosed over a 19year period using immunohistochemical screening. The series comprised 3 males and 1 female, aged 27-76 years (median 64 years). All tumors arose in the nasal cavity. Three neoplasms were diagnosed in advanced stage pT4. During the follow-up period (range 14-111 months (median 72 months)), three tumors recurred locally, but none of the patients developed regional or distant metastases. Ultimately, two patients died due to the tumor. Microscopically, all tumors consisted of infiltrating nests of polygonal basaloid cells with a variable component of rhabdoid cells with eosinophilic cytoplasm. Immunohistochemically, there was almost diffuse expression of cytokeratins (CK), p16, p40 and p63 in all cases, while expression of CK5/6, CK7 and vimentin was only focal or absent. The detection of NUT gave negative results. In three cases, the absence of SMARCB1/INI1 expression was due to deletion of SMARCB1/INI1 gene. Methylation of SMARCB1/INI1 gene was not found. One tumor harbored HPV18 E6/E7 mRNA. All 12 genes (BRAF, BRCA1, BRCA2, KIT, EGFR, KRAS, NRAS, PDGFRA, PIK3CA, PTEN, RET, and ROS1) tested for mutations using NGS were wild-type. Regarding DNA methylation, all four SMARCB1/INI1-deficient tumors showed methylation of RASSF1 gene by means of MS-MLPA. There was a statistically significant difference in RASSF1 gene methylation between SMARCB1/INI1-deficient and SMARCB1/INI1-positive tumors (p=0.0095). All other examined genes (ATM, BRCA1, BRCA2, CADM1, CASP8, CD44, CDKN1B, CDKN2A, CDKN2B, CHFR, DAPK1, ESR1, FHIT, GSTP1, HIC1, KLLN, MLH1a, MLH1b, RARB, and VLH) were unmethylated. In summary, we described four cases of SMARCB1/INI1-deficient sinonasal carcinoma with detailed clinicopathological data indicating that these tumors can be regarded as a distinct entity with aggressive behaviour. For the first time, we performed analysis of DNA methylation in SMARCB1/INI1-deficient sinonasal carcinomas, reporting on significantly higher methylation of RASSF1 gene in this neoplasm.

Baquedano MS, Perez Garrido N, Goñi J, et al.
DNA methylation is not involved in specific down-regulation of HSD3B2, NR4A1 and RARB genes in androgen-secreting cells of human adrenal cortex.
Mol Cell Endocrinol. 2017; 441:46-54 [PubMed] Related Publications
We hypothesized that DNA methylation is involved in human adrenal functional zonation. mRNAs expression and methylation pattern of RARB, NR4A1 and HSD3B2 genes in human adrenal tissues (HAT) and in pediatric virilizing adrenocortical tumors (VAT) were analyzed. For analysis of the results samples were divided into 3 age groups according to FeZ involution, pre and post-adrenarche ages. In all HAT, similar RARB mRNA was found including microdissected zona reticularis (ZR) and zona fasciculata, but HSD3B2 and NR4A1 mRNAs were lower in ZR (p < 0.05). NR4A1 and RARB promoters remained unmethylated in HAT and VAT. No adrenal zone-specific differences in NR4A1 methylation were observed. In summary, RARB was not associated with ZR-specific downregulation of HSD3B2 in postnatal human adrenocotical zonation. DNA methylation would not be involved in NR4A1 adrenocortical cell-type specific downregulation. Lack of CpG islands in HSD3B2 suggested that HSD3B2 ZR-specific downregulation would not be directly mediated by DNA methylation.

Gurioli G, Salvi S, Martignano F, et al.
Methylation pattern analysis in prostate cancer tissue: identification of biomarkers using an MS-MLPA approach.
J Transl Med. 2016; 14(1):249 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Epigenetic silencing mediated by CpG island methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with prostate carcinogenesis could potentially identify a tumour-specific methylation pattern, facilitating the early diagnosis of prostate cancer. The objective of the study was to assess the methylation status of 40 tumour suppressor genes in prostate cancer and healthy prostatic tissues.
METHODS: We used methylation specific-multiplex ligation probe amplification (MS-MLPA) assay in two independent case series (training and validation set). The training set comprised samples of prostate cancer tissue (n = 40), healthy prostatic tissue adjacent to the tumor (n = 26), and healthy non prostatic tissue (n = 23), for a total of 89 DNA samples; the validation set was composed of 40 prostate cancer tissue samples and their adjacent healthy prostatic tissue, for a total of 80 DNA samples. Methylation specific-polymerase chain reaction (MSP) was used to confirm the results obtained in the validation set.
RESULTS: We identified five highly methylated genes in prostate cancer: GSTP1, RARB, RASSF1, SCGB3A1, CCND2 (P < 0.0001), with an area under the ROC curve varying between 0.89 (95 % CI 0.82-0.97) and 0.95 (95 % CI 0.90-1.00). Diagnostic accuracy ranged from 80 % (95 % CI 70-88) to 90 % (95 % CI 81-96). Moreover, a concordance rate ranging from 83 % (95 % CI 72-90) to 89 % (95 % CI 80-95) was observed between MS-MLPA and MSP.
CONCLUSIONS: Our preliminary results highlighted that hypermethylation of GSTP1, RARB, RASSF1, SCGB3A1 and CCND2 was highly tumour-specific in prostate cancer tissue.

Mariano FV, Egal ES, Pramio D, et al.
Evaluation of a subset of tumor suppressor gene for copy number and epigenitic changes in pleomorphic adenoma and carcinoma ex-pleomorphic adenoma carcinogenesis.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2016; 122(3):322-31 [PubMed] Related Publications
OBJECTIVE: The progression of pleomorphic adenoma (PA) to carcinoma ex-pleomorphic adenoma (CXPA) encompasses several genomic alterations involving complex pathways. Tumor suppressor genes seem to play important roles in the tumorigenesis of both tumors. The aim of this study was to evaluate copy number and methylation of tumor suppressor genes' status in PA and CXPA samples.
STUDY DESIGN: Eight cases of PA, 2 cases of residual PA in CXPA, and 5 cases of CXPA were studied; the latter were classified according to invasiveness and histopathological subtype. Changes in 41 tumor suppressor genes were evaluated by multiplex ligation-probe dependent amplification analysis.
RESULTS: Copy number losses of CASP8, MLH1, and RARB genes were associated with PA and CXPA, while KLK3 and AI69125 copy number losses were exclusive to CXPA. The sarcomatoid carcinoma showed more copy number alterations compared with other subtypes. Hypermethylation of RASSF1 was found mainly in PA and less frequently in malignant tumors.
CONCLUSIONS: CASP8, MLH1, and RARB tumor suppressor genes were altered by copy number losses during PA progression to CXPA. Lastly, RASSF1 inactivation by methylation was also detected in both tumors.

Wijetunga NA, Belbin TJ, Burk RD, et al.
Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia.
Gynecol Oncol. 2016; 142(3):566-73 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
OBJECTIVE: To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16(INK4A) and p14(ARF) proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer.
METHODS: We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons.
RESULTS: In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers.
CONCLUSION: Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16(INK4A)/p14(ARF) expression prior to development of malignant disease.

Shen CT, Qiu ZL, Song HJ, et al.
miRNA-106a directly targeting RARB associates with the expression of Na(+)/I(-) symporter in thyroid cancer by regulating MAPK signaling pathway.
J Exp Clin Cancer Res. 2016; 35(1):101 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Serum miRNAs profiles between papillary thyroid carcinoma (PTC) patients with non-(131)I and (131)I-avid lung metastases are differentially expressed. These miRNAs have to be further validated and the role of these miRNAs in the molecular function level of thyroid cancer cell lines has not been investigated.
METHODS: Expression levels of six identified miRNAs were assessed via quantitative real-time PCR (qRT-PCR) in the serum of eligible patients. Dual-luciferase reporter assay was used to determine the potential target of miR-106a. Cell viability and apoptosis were evaluated by MTT assay and flow cytometry analysis, respectively. The change of gene expression was detected by qRT-PCR and western blotting analysis. In vitro iodine uptake assay was conducted by a γ-counter.
RESULTS: Compared to PTC patients with (131)I-avid lung metastases, miR-106a was up-regulated in the serum of patients with non-(131)I-avid lung metastases. The results of dual-luciferase reporter assay demonstrated that miR-106a directly targeted retinoic acid receptor beta (RARB) 3'-UTR. miR-106a-RARB promoted viability of thyroid cancer cells by regulating MEKK2-ERK1/2 and MEKK2-ERK5 pathway. miR-106a-RARB inhibited apoptosis of thyroid cancer cells by regulating ASK1-p38 pathway. Moreover, miR-106a-RARB could regulate the expression of sodium iodide symporter, TSH receptor and alter the iodine uptake function of thyroid cancer cells.
CONCLUSIONS: miRNA-106a, directly targeting RARB, associates with the viability, apoptosis, differentiation and the iodine uptake function of thyroid cancer cell lines by regulating MAPK signaling pathway in vitro. These findings in the present study may provide new strategies for the diagnosis and treatment in radioiodine-refractory differentiated thyroid carcinoma.

Callahan CL, Wang Y, Marian C, et al.
DNA methylation and breast tumor clinicopathological features: The Western New York Exposures and Breast Cancer (WEB) study.
Epigenetics. 2016; 11(9):643-652 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
We evaluated the association between methylation of 9 genes, SCGB3A1, GSTP1, RARB, SYK, FHIT, CDKN2A, CCND2, BRCA1, and SFN in tumor samples from 720 breast cancer cases with clinicopathological features of the tumors and survival. Logistic regression was used to estimate odds ratios (OR) of methylation and Cox proportional hazards models to estimate hazard ratios (HR) between methylation and breast cancer related mortality. Estrogen receptor (ER) and progesterone receptor (PR) positivity were associated with increased SCGB3A1 methylation among pre- and post-menopausal cases. Among premenopausal women, compared with Stage 0 cases, cases of invasive cancer were more likely to have increased methylation of RARB (Stage I OR = 4.7, 95% CI: 1.1-19.0; Stage IIA/IIB OR = 9.7, 95% CI: 2.4-39.9; Stage III/IV OR = 5.6, 95% CI: 1.1-29.4) and lower methylation of FHIT (Stage I OR = 0.2, 95% CI: 0.1-0.9; Stage IIA/IIB OR = 0.2, 95% CI: 0.1-0.8; Stage III/IV OR = 0.6, 95% CI: 0.1-3.4). Among postmenopausal women, methylation of SYK was associated with increased tumor size (OR = 1.7, 95% CI: 1.0-2.7) and higher nuclear grade (OR = 2.0, 95% CI 1.2-3.6). Associations between methylation and breast cancer related mortality were observed among pre- but not post-menopausal women. Methylation of SCGB3A1 was associated with reduced risk of death from breast cancer (HR = 0.41, 95% CI: 0.17-0.99) as was BRCA1 (HR = 0.41, 95% CI: 0.16-0.97). CCND2 methylation was associated with increased risk of breast cancer mortality (HR = 3.4, 95% CI: 1.1-10.5). We observed differences in methylation associated with tumor characteristics; methylation of these genes was also associated with breast cancer survival among premenopausal cases. Understanding of the associations of DNA methylation with other clinicopathological features may have implications for prevention and treatment.

Angulo JC, Lopez JI, Dorado JF, et al.
A DNA Hypermethylation Profile Independently Predicts Biochemical Recurrence Following Radical Prostatectomy.
Urol Int. 2016; 97(1):16-25 [PubMed] Related Publications
PURPOSE: Detection of DNA hypermethylation is emerging as a novel molecular biomarker for different malignancies. We intend to define whether a hypermethylation profile of patients with prostate cancer (PCa) predicts biochemical recurrence (BCR) after radical prostatectomy (RP).
MATERIAL AND METHODS: Genome-wide methylation analysis was performed using the GoldenGate Methylation Cancer Panel-I (Illumina, Inc.) on 10 normal prostate tissues and 58 tumor samples from patients treated by RP followed for prostate-specific antigen (PSA) failure (>0.4 ng/ml) and disease progression. Patients were classified on the basis of D'Amico criteria according to clinical staging, PSA at diagnosis and Gleason score after pathologist review. Hypermethylation status of 1505 CpGs present in the promoter region of 807 genes was studied. Hierarchical clustering analysis was performed and relationships with outcome were investigated using log-rank analysis and Cox regression model.
RESULTS: We found 28 genes significantly hypermethylated in >20% of the tumors analyzed. Four clusters of patients were characterized by their DNA methylation profile, one at higher risk to develop BCR (p = 0.005). Multivariate analysis revealed patients in this cluster (HR 2.56), and high-risk patients (HR 4.34) according to D'Amico classification were independent predictors of BCR after prostatectomy. From the selected genes MT1A, ALOX12, GSTM2, APC, MYCL2 and RARB hypermethylation predicted BCR and GSTM2 (HR 3.78) and MYCL2 hypermethylation (HR 2.71) did so independently.
CONCLUSION: Epigenetic silencing of GSTM2 and MYCL2 comprise novel molecular markers to predict BCR after surgery for medium- and high-risk localized PCa undergoing surgical treatment and hypermethylation of these genes could be incorporated to the clinical and pathological factors defining the patient at higher risk of PSA failure after prostatectomy. The limitation of the study is that no independent validation cohort is analysed.

Song X, Shi K, Zhou SJ, et al.
Clinicopathological significance and a potential drugtarget of RARβ in non-small-cell lung carcinoma: a meta-analysis and a systematic review.
Drug Des Devel Ther. 2016; 10:1345-54 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Lung cancer is the leading cause of cancer-related mortality in men worldwide. Aberrant RARβ promoter methylation has been frequently investigated in non-small-cell lung carcinoma (NSCLC), the most common form of lung cancer. The aim of present study was to carry out a meta-analysis and a systematic review to evaluate clinicopathological significance of RARβ promoter hypermethylation in NSCLC. A systematic literature search was carried out. The data were extracted and assessed by two reviewers independently. The Cochrane software Review Manager 5.2 was used to conduct the review. Odds ratios (ORs) with 95% corresponding confidence intervals (CIs) were calculated. A total of 18 relevant articles were available for meta-analysis which included 1,871 participants. The frequency of RARβ hypermethylation was significantly increased in NSCLC than in nonmalignant lung tissue, and the pooled OR was 5.69 (P<0.00001). RARβ hypermethylation was significantly more frequently observed in adenocarcinoma (AC) than in squamous cell carcinoma (SCC), and the pooled OR was 1.47 (P=0.005). Hypermethylation of RARβ gene in NSCLC was 2.46 times higher in smoking than in nonsmoking individuals, and the pooled OR was 2.46 (P=0.0002). RARβ hypermethylation rate was not significantly correlated with stage of the disease and sex. RARβ gene methylation status was not associated with prognosis of patients with NSCLC. In conclusion, RARβ promoter hypermethylation significantly increased in NSCLC than in non-neoplastic lung tissue and is predominant in AC, suggesting that RARβ methylation contributes to the development of NSCLC, especially AC. RARβ gene is a potential novel target for development of personalized therapy in patients with NSCLC, and is promising in restoration of retinoic acid-target gene induction via demethylation of RARβ1' promoter.

Migdalska-Sęk M, Karowicz-Bilińska A, Pastuszak-Lewandoska D, et al.
Assessment of the frequency of genetic alterations (LOH/MSI) in patients with intraepithelial cervical lesions with HPV infection: a pilot study.
Med Oncol. 2016; 33(5):51 [PubMed] Related Publications
In the present study, we analyzed (1) the type of HPV infection and (2) the frequency of loss of heterozygosity and microsatellite imbalance (LOH/MSI) in normal cytology and cervical intraepithelial neoplasia (CIN1-3). The cytological material included: low-grade squamous intraepithelial lesions (CIN1, n = 11), high-grade lesions (CIN2 and CIN3, n = 13), and cytologically normal cells from non-neoplastic cervical samples (n = 8). HPV genotyping was done using RealLine HPV 16/18 kit. We used 20 microsatellite markers from: 1p31.2, 3p14.3, 3p21.3, 3p22.2, 3p24.2, 3p25.3, 7q32.2, 9p21.3, 11p15.5, 12q23.2, and 16q22.1. LOH/MSI was correlated with clinicopathological parameters. The presence of HPV DNA was revealed in 78.13 % samples, including normal cytology. LOH/MSI was the most frequent for: 3p25.3 (39 %), 3p22.2 (20.83 %), 3p24.2 (20 %), and 3p14.3 (16.67 %). It was demonstrated that D3S1234 (FHIT; 3p14.3), D3S1611 (MLH1; 3p22.2), D3S1583 (RARB; 3p24.2), D3S1317 and D3S3611 (VHL; 3p25.3) could differentiate patients with CIN2/CIN3 versus CIN1, showing significantly higher frequency in CIN2/CIN3. LOH/MSI frequency for other than 3p markers was lower, 10-22.2 %. The simultaneous occurrence of LOH/MSI for several markers (OFAL) was higher in CIN2/CIN3. Significant differences in OFAL were found between samples with versus without HPV infection. In HPV-positive patients, significant differences in OFAL were found between normal cytology, CIN1 and CIN2/CIN3. HPV infection influences the increase in LOH/MSI frequency, especially in tumor suppressor gene loci. Several studied microsatellite markers seem to be useful for CIN grading. Hopefully, the obtained results, if confirmed on larger patient cohort, would allow creating a panel of markers supporting clinical diagnosis in patients with HPV infection.

Czajka AA, Wójcicka A, Kubiak A, et al.
Family of microRNA-146 Regulates RARβ in Papillary Thyroid Carcinoma.
PLoS One. 2016; 11(3):e0151968 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Retinoic acid is a promising tool in adjuvant cancer therapies, including refractory thyroid cancer, and its biological role is mediated by the retinoic acid receptor beta (RARβ). However, expression of RARβ is lowered in papillary thyroid carcinoma (PTC), contributing to promotion of tumor growth and inefficiency of retinoic acid and radioactive iodine treatment. The causes of aberrant RARB expression are largely unknown. We hypothesized that the culpable mechanisms include the action of microRNAs from the miR-146 family, previously identified as significantly upregulated in PTC tumors. To test this hypothesis, we assessed the expression of RARB as well as miR-146a-5p and miR-146b-5p in 48 PTC tumor/normal tissue pairs by Taqman assay to reveal that the expression of RARB was 3.28-fold decreased, and miR-146b-5p was 28.9-fold increased in PTC tumors. Direct interaction between miRs and RARB was determined in the luciferase assay and further confirmed in cell lines, where overexpression of miR-146a-5p and miR-146b-5p caused a 31% and 33% decrease in endogenous RARB mRNA levels. Inhibition of miR-146a and miR-146b resulted in 62.5% and 45.4% increase of RARB, respectively, and a concomitant decrease in proliferation rates of thyroid cancer cell lines, analyzed in xCELLigence system.We showed that two microRNAs of the miR-146 family directly regulate RARB. Inhibition of miRs resulted in restoration of RARB expression and decreased rates of proliferation of thyroid cancer cells. By restoring RARB levels, microRNA inhibitors may become part of an adjuvant therapy in thyroid cancer patients.

Rybicki BA, Rundle A, Kryvenko ON, et al.
Methylation in benign prostate and risk of disease progression in men subsequently diagnosed with prostate cancer.
Int J Cancer. 2016; 138(12):2884-93 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
In DNA from prostate tumors, methylation patterns in gene promoter regions can be a biomarker for disease progression. It remains unclear whether methylation patterns in benign prostate tissue--prior to malignant transformation--may provide similar prognostic information. To determine whether early methylation events predict prostate cancer outcomes, we evaluated histologically benign prostate specimens from 353 men who eventually developed prostate cancer and received "definitive" treatment [radical prostatectomy (58%) or radiation therapy (42%)]. Cases were drawn from a large hospital-based cohort of men with benign prostate biopsy specimens collected between 1990 and 2002. Risk of disease progression associated with methylation was estimated using time-to-event analyses. Average follow-up was over 5 years; biochemical recurrence (BCR) occurred in 91 cases (26%). In White men, methylation of the APC gene was associated with increased risk of BCR, even after adjusting for standard clinical risk factors for prostate cancer progression (adjusted hazard ratio (aHR) = 2.26; 95%CI 1.23-4.16). APC methylation was most strongly associated with a significant increased risk of BCR in White men with low prostate specific antigen at cohort entry (HR = 3.66; 95%CI 1.51-8.85). In additional stratified analyses, we found that methylation of the RARB gene significantly increased risk of BCR in African American cases who demonstrated methylation of at least one of the other four genes under study (HR = 3.80; 95%CI 1.07-13.53). These findings may have implications in the early identification of aggressive prostate cancer as well as reducing unnecessary medical procedures and emotional distress for men who present with markers of indolent disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RARB, Cancer Genetics Web: http://www.cancer-genetics.org/RARB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999