Gene Summary

Gene:FHIT; fragile histidine triad
Aliases: FRA3B, AP3Aase
Summary:This gene, a member of the histidine triad gene family, encodes a diadenosine 5',5'''-P1,P3-triphosphate hydrolase involved in purine metabolism. The gene encompasses the common fragile site FRA3B on chromosome 3, where carcinogen-induced damage can lead to translocations and aberrant transcripts of this gene. In fact, aberrant transcripts from this gene have been found in about half of all esophageal, stomach, and colon carcinomas. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Oct 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (13)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FHIT (cancer-related)

Kara M, Yumrutas O, Ozcan O, et al.
Differential expressions of cancer-associated genes and their regulatory miRNAs in colorectal carcinoma.
Gene. 2015; 567(1):81-6 [PubMed] Related Publications
Colorectal cancer is one of the frequently seen malignancies in the world. To date, several oncogenes and tumor suppressor genes have been identified and linked to colorectal cancer pathogenesis. Although recent advances in the diagnosis and therapy of colorectal cancer are promising, identifying novel genetic contributors is still high priority. In the present study, expression profile of some cancer-related genes and their regulatory miRNA molecules were evaluated by using a high-throughput real-time PCR method. For the study, a total of 54 patients diagnosed with CRC and normal colon tissue samples of 42 healthy controls were included. For the expression analysis, total RNA was extracted from FFPE tissue samples and converted to cDNA. All expression analyses were assessed by using Fluidigm Microfluidic Dynamic Array chips for 96 samples and the reactions were held in Fluidigm BioMark™ HD System Real-Time PCR. As a result of the study, expression of the ADAMTS1, FHIT, RUNX1, RUNX3 and WWOX genes was shown to be significantly altered in CRC tissues in contrast to normal tissue samples. Moreover, miR-378a-3p, miR-155-5p, miR-193b-3p, miR-96-5p, miR-17-5p, miR-27a-3p, miR-133b, miR-203a, miR-205-5p, miR-34c-5p, miR-130a-3p, miR-301a-3p, miR-132-3p, miR-222-3p, miR-34a-5p, miR-21-5p, miR-29a-3p and miR-29b-3p were found to be significantly deregulated in CRC. Consequently, results of the current study strongly suggest the involvement of novel cancer-related genes and their regulatory miRNAs in CRC physiopathology.

Gao G, Smith DI
WWOX, large common fragile site genes, and cancer.
Exp Biol Med (Maywood). 2015; 240(3):285-95 [PubMed] Related Publications
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.

Hu Z, Zhu D, Wang W, et al.
Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism.
Nat Genet. 2015; 47(2):158-63 [PubMed] Related Publications
Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas and five cell lines. Beyond recalculating frequencies for the previously reported frequent integration sites POU5F1B (9.7%), FHIT (8.7%), KLF12 (7.8%), KLF5 (6.8%), LRP1B (5.8%) and LEPREL1 (4.9%), we discovered new hot spots HMGA2 (7.8%), DLG2 (4.9%) and SEMA3D (4.9%). Protein expression from FHIT and LRP1B was downregulated when HPV integrated in their introns. Protein expression from MYC and HMGA2 was elevated when HPV integrated into flanking regions. Moreover, microhomologous sequence between the human and HPV genomes was significantly enriched near integration breakpoints, indicating that fusion between viral and human DNA may have occurred by microhomology-mediated DNA repair pathways. Our data provide insights into HPV integration-driven cervical carcinogenesis.

Bai LX, Wang JT, Ding L, et al.
Folate deficiency and FHIT hypermethylation and HPV 16 infection promote cervical cancerization.
Asian Pac J Cancer Prev. 2014; 15(21):9313-7 [PubMed] Related Publications
Fragile histidine triad (FHIT) is a suppressor gene related to cervical cancer through CpG island hypermethylation. Folate is a water-soluble B-vitamin and an important cofactor in one-carbon metabolism. It may play an essential role in cervical lesions through effects on DNA methylation. The purpose of this study was to observe effects of folate and FHIT methylation and HPV 16 on cervical cancer progression. In this study, DNA methylation of FHIT, serum folate level and HPV16 status were measured using methylation-specific polymerase chain reaction (MSP), radioimmunoassay (RIA) and polymerase chain reaction (PCR), respectively, in 310 women with a diagnosis of normal cervix (NC, n=109), cervical intraepithelial neoplasia (CIN, n=101) and squamous cell carcinoma of the cervix (SCC, n=101). There were significant differences in HPV16 status (χ2=36.64, P<0.001), CpG island methylation of FHIT (χ2=71.31, P<0.001) and serum folate level (F=4.57, P=0.011) across the cervical histologic groups. Interaction analysis showed that the ORs only with FHIT methylation (OR=11.47) or only with HPV 16 positive (OR=4.63) or with serum folate level lower than 3.19ng/ml (OR=1.68) in SCC group were all higher than the control status of HPV 16 negative and FHIT unmethylation and serum folate level more than 3.19ng/ml (OR=1). The ORs only with HPV 16 positive (OR=2.58) or with serum folate level lower than 3.19ng/ ml (OR=1.28) in CIN group were all higher than the control status, but the OR only with FHIT methylation (OR=0.53) in CIN group was lower than the control status. HPV 16 positivity was associated with a 7.60-fold increased risk of SCC with folate deficiency and with a 1.84-fold increased risk of CIN. The patients with FHIT methylation and folate deficiency or with FHIT methylation and HPV 16 positive were SCC or CIN, and the patients with HPV 16 positive and FHIT methylation and folate deficiency were all SCC. In conclusion, HPV 16 infection, FHIT methylation and folate deficiency might promote cervical cancer progression. This suggests that FHIT may be an effective target for prevention and treatment of cervical cancer.

Suh SS, Yoo JY, Cui R, et al.
FHIT suppresses epithelial-mesenchymal transition (EMT) and metastasis in lung cancer through modulation of microRNAs.
PLoS Genet. 2014; 10(10):e1004652 [PubMed] Free Access to Full Article Related Publications
Metastasis is the principal cause of cancer death and occurs through multiple, complex processes that involve the concerted action of many genes. A number of studies have indicated that the Fragile Histidine Triad (FHIT) gene product, FHIT, functions as a tumor suppressor in a variety of common human cancers. Although there are suggestions of a role for FHIT loss in progression of various cancers, a role for such loss in metastasis has not been defined. Here, via in vivo and in vitro assays, we reveal that the enforced expression of FHIT significantly suppresses metastasis, accompanied by inhibition of the epithelial-mesenchymal transition (EMT), a process involved in metastasis through coordinate modulation of EMT-related genes. Specifically, miR-30c, a FHIT-upregulated microRNA, contributes to FHIT function in suppression of EMT and metastasis by directly targeting metastasis genes Metadherin (MTDH), High-mobility group AT-hook 2 (HMGA2), and the mesenchymal markers, Vimentin (VIM) and Fibronectin (FN1), in human lung cancer. Finally, we demonstrate that the expression pattern of FHIT and miR-30c is inversely correlated with that of MTDH and HMGA2 in normal tissue, non-metastatic and metastatic tumors, serving as a potential biomarker for metastasis in lung cancer.

Gao G, Smith DI
Very large common fragile site genes and their potential role in cancer development.
Cell Mol Life Sci. 2014; 71(23):4601-15 [PubMed] Related Publications
Common fragile sites (CFSs) are large chromosomal regions that are hot-spots for alterations especially within cancer cells. The three most frequently expressed CFS regions (FRA3B, FRA16D and FRA6E) contain genes that span extremely large genomic regions (FHIT, WWOX and PARK2, respectively), and these genes were found to function as important tumor suppressors. Many other CFS regions contain extremely large genes that are also targets of alterations in multiple cancers, but none have yet been demonstrated to function as tumor suppressors. The loss of expression of just FHIT or WWOX has been found to be associated with a worse overall clinical outcome. Studies in different cancers have revealed that some cancers have decreased expression of multiple large CFS genes. This loss of expression could have a profound phenotypic effect on these cells. In this review, we will summarize the known large common fragile site genes and discuss their potential relationship to cancer development.

Waters CE, Saldivar JC, Hosseini SA, Huebner K
The FHIT gene product: tumor suppressor and genome "caretaker".
Cell Mol Life Sci. 2014; 71(23):4577-87 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial-mesenchymal transition. Other recent works have identified a novel role for the FHIT gene product, Fhit, as a genome "caretaker." Loss of this caretaker function leads to nucleotide imbalance, spontaneous replication stress, and DNA breaks. Because Fhit loss-induced DNA damage is "checkpoint blind," cells accumulate further DNA damage during subsequent cell cycles, accruing global genome instability that could facilitate oncogenic mutation acquisition and expedite clonal expansion. Loss of Fhit activity therefore induces a mutator phenotype. Evidence for FHIT as a mutator gene is discussed in light of these recent investigations of Fhit loss and subsequent genome instability.

Gotoh M, Ichikawa H, Arai E, et al.
Comprehensive exploration of novel chimeric transcripts in clear cell renal cell carcinomas using whole transcriptome analysis.
Genes Chromosomes Cancer. 2014; 53(12):1018-32 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes.

Rengucci C, De Maio G, Casadei Gardini A, et al.
Promoter methylation of tumor suppressor genes in pre-neoplastic lesions; potential marker of disease recurrence.
J Exp Clin Cancer Res. 2014; 33:65 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Epigenetic alterations of specific genes have been reported to be related to colorectal cancer (CRC) transformation and would also appear to be involved in the early stages of colorectal carcinogenesis. Little data are available on the role of these alterations in determining a different risk of colorectal lesion recurrence. The aim of the present study was to verify whether epigenetic alterations present in pre-neoplastic colorectal lesions detected by colonoscopy can predict disease recurrence.
METHODS: A retrospective series of 78 adenomas were collected and classified as low (35) or high-risk (43) for recurrence according to National Comprehensive Cancer Network guidelines. Methylation alterations were analyzed by the methylation-specific multiplex ligation probe assay (MS-MLPA) which is capable of quantifying methylation levels simultaneously in 24 different gene promoters. MS-MLPA results were confirmed by pyrosequencing and immunohistochemistry.
RESULTS: Higher levels of methylation were associated with disease recurrence. In particular, MLH1, ATM and FHIT gene promoters were found to be significantly hypermethylated in recurring adenomas. Unconditional logistic regression analysis used to evaluate the relative risk (RR) of recurrence showed that FHIT and MLH1 were independent variables with an RR of 35.30 (95% CI 4.15-300.06, P = 0.001) and 17.68 (95% CI 1.91-163.54, P = 0.011), respectively.
CONCLUSIONS: Histopathological classification does not permit an accurate evaluation of the risk of recurrence of colorectal lesions. Conversely, results from our methylation analysis suggest that a classification based on molecular parameters could help to define the mechanisms involved in carcinogenesis and prove an effective method for identifying patients at high risk of recurrence.

Li W, Deng J, Tang JX
Combined effects methylation of FHIT, RASSF1A and RARβ genes on non-small cell lung cancer in the Chinese population.
Asian Pac J Cancer Prev. 2014; 15(13):5233-7 [PubMed] Related Publications
Epigenetic modifications of tumour suppressor genes are involved in all kinds of human cancer. Aberrant promoter methylation is also considered to play an essential role in development of lung cancer, but the pathogenesis remains unclear.We collected the data of 112 subjects, including 56 diagnosed patients with lung cancer and 56 controls without cancer. Methylation of the FHIT, RASSF1A and RAR-β genes in DNA from all samples and the corresponding gene methylation status were assessed using the methylation-specific polymerase chain reaction (PCR, MSP). The results showed that the total frequency of separate gene methylation was significantly higher in lung cancer compared with controls (33.9-85.7 vs 0 %) (p<0.01).Similar outcomes were obtained from the aberrant methylation of combinations of any two or three genes (p<0.01). There was a tendency that the frequency of combinations of any two or three genes was higher in stage I+II than that in stage III+IV with lung cancer. However, no significant difference was found across various clinical stages and clinic pathological gradings of lung cancer (p>0.05).These observations suggest that there is a significant association of promoter methylation of individual genes with lung cancer risk, and that aberrant methylation of combination of any two or three genes may be associated with clinical stage in lung cancer patients and involved in the initiation of lung cancer tumorigenesis. Methylation of FHIT, RASSF1A and RARβ genes may be related to progression of lung oncogenesis.

Du CX, Li SQ, Wang AH, Wang Y
Significance of combined detection of p53 and FHIT in cervical carcinoma diagnosis.
Eur J Gynaecol Oncol. 2014; 35(3):298-300 [PubMed] Related Publications
PURPOSE: To explore the significance of combined detection of p53 genes and fragile histidine triad (FHIT) genes in cervical carcinoma.
MATERIALS AND METHODS: Specimens taken from 161 cases invasive carcinoma, 23 cases carcinoma in situ or cervical intraepithelial neoplasia III (CIN III), 74 cases CIN I - II, 25 cases normal cervical tissue, and 32 cases tumor-adjacent tissues were processed by immunohistochemistry to determine the expression of p53 and FHIT genes. The results of the combined detection were compared for clinical diagnostic value of cervical carcinoma diagnosis.
RESULTS: The p53 gene, FHIT gene and the two genes combined examination of cervical carcinoma diagnostic sensitivity were: 65.8% (121/184), 66.3% (122/184), 90.2% (166/184), respectively. There were no significant differences between the p53 gene and the FHIT gene detected (p > 0.05). Combined detection of the two gene were more sensitivity than single detection, the difference was significant (p < 0.001). Although diagnosis specificity had dropped somewhat, no significant statistical appeared (chi2 = 0.022, p > 0.05).
CONCLUSION: Combined detection of p53 genes and FHIT genes can increase the sensitivity diagnosis and specificity diagnosis for early cervical carcinoma and precancerous lesions has a positive meaning.

Haroun RA, Zakhary NI, Mohamed MR, et al.
Assessment of the prognostic value of methylation status and expression levels of FHIT, GSTP1 and p16 in non-small cell lung cancer in Egyptian patients.
Asian Pac J Cancer Prev. 2014; 15(10):4281-7 [PubMed] Related Publications
BACKGROUND: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Tumor specific epigenetic alterations can be used as a molecular markers of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione S-transferase P1 (GSTP1) and p16 genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC).
MATERIALS AND METHODS: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumors served as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while their mRNA expression levels were measured using a real-time PCR assay with SYBR Green I.
RESULTS: The methylation frequencies of the genes tested in NSCLC specimens were 53.6% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p<0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p<0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p>0.05).
CONCLUSIONS: RESULTS of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stages while GSTP1 methylation may rather play a role in the early pathogenesis.

Wu DW, Hsu NY, Wang YC, et al.
c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT.
Oncogene. 2015; 34(16):2072-82 [PubMed] Related Publications
The dual role of the microRNA-29 (miR-29) family in tumor progression and metastasis in solid tumors has been reported. Evidence for the role of miR-29 in tumor malignancy and its prognostic value in overall survival (OS) and relapse-free survival (RFS) in non-small cell lung cancer (NSCLC) remains conflicting. Mechanistic studies presented herein demonstrated that c-Myc suppressed the expression of miR-29b, promoting soft agar growth and invasion capability in lung cancer cells. Interestingly, the decrease in the expression of miR-29b by c-Myc is responsible for soft agar growth and invasiveness mediated by FHIT loss due to promoter methylation. Among patients, low expression of miR-29b and FHIT was more common in tumors with high c-Myc expression than in tumors with low c-Myc expression. Kaplan-Meier and Cox regression analysis showed that tumors with high c-Myc, low miR-29b and low FHIT expression had shorter OS and RFS periods than their counterparts. In conclusion, the decrease in the expression of miR-29b by c-Myc may be responsible for FHIT loss-mediated tumor aggressiveness and for poor outcome in NSCLC. Therefore, we suggest that restoration of the miR-29b expression using the c-Myc inhibitor might be helpful in suppressing tumor aggressiveness mediated by FHIT loss and consequently improving outcomes in NSCLC patients with tumors with low expression of FHIT.

Jain K, Mohapatra T, Das P, et al.
Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer.
Ann Surg. 2014; 260(6):1073-80 [PubMed] Related Publications
BACKGROUND: Causal association of gallbladder stones with gallbladder cancer (GBC) is not yet well established.
OBJECTIVE: To study the frequency of occurrence of preneoplastic histological lesions and loss of heterozygosity (LOH) of tumor suppressor genes in patients with gallstones.
METHODS: All consecutive patients with gallstones undergoing cholecystectomy from 2007-2011 were included prospectively. Histological examination of the gallbladder specimens was done for preneoplastic lesions. LOH at 8 loci, that is 3p12, 3p14.2, 5q21, 9p21, 9q, 13q, 17p13, and 18q for tumor suppressor genes (DUTT1, FHIT, APC, p16, FCMD, RB1, p53, and DCC genes) that are associated with GBC was tested from microdissected preneoplastic lesions using microsatellite markers. These LOH were also tested in 30 GBC specimens.
RESULTS: Of the 350 gallbladder specimens from gallstone patients, hyperplasia was found in 32%, metaplasia in 47.8%, dysplasia in 15.7%, and carcinoma in situ in 0.6%. Hyperplasia, metaplasia, and dysplasia alone were found in 11.7%, 24.6%, and 1.4% of patients, respectively. A combination of hyperplasia and dysplasia, metaplasia and dysplasia, and hyperplasia, metaplasia, and dysplasia was found in 3.4%, 6.3%, and 4.3% of patients, respectively. LOH was present in 2.1% to 47.8% of all the preneoplastic lesions at different loci. Fractional allelic loss was significantly higher in those with dysplasia compared with other preneoplastic lesions (0.31 vs 0.22; P = 0.042). No preneoplastic lesion or LOH was found in normal gallbladders.
CONCLUSIONS: Patients with gallstones had a high frequency of preneoplastic lesions and accumulation of LOH at various tumor suppressor genes, suggesting a possible causal association of gallstones with GBC.

Kato T, Franconi CP, Sheridan MB, et al.
Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation.
Cancer Genet. 2014; 207(4):133-40 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.

Mielcarek-Kuchta D, Paluszczak J, Seget M, et al.
Prognostic factors in oral and oropharyngeal cancer based on ultrastructural analysis and DNA methylation of the tumor and surgical margin.
Tumour Biol. 2014; 35(8):7441-9 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Oral and oropharyngeal cancers are characterized by relatively low 5- year survival rates due to many factors, including local recurrence. The identification of new molecular markers may serve for the estimation of prognosis and thus augment treatment decisions and affect therapy outcome. The aim of this study was to describe the morphological characteristics and the DNA methylation status of the CDKN2A,CDH1, ATM, FHIT and RAR- genes in the central and peripheral part of the tumor and the surgical margin and evaluate their prognostic significance. 53 patients with oral and oropharyngeal cancer were enrolled to the prospective study, and had been primarily treated surgically. Correlations between morphological data, hypermethylation status and clinicopathological data, as well as prognosis, were assessed. Nuclei polymorphism highly correlated with T stage (p < 0.0001), N stage (p < 0.046), and metastases to the lymph nodes pN (p < 0.004 ). Also, the number of cells in irregular mitosis correlated with T stage (p < 0.004), and highly with pN (p < 0.009). The significance of CDKN2A hypermethylation as a good prognostic factor was also established in the Kaplan-Meir test. The ultrastructural analysis showed that none of the examined tumors had homogenous texture and that resection margin specimens clean in HE stained tissue samples frequently contained single tumor cells or few cells in groups surrounded by connective tissue. This indicates the superiority of electron microscopy over standard histopathological analysis. Thus, a combination of such morphological examination with epigenetic parameters described herein could result in the discovery of promising new prognostic markers of the disease.

Ruan X, Liu H, Boardman L, Kocher JP
Genome-wide analysis of loss of heterozygosity in breast infiltrating ductal carcinoma distant normal tissue highlights arm specific enrichment and expansion across tumor stages.
PLoS One. 2014; 9(4):e95783 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Studies have shown concurrent loss of heterozygosity (LOH) in breast infiltrating ductal carcinoma (IDC) and adjacent or distant normal tissue. However, the overall extent of LOH in normal tissue and their significance to tumorigenesis remain unknown, as existing studies are largely based on selected microsatellite markers. Here we present the first autosome-wide study of LOH in IDC and distant normal tissue using informative loci deduced from SNP array-based and sequencing-based techniques. We show a consistently high LOH concurrence rate in IDC (mean = 24%) and distant normal tissue (m = 54%), suggesting for most patients (31/33) histologically normal tissue contains genomic instability that can be a potential marker of increased IDC risk. Concurrent LOH is more frequent in fragile site related genes like WWOX (9/31), NTRK2 (10/31), and FHIT (7/31) than traditional genetic markers like BRCA1 (0/23), BRCA2 (2/29) and TP53 (1/13). Analysis at arm level shows distant normal tissue has low level but non-random enrichment of LOH (topped by 8p and 16q) significantly correlated with matched IDC (Pearson r = 0.66, p = 3.5E-6) (topped by 8p, 11q, 13q, 16q, 17p, and 17q). The arm-specific LOH enrichment was independently observed in tumor samples from 548 IDC patients when stratified by tumor size based T stages. Fine LOH structure from sequencing data indicates LOH in low order tissues non-randomly overlap (∼67%) with LOH that usually has longer tract length (the length of genomic region affected by LOH) in high order tissues. The consistent observations from multiple datasets suggest progressive LOH in the development of IDC potentially through arm-specific pile up effect with discernible signature in normal tissue. Our finding also suggests that LOH detected in IDC by comparing to paired adjacent or distant normal tissue are more likely underestimated.

Wang HL, Zhou PY, Liu P, Zhang Y
Abnormal FHIT protein expression may be correlated with poor prognosis in gastric cancer: a meta-analysis.
Tumour Biol. 2014; 35(7):6815-21 [PubMed] Related Publications
Our current meta-analysis is aimed to investigate the relationships between fragile histidine triad (FHIT) protein expression and prognosis in gastric cancer patients. We searched MEDLINE (1966 ~ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013) without any language restrictions. The meta-analysis was conducted using the STATA 12.0 software. Crude hazard ratios (HR) with its 95 % confidence interval (95 % CI) were calculated. Eight clinical cohort studies with a total of 1,361 gastric cancer patients were involved in our meta-analysis. Our results revealed that FHIT-negative patients exhibited a shorter overall survival (OS) time than FHIT-positive patients (HR = 1.23, 95 % CI = 1.01 ~ 1.44, P < 0.001). Ethnicity-stratified analysis demonstrated that FHIT-negative patients have significantly poorer prognosis than FHIT-positive patients among both Caucasians and Asians (all P < 0.05). In conclusion, our meta-analysis provides evidences that negative expression of FHIT protein may be correlated with poor prognosis in patients with gastric cancer. Thus, FHIT expression level may be utilized as an independent prognostic marker for gastric cancer.

Xiao J, Lee ST, Xiao Y, et al.
PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia.
Int J Cancer. 2014; 135(5):1101-9 [PubMed] Related Publications
While the cytogenetic and genetic characteristics of childhood acute lymphoblastic leukemias (ALL) are well studied, less clearly understood are the contributing epigenetic mechanisms that influence the leukemia phenotype. Our previous studies and others identified gene mutation (RAS) and DNA methylation (FHIT) to be associated with the most common cytogenetic subgroup of childhood ALL, high hyperdiploidy (having five more chromosomes). We screened DNA methylation profiles, using a genome-wide high-dimension platform of 166 childhood ALLs and 6 normal pre-B cell samples and observed a strong association of DNA methylation status at the PTPRG locus in human samples with levels of PTPRG gene expression as well as with RAS gene mutation status. In the 293 cell line, we found that PTPRG expression induces dephosphorylation of ERK, a downstream RAS target that may be critical for mutant RAS-induced cell growth. In addition, PTPRG expression is upregulated by RAS activation under DNA hypomethylating conditions. An element within the PTPRG promoter is bound by the RAS-responsive transcription factor RREB1, also under hypomethylating conditions. In conclusion, we provide evidence that DNA methylation of the PTPRG gene is a complementary event in oncogenesis induced by RAS mutations. Evidence for additional roles for PTPR family member genes is also suggested. This provides a potential therapeutic target for RAS-related leukemias as well as insight into childhood ALL etiology and pathophysiology.

Gao G, Kasperbauer JL, Tombers NM, et al.
A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas.
Genes Chromosomes Cancer. 2014; 53(5):392-401 [PubMed] Related Publications
The common fragile sites (CFSs) are large regions of profound genomic instability found in all individuals. The frequent deletions and other alterations in these regions in multiple cancers has led to the discovery of a number of extremely large genes contained within these regions and several of the large CFS genes have already been demonstrated to function as tumor suppressors involved in the formation of many different cancers. To study the large CFS genes in oropharyngeal squamous cell carcinoma (OPSCC), we did RNA seq analysis from 11 head and neck cancer patients. This revealed that there are six large CFS genes which consistently had decreased expression in the tumor samples compared to their matched normal tissues. These six genes are PARK2, DLG2, NBEA, CTNNA3, DMD, and FHIT. PARK2 and FHIT are located within the two most frequently expressed CFSs and both have been demonstrated to function as tumor suppressors, while the other large genes are found to have frequent alterations in multiple cancers. Validation experiments using real time PCR indicated that over 60% of OPSCC tumors showed decreased expression for all six genes. Both HPV-positive and HPV-negative OPSCCs had similar proportions with loss of expression of these genes. Our results suggest that this selected group of large genes might serve as potential tumor suppressors involved in the development of OPSCCs. Further studies are needed to investigate whether the decreased expression observed is due to genomic instability within the CFS regions or the selection for alterations of specific large CFS genes.

Ribeiro IP, Marques F, Caramelo F, et al.
Genetic imbalances detected by multiplex ligation-dependent probe amplification in a cohort of patients with oral squamous cell carcinoma-the first step towards clinical personalized medicine.
Tumour Biol. 2014; 35(5):4687-95 [PubMed] Related Publications
Oral tumors are a growing health problem worldwide; thus, it is mandatory to establish genetic markers in order to improve diagnosis and early detection of tumors, control relapses and, ultimately, delineate individualized therapies. This study was the first to evaluate and discuss the clinical applicability of a multiplex ligation-dependent probe amplification (MLPA) probe panel directed to head and neck cancer. Thirty primary oral squamous cell tumors were analyzed using the P428 MLPA probe panel. We detected genetic imbalances in 26 patients and observed a consistent pattern of distribution of genetic alterations in terms of losses and gains for some chromosomes, particularly for chromosomes 3, 8, and 11. Regarding the latter, some specific genes were highlighted due to frequent losses of genetic material--RARB, FHIT, CSMD1, GATA4, and MTUS1--and others due to gains--MCCC1, MYC, WISP1, PTK2, CCND1, FGF4, FADD, and CTTN. We also verified that the gains of MYC and WISP1 genes seem to suggest higher propensity of tumors localized in the floor of the mouth. This study proved the value of this MLPA probe panel for a first-tier analysis of oral tumors. The probemix was developed to include target regions that have been already shown to be of diagnostic/prognostic relevance for oral tumors. Furthermore, this study emphasized several of those specific genetic targets, suggesting its importance to oral tumor development, to predict patients' outcomes, and also to guide the development of novel molecular therapies.

Joannes A, Grelet S, Duca L, et al.
Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells.
Mol Cancer Res. 2014; 12(5):775-83 [PubMed] Related Publications
UNLABELLED: In many cancers, including lung carcinomas, Fragile histidine triad (Fhit) is frequently decreased or lost. Fhit status has recently been shown to be associated with elevated in vitro and in vivo invasiveness in lung cancer. Tumor cell invasion is facilitated by epithelial-mesenchymal transition (EMT), a process by which tumor cells lose their epithelial features to acquire a mesenchymal cell-like phenotype. In this study, the mechanism underlying Fhit-regulated EMT was deciphered. Using Slug knockdown, pharmacologic inhibitors PD98059, PP1, and gefitinib as well as an anti-EGFR antibody, it was demonstrated that Fhit silencing in bronchial cells induced overexpression of two primary EMT-associated targets, MMP-9 and vimentin, to regulate cell invasion dependent on an EGFR/Src/ERK/Slug signaling pathway. Moreover, ectopic expression of Fhit in Fhit-deficient lung cancer cells downregulated this pathway. Finally, an inverse correlation was observed between Fhit and phospho-EGFR levels in a cohort of human squamous cell lung carcinoma specimens. These results demonstrate a Fhit-dependent mechanism in the control of EMT-regulated EGFR signaling.
IMPLICATIONS: This study adds new insight into the regulatory mechanism of EMT, a process known to increase resistance to conventional and targeted therapies in lung cancer.

Davison JM, Yee M, Krill-Burger JM, et al.
The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma.
PLoS One. 2014; 9(1):e79079 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC.
METHODS: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses.
RESULTS: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables.
SIGNIFICANCE: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC.

Frankel A, Armour N, Nancarrow D, et al.
Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.
Genes Chromosomes Cancer. 2014; 53(4):324-38 [PubMed] Related Publications
The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment.

Chatterton Z, Morenos L, Mechinaud F, et al.
Epigenetic deregulation in pediatric acute lymphoblastic leukemia.
Epigenetics. 2014; 9(3):459-67 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.

Kapitanović S, Čačev T, Lončar B, et al.
Reduced FHIT expression is associated with tumor progression in sporadic colon adenocarcinoma.
Exp Mol Pathol. 2014; 96(1):92-7 [PubMed] Related Publications
PURPOSE: Tumor supressor gene FHIT was identified at chromosome 3p14.2 spanning the FRA3B fragile site and is very often inactivated in different types of cancer. The aim of this study was to examine the frequency of FHIT gene LOH as well as FHIT mRNA and protein expression in sporadic colon adenocarcinoma.
METHODS: The results of LOH, real-time qRT-PCR and imunohistochemical analyses were correlated with clinico-pathological characteristics of patients and their tumors in order to evaluate the role of FHIT gene/protein in sporadic colon adenocarcinoma tumorigenesis.
RESULTS: One hundred and thirty one (96.3%) samples were informative for both markers and 33/131 (25.2%) demonstrated LOH. Expression of FHIT mRNA was significantly decreased in colon tumors relative to that in corresponding normal tissue (p = 7.2×10(-6)). Most of the samples (54.0%) were negative for FHIT protein, 26.4% adenocarcinomas showed a weak to moderate immunostaining and 19.6% adenocarcinomas showed strong FHIT immunostaining. No correlation was found between FHIT gene LOH status, mRNA expression or FHIT protein immunostaining and clinico-pathological characteristics. Expression of FHIT mRNA was significantly decreased in FHIT LOH positive tumors (p = 0.027). Patients with LOH negative tumors or FHIT protein positive tumors had longer survival but this findings were not statistically significant.
CONCLUSIONS: Our overall results suggest that reduced expression of FHIT gene may be associated with the progression of these malignant tumors.

Casadio V, Molinari C, Calistri D, et al.
DNA Methylation profiles as predictors of recurrence in non muscle invasive bladder cancer: an MS-MLPA approach.
J Exp Clin Cancer Res. 2013; 32:94 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Although non muscle invasive bladder cancer (NMIBC) generally has a good long-term prognosis, up to 80% of patients will nevertheless experience local recurrence after the primary tumor resection. The search for markers capable of accurately identifying patients at high risk of recurrence is ongoing. We retrospectively evaluated the methylation status of a panel of 24 tumor suppressor genes (TIMP3, APC, CDKN2A, MLH1, ATM, RARB, CDKN2B, HIC1, CHFR, BRCA1, CASP8, CDKN1B, PTEN, BRCA2, CD44, RASSF1, DAPK1, FHIT, VHL, ESR1, TP73, IGSF4, GSTP1 and CDH13) in primary lesions to obtain information about their role in predicting local recurrence in NMIBC.
METHODS: Formaldehyde-fixed paraffin-embedded (FFPE) samples from 74 patients operated on for bladder cancer were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA): 36 patients had relapsed and 38 were disease-free at the 5-year follow up. Methylation status was considered as a dichotomous variable and genes showing methylation ≥20% were defined as "positive".
RESULTS: Methylation frequencies were higher in non recurring than recurring tumors. A statistically significant difference was observed for HIC1 (P = 0.03), GSTP1 (P = 0.02) and RASSF1 (P = 0.03). The combination of the three genes showed 78% sensitivity and 66% specificity in identifying recurrent patients, with an overall accuracy of 72%.
CONCLUSIONS: Our preliminary data suggest a potential role of HIC1, GSTP1 and RASSF1 in predicting local recurrence in NMIBC. Such information could help clinicians to identify patients at high risk of recurrence who require close monitoring during follow up.

Gaudio E, Paduano F, Spizzo R, et al.
Fhit delocalizes annexin a4 from plasma membrane to cytosol and sensitizes lung cancer cells to paclitaxel.
PLoS One. 2013; 8(11):e78610 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments.

Younes SF, Aiad HA, Asaad NY, et al.
FHIT, EGFR, and MSH2: possible etiopathologic, prognostic, and predictive role in non-small cell lung carcinoma in Egyptian patients.
Appl Immunohistochem Mol Morphol. 2014; 22(4):275-83 [PubMed] Related Publications
The high incidence and mortality of lung carcinoma in Egypt necessitates studying the factors that may be implicated in non-small cell lung carcinoma (NSCLC) pathogenesis and could affect patient management. The aim was to study FHIT, epidermal growth factor receptor (EGFR), and MSH2 protein expression in Egyptian patients with NSCLC. Immunohistochemical staining for FHIT, EGFR, and MSH2 was performed on 64 specimens from NSCLC patients and correlated with prognostic parameters, response to therapy, and overall survival. FHIT loss was observed in 64% of NSCLC patients and was significantly associated with SCC (P=0.003) and poor tumor grade (P=0.043). EGFR overexpression was observed in 47% of NSCLC patients and was significantly associated with SCC (P=0.002). MSH2 was reduced in 23.4% of NSCLC patients and was significantly associated with adenocarcinoma (P=0.024). In a univariate analysis, a significant relationship was seen between the poor overall survival in NSCLC patients and high T-stage (P=0.029), presence of metastasis (P=0.014), advanced-stage grouping (P=0.004), and FHIT loss (P=0.033). Further, FHIT loss was significantly related to disease progression in patients treated with chemotherapy (P=0.038). We conclude that all 3 markers play a role in the development of NSCLC in Egyptian patients. We suggest that FHIT loss be used as a predictor for progression in chemotherapy-treated NSCLC patients.

Boeva V, Jouannet S, Daveau R, et al.
Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
PLoS One. 2013; 8(8):e72182 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FHIT, Cancer Genetics Web: http://www.cancer-genetics.org/FHIT.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999