Gene Summary

Gene:SFRP1; secreted frizzled related protein 1
Aliases: FRP, FRP1, FrzA, FRP-1, SARP2
Summary:This gene encodes a member of the SFRP family that contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzled proteins. Members of this family act as soluble modulators of Wnt signaling; epigenetic silencing of SFRP genes leads to deregulated activation of the Wnt-pathway which is associated with cancer. This gene may also be involved in determining the polarity of photoreceptor cells in the retina. [provided by RefSeq, Sep 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:secreted frizzled-related protein 1
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (102)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SFRP1 (cancer-related)

Yang HW, Liu GH, Liu YQ, et al.
Over-expression of microRNA-940 promotes cell proliferation by targeting GSK3β and sFRP1 in human pancreatic carcinoma.
Biomed Pharmacother. 2016; 83:593-601 [PubMed] Related Publications
Increasing study reports that Wnt/β-catenin signaling pathway plays an essential role in numerous cancers growth, progression and metastasis. Aberrant miR-940 expression has been studied in gastric and breast cancer. However, the molecular mechanism of miR-940 enhancing proliferation and metastatic ability in human pancreatic carcinoma is far from to know. Real-time PCR was used to quantify miR-940 expression. Luciferase reporter assays here were performed to verify the activity of Wnt/β-catenin signaling pathway and targeting gene relationships, and immunofluorescence assay was applied to observe β-catenin expressed intensity. Bioinformatics analysis together with in vivo and vitro functional analysis indicated the potential targeting genes of miR-940. Specimens from 15 pairs of patients with human pancreatic carcinoma were involoved to confirm the relationship between miR-940 expression and the GSK3β/sFRP1 through real-time PCR and western blot assays. Bioinformatics combined with cell luciferase function researches determined the possible regulation of miR-940 on the 3'-UTR of the GSK3β and sFRP1 genes, resulting in the Wnt/β-catenin signaling activation. Further, miR-940 knockdown significantly recovered GSK3β and sFRP1 expression and relieved Wnt/β-catenin-mediated cell invasion, migration, metastasis and proliferation. The ectopic up-regulation of miR-940 significantly suppressed GSK3β/sFRP1 expression and promoted pancreatic carcinoma proliferation and invasion. Our study suggested mechanistic relationship between miR-940 and Wnt/β-catenin in the development and progression of pancreatic carcinoma through regulation of GSK3β and sFRP1.

Li Z, Xu Z, Xie Q, et al.
miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1.
Biomed Pharmacother. 2016; 83:508-513 [PubMed] Related Publications
Neuroblastoma (NB) is one of the most common solid tumors in children, many microRNAs regulate progression and development of NB. Here, we found miR-1303 was upregulated in NB cells and tissues, miR-1303 overexpression promoted the proliferation of SH-SY5Y NB cell investigated by MTT assay, colony formation assay and anchorage-independent growth ability assay, while miR-1303 knockdown reduced this effect. mechanism analysis suggested glycogen synthase kinase 3 beta (GSK3β) and secreted frizzled-related protein 1 (SFRP1) were the target of miR-1303, luciferase assay revealed miR-1303 directly bound to the 3'UTR of GSK3β and SFRP1. miR-1303 increased expression of MYC and CyclinD1, and decreased the expression of p21 and p27, and further demonstrated miR-1303 promotes NB proliferation. Moreover, there was a negative correlation between miR-1303 expression and GSK3β and SFRP1 expression in NB tissues, confirming GSK3β and SFRP1 were the targets of miR-1303 in NB tissues. Collectively, our findings suggested miR-1303 promotes NB proliferation by targeting GSK3β and SFRP1, and might be a target for NB therapy.

Fabijanovic D, Zunic I, Martic TN, et al.
The expression of SFRP1, SFRP3, DVL1, and DVL2 proteins in testicular germ cell tumors.
APMIS. 2016; 124(11):942-949 [PubMed] Related Publications
Germ cell tumors of the testis are a heterogeneous group of neoplasms that affect male adolescents and young adults. Wnt signaling pathway components have been shown to be actively involved in normal and malignant germ cell differentiation and progression. In this study, we aimed to explore the expression patterns of the secreted frizzled-related protein (SFRP) and Disheveled protein family (DVL) in a subset of testicular germ cell tumors. Eighty-five formalin-fixed, paraffin-embedded tissue samples of the primary germ cell tumors of the testis were stained against SFRP1, SFRP3, DVL1, and DVL2 proteins using immunohistochemistry. SFRP1 and SFRP3 exhibited lower expression in both seminomas and mixed/non-seminomatous tumors, compared with atrophic/benign tissue (p < 0.001). SFRP3 expression was lower than SFRP1 expression within the seminoma group (p = 0.004), but not within the mixed/non-seminomatous group (p = 0.409). The majority of the tested cases (27/28, 96%) exhibited low DVL1 protein expression (median 0%, range 0-90%). In contrast, 20 out of 22 tested cases (91%) exhibited strong expression of DVL2 protein (median 80%, range 0-100%). No significant difference in DVL1 and DVL2 protein expression was observed between seminomas and mixed/non-seminomatous tumors (p = 0.68 and 0.29). The secreted frizzled-related protein and disheveled protein family members appear to be actively involved in the pathogenesis of primary testicular germ cell tumors.

García-Tobilla P, Solórzano SR, Salido-Guadarrama I, et al.
SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms.
Gene. 2016; 593(2):292-301 [PubMed] Related Publications
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.

Halifu Y, Liang JQ, Zeng XW, et al.
Wnt1 and SFRP1 as potential prognostic factors and therapeutic targets in cutaneous squamous cell carcinoma.
Genet Mol Res. 2016; 15(2) [PubMed] Related Publications
The Wnt signaling pathway plays a key role in insurgence and progression of many different forms of cancer. Some crucial components of the Wnt pathway have been proposed to be novel targets for cancer therapy. To date, the Wnt signaling pathway has not been studied in cutaneous squamous cell carcinoma (CSCC). This study was designed to investigate the expression of Wnt1 and SFRP1 from the Wnt pathway in CSCC. Tissue samples were obtained from 35 patients with CSCC and 30 controls admitted to the Xinjiang Uygur Autonomous Region People's Hospital at Urumchi City, China. Gene and protein expressions of Wnt1 and SFRP1 were quantified by immunohistochemistry and western blotting. Wnt1 expression was significantly higher (P < 0.05) in CSCC samples than in normal skin cells of the control subjects; in contrast, SFRP1 expression was significantly lower in CSCC tissues than that in tissues of control subjects (P < 0.05). Moreover, Wnt1 expression (P < 0.05) was found to be correlated with histopathological differentiation in CSCC, and negatively correlated with SFRP1 expression in CSCC (rs = -0.473, P = 0.015). Therefore, we concluded that Wnt1 and SFRP1 play important roles in the development of CSCC and could be potent markers for diagnosis, prevention, and therapy of CSCC.

Norton N, Advani PP, Serie DJ, et al.
Assessment of Tumor Heterogeneity, as Evidenced by Gene Expression Profiles, Pathway Activation, and Gene Copy Number, in Patients with Multifocal Invasive Lobular Breast Tumors.
PLoS One. 2016; 11(4):e0153411 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Invasive lobular carcinoma (ILC) comprises approximately ~10-20% of breast cancers. In general, multifocal/multicentric (MF/MC) breast cancer has been associated with an increased rate of regional lymph node metastases. Tumor heterogeneity between foci represents a largely unstudied source of genomic variation in those rare patients with MF/MC ILC.
METHODS: We characterized gene expression and copy number in 2 or more foci from 11 patients with MF/MC ILC (all ER+, HER2-) and adjacent normal tissue. RNA and DNA were extracted from 3x1.5 mm cores from all foci. Gene expression (730 genes) and copy number (80 genes) were measured using Nanostring PanCancer and Cancer CNV panels. Linear mixed models were employed to compare expression in tumor versus normal samples from the same patient, and to assess heterogeneity (variability) in expression among multiple ILC within an individual.
RESULTS: 35 and 34 genes were upregulated (FC>2) and down-regulated (FC<0.5) respectively in ILC tumor relative to adjacent normal tissue, q<0.05. 9/34 down-regulated genes (FIGF, RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2, KIT) had changes larger than CDH1, a hallmark of ILC. Copy number changes in these patients were relatively few but consistent across foci within each patient. Amplification of three genes (CCND1, FADD, ORAOV1) at 11q13.3 was present in 2/11 patients in both foci. We observed significant evidence of within-patient between-foci variability (heterogeneity) in gene expression for 466 genes (p<0.05 with FDR 8%), including CDH1, FIGF, RELN, SFRP1, MMP7, NTRK2, LAMB3, SPRY2 and KIT.
CONCLUSIONS: There was substantial variation in gene expression between ILC foci within patients, including known markers of ILC, suggesting an additional level of complexity that should be addressed.

Davaadorj M, Imura S, Saito YU, et al.
Loss of SFRP1 Expression Is Associated with Poor Prognosis in Hepatocellular Carcinoma.
Anticancer Res. 2016; 36(2):659-64 [PubMed] Related Publications
BACKGROUND: Secreted frizzled-related protein-1 (SFRP1) is a well-known inhibitor of the wingless type (WNT)-β-catenin signaling pathway and its inactivation plays an important role in the development and progression of various types of cancer. However, the clinical significance of SFRP1 expression in patients with hepatocellular carcinoma (HCC) remains unknown.
MATERIALS AND METHODS: A total of 63 patients with HCC who underwent hepatectomy at our Institution were enrolled in this study. A quantitative real-time polymerase chain reaction (RT-PCR) was performed to determine the SFRP1 mRNA expression level in both the tumorous and non-tumorous tissues of HCC. The patients were divided into low and high gene-expression groups based on the SFRP1 gene expression level in their tumor tissues. We analyzed the differences in clinicopathological characteristics between these two groups of patients.
RESULT: The expression level of SFRP1 was significantly lower in tumor tissue than in non-tumor tissue (p<0.0001). Significant correlations were observed between a high expression of SFRP1 in tumor tissue and older than 65 years (p=0.030), tumor size less than 5 cm (p=0.011); and no vascular invasion (p=0.004). Patients with high SFRP1 expression in tumor tissue had a significantly better overall survival rate (p=0.040). However, the SFRP1 expression level was not defined as an independent risk factor for patient survival based on results of multivariate analysis.
CONCLUSION: SFRP1 may play a role in the development and progression of HCC. Therefore, more studies are required to investigate a potential role of SFRP1 in HCC prognosis.

Kierulf-Vieira KS, Sandberg CJ, Grieg Z, et al.
Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation.
Exp Cell Res. 2016; 340(1):53-61 [PubMed] Related Publications
Evidence indicates that the growth of glioblastoma (GBM), the most common and malignant primary brain cancer, is driven by glioma stem cells (GSCs) resistant to current treatment. As Wnt-signaling is pivotal in stem cell maintenance, we wanted to explore its role in GSCs with the objective of finding distinct signaling mechanisms that could serve as potential therapeutic targets. We compared gene expression in GSCs (n=9) and neural stem cells from the adult human brain (ahNSC; n=3) to identify dysregulated genes in the Wnt signaling pathway. This identified a six-gene Wnt signature present in all nine primary GSC cultures, and the combined expression of three of these genes (SFRP1, SFRP4 and FZD7) reduced median survival of glioma patients from 38 to 17 months. Treatment with recombinant SFRP1 protein in primary cell cultures downregulated nuclear β-catenin and decreased in vitro proliferation and sphere formation in a dose-dependent manner. Furthermore, expressional and functional analysis of SFRP1-treated GSCs revealed that SFRP1 halts cell cycling and induces apoptosis. These observations demonstrate that Wnt signaling is dysregulated in GSC, and that inhibition of the Wnt pathway could serve as a therapeutic strategy in the treatment of GBM.

Zhou W, Li Y, Gou S, et al.
MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway.
Oncotarget. 2015; 6(35):37557-69 [PubMed] Free Access to Full Article Related Publications
The Wnt/β-catenin signaling pathway, commonly hyperactivated in pancreatic cancer, has been reported to play an important role in the maintenance of stemness of cancer stem cells (CSCs), which is closely related to the progression of pancreatic cancer. Therefore, exploring the regulatory mechanism in Wnt/β-catenin signaling may provide valuable clinical targets for cancer therapy. In the current study, we demonstrated that upregulation of miR-744 in pancreatic cancer promoted Wnt/β-catenin signaling by directly targeting secreted frizzled-related protein 1 (SFRP1), glycogen synthase kinase 3β (GSK3β), and transducin-like enhancer of split 3 (TLE3), important negative modulators of Wnt/β-catenin signaling. Expression of miR-744 was markedly upregulated in pancreatic cancer and positively correlated with poor patient survival. Furthermore, we found that overexpressing miR-744 enhanced, while inhibiting miR-744 reduced, the stem cell-like phenotype of pancreatic cancer cells in vitro. Importantly, in vivo model of human-derived pancreatic xenografts showed that miR-744 upregulation enhanced the tumorigenicity of pancreatic cancer cells. These findings suggest that miR-744 plays a vital role in promoting the stem cell-like phenotype of pancreatic cancer cells, and may represent a novel prognostic biomarker and therapeutic target.

Kalmár A, Péterfia B, Hollósi P, et al.
DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer.
BMC Cancer. 2015; 15:736 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence.
METHODS: Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed.
RESULTS: A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence.
CONCLUSION: Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.

Valdez BC, Brammer JE, Li Y, et al.
Romidepsin targets multiple survival signaling pathways in malignant T cells.
Blood Cancer J. 2015; 5:e357 [PubMed] Free Access to Full Article Related Publications
Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies.

van Beuge MM, Ten Dam EJ, Werker PM, Bank RA
Wnt pathway in Dupuytren disease: connecting profibrotic signals.
Transl Res. 2015; 166(6):762-771.e3 [PubMed] Related Publications
A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways.

Fang L, Cai J, Chen B, et al.
Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling.
Nat Commun. 2015; 6:8640 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC.

Naselli F, Belshaw NJ, Gentile C, et al.
Phytochemical Indicaxanthin Inhibits Colon Cancer Cell Growth and Affects the DNA Methylation Status by Influencing Epigenetically Modifying Enzyme Expression and Activity.
J Nutrigenet Nutrigenomics. 2015; 8(3):114-27 [PubMed] Related Publications
BACKGROUND: Recently, we have shown anti-proliferative and pro-apoptotic effects of indicaxanthin associated with epigenetic modulation of the onco-suppressor p16INK4a in the human colon cancer cell line CACO2. In the present study, the epigenetic activity of indicaxanthin and the mechanisms involved were further investigated in other colorectal cancer cell lines.
METHODS: LOVO1, CACO2, HT29, HCT116, and DLD1 cells were used to evaluate the potential influence of consistent dietary concentrations of indicaxanthin on DNA methylation, and the epigenetic mechanisms involved were researched.
RESULTS: Indicaxanthin exhibited anti-proliferative activity in all cell lines but HT29, induced demethylation in the promoters of some methylation-silenced onco-suppressor genes involved in colorectal carcinogenesis (p16INK4a, GATA4, and ESR1), and left unchanged others which were basally hypermethylated (SFRP1 and HPP1). In apparent contrast, cell exposure to indicaxanthin increased DNMT gene expression, although indicaxanthin appeared to be an inhibitor of DNMT activity. Indicaxanthin also increased the expression of genes involved in DNA demethylation. Finally, an in silico molecular modelling approach suggested stable binding of indicaxanthin at the DNMT1 catalytic site.
CONCLUSIONS: Our findings contribute to new knowledge in the field of phytochemicals and specifically suggest dietary indicaxanthin as a potential epigenetic agent to protect colon cells against tumoral alterations.

Liang J, Kang X, Halifu Y, et al.
Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis.
BMC Cancer. 2015; 15:641 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The Wnt signaling pathway is abnormally activated in many human cancers. Secreted frizzled-related proteins (SFRPs) function as negative regulators of Wnt signaling and play an important role in carcinogenesis. SFRP promoter hypermethylation has often been identified in human cancers; however, the precise role of SFRPs in cutaneous squamous cell carcinoma (SCC) is unclear.
METHODS: The methylation status of the SFRP family was analyzed in an age-and sex-matched case-control study, including 40 cutaneous SCC cases and 40 normal controls, using the MassARRAY EpiTYPER system.
RESULTS: The methylation rate of SFRP1, SFRP2, SFRP4, and SFRP5 promoters was significantly higher in cutaneous SCC tissues than in adjacent tissue and normal skin samples.
DISCUSSION: Our manuscript mainly discussed the average methylation rate of SFRPs (SFRP1, SFRP2, SFRP4, and SFRP5) promoters are significantly high in tumor tissue samples and the average CpG island methylation rate among different pathological levels of cutaneous SCC between these genes are different.
CONCLUSIONS: Our findings suggest that promoter hypermethylation of SFRPs is associated with the development of carcinoma, and could be a useful tumor marker for cutaneous SCC and other types of cancers.

Majchrzak-Celińska A, Słocińska M, Barciszewska AM, et al.
Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival.
J Appl Genet. 2016; 57(2):189-97 [PubMed] Free Access to Full Article Related Publications
The deregulation of Wnt signaling is observed in various cancers, including gliomas, and might be related to the methylation of the genes encoding antagonists of this signaling pathway. The aim of the study was to assess the methylation status of the promoter regions of six Wnt negative regulators and to determine their prognostic value in clinical samples of gliomas of different grades. The methylation of SFRP1, SFRP2, PPP2R2B, DKK1, SOX17, and DACH1 was analyzed in 64 glioma samples using methylation-specific polymerase chain reaction (MSP). The results were analyzed in correlation with clinicopathological data. Promoter methylation in at least one of the analyzed genes was found in 81.3 % of the tumors. All benign tumors [grade I according to the World Health Organization (WHO) classification] lacked the methylation of the studied genes, whereas grade II, III, and IV tumors were, in most cases, methylation-positive. The methylation index correlated with the patient's age. The most frequently methylated genes were SFRP1 and SFRP2 (73.4 % and 46.9 %, respectively), followed by SOX17 (20.3 %) and PPP2R2B (10.9 %); DKK1 and DACH1 were basically unmethylated (1.6 %). SFRP1 methylation negatively correlated with patients' survival time, and was significantly more frequent in older patients and those with higher grade tumors. Overall, the results of this study indicate that aberrant promoter methylation of Wnt pathway antagonists is common in gliomas, which may be the possible cause of up-regulation of this signaling pathway often observed in these tumors. Moreover, SFRP1 promoter methylation can be regarded as a potential indicator of glioma patients' survival.

Wu G, Liu A, Zhu J, et al.
MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.
Oncotarget. 2015; 6(30):28882-94 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.

Masterson L, Sorgeloos F, Winder D, et al.
Deregulation of SYCP2 predicts early stage human papillomavirus-positive oropharyngeal carcinoma: A prospective whole transcriptome analysis.
Cancer Sci. 2015; 106(11):1568-75 [PubMed] Free Access to Full Article Related Publications
This study was designed to identify significant differences in gene expression profiles of human papillomavirus (HPV)-positive and HPV-negative oropharyngeal squamous cell carcinomas (OPSCC) and to better understand the functional and biological effects of HPV infection in the premalignant pathway. Twenty-four consecutive patients with locally advanced primary OPSCC were included in a prospective clinical trial. Fresh tissue samples (tumor vs. matched normal epithelium) were subjected to whole transcriptome analysis and the results validated on the same cohort with RT-quantitative real-time PCR. In a separate retrospective cohort of 27 OPSCC patients, laser capture microdissection of formalin-fixed, paraffin-embedded tissue allowed RNA extraction from adjacent regions of normal epithelium, carcinoma in situ (premalignant) and invasive SCC tissue. The majority of patients showed evidence of high-risk HPV16 positivity (80.4%). Predictable fold changes of RNA expression in HPV-associated disease included multiple transcripts within the p53 oncogenic pathway (e.g. CDKN2A/CCND1). Other candidate transcripts found to have altered levels of expression in this study have not previously been established (SFRP1, CRCT1, DLG2, SYCP2, and CRNN). Of these, SYCP2 showed the most consistent fold change from baseline in premalignant tissue; aberrant expression of this protein may contribute to genetic instability during HPV-associated cancer development. If further corroborated, this data may contribute to the development of a non-invasive screening tool. This study is registered with the UK Clinical Research Network (ref.: 11945).

Yeh CM, Chen PC, Hsieh HY, et al.
Methylomics analysis identifies ZNF671 as an epigenetically repressed novel tumor suppressor and a potential non-invasive biomarker for the detection of urothelial carcinoma.
Oncotarget. 2015; 6(30):29555-72 [PubMed] Free Access to Full Article Related Publications
The molecular mechanism underlying the lethal phenomenon of urothelial carcinoma (UC) tumor recurrence remains unresolved. Here, by methylation microarray, we identified promoter methylation of the zinc-finger protein gene, ZNF671 in bladder UC tumor tissue samples, a finding that was independently validated by bisulphite pyrosequencing in cell lines and tissue samples. Subsequent assays including treatment with epigenetic depressive agents and in vitro methylation showed ZNF671 methylation to result in its transcriptional repression. ZNF671 re-expression in UC cell lines, via ectopic expression, inhibited tumor growth and invasion, in possible conjunction with downregulation of cancer stem cell markers (c-KIT, NANOG, OCT4). Clinically, high ZNF671 methylation in UC tumor tissues (n=96; 63 bladder, 33 upper urinary tract) associated with tumor grade and poor locoregional disease-free survival. Quantitative MSP analysis in a training (n=97) and test (n=61) sets of voided urine samples from bladder UC patients revealed a sensitivity and specificity of 42%-48% and 89%-92.8%, respectively, for UC cancer detection. Moreover, combining DNA methylation of ZNF671 and 2 other genes (IRF8 and sFRP1) further increased the sensitivity to 96.2%, suggesting a possible three-gene UC biomarker. In summary, ZNF671, an epigenetically silenced novel tumor suppressor, represents a potential predictor for UC relapse and non-invasive biomarker that could assist in UC clinical decision-making.

Patai ÁV, Valcz G, Hollósi P, et al.
Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas.
PLoS One. 2015; 10(8):e0133836 [PubMed] Free Access to Full Article Related Publications
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.

Ren XY, Zhou GQ, Jiang W, et al.
Low SFRP1 Expression Correlates with Poor Prognosis and Promotes Cell Invasion by Activating the Wnt/β-Catenin Signaling Pathway in NPC.
Cancer Prev Res (Phila). 2015; 8(10):968-77 [PubMed] Related Publications
Distant metastasis remains the predominant mode of treatment failure in nasopharyngeal carcinoma (NPC). Unfortunately, the molecular events underlying NPC metastasis remain poorly understood. Secreted frizzled-related protein 1 (SFRP1) plays an important role in tumorigenesis and progression. However, little is known about the function and mechanism of SFRP1 in NPC. Immunohistochemistry was used to determine SFRP1 expression levels in patients with NPC. SFRP1 function was evaluated using MTT, colony formation, wound-healing, Transwell assays, and in vivo models. The methylation level of SFRP1 in NPC cells was examined using bisulfate pyrosequencing; the Wnt/β-catenin signaling pathway genes were studied using Western blotting. Compared with patients with high SFRP1 expression, patients with low SFRP1 expression had worse overall survival [HR, 2.32; 95% confidence interval (CI), 1.36-3.94; P = 0.002], disease-free survival (HR, 1.98; 95% CI, 1.23-3.18; P = 0.005), and distant metastasis-free survival (HR, 2.07; 95% CI, 1.19-3.59; P = 0.009). Multivariate Cox regression analysis indicated that SFRP1 was an independent prognostic factor. Furthermore, SFRP1 was significantly downregulated in NPC cell lines. SFRP1 overexpression suppressed NPC cell proliferation, migration, and invasion in vitro and lung colonization in vivo. SFRP1 expression was restored after treatment with a demethylation agent, and the SFRP1 promoter region was hypermethylated in NPC cells. β-Catenin, c-Myc, and cyclin D1 were downregulated after SFRP1 restoration, which suggested that SFRP1 suppressed growth and metastasis by inhibiting the Wnt/β-catenin signaling pathway in NPC. SFRP1 provides further insight into NPC progression and may provide novel therapeutic targets for NPC treatment.

Torabi K, Miró R, Fernández-Jiménez N, et al.
Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer.
Carcinogenesis. 2015; 36(10):1103-10 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is characterized by specific patterns of copy number alterations (CNAs), which helped with the identification of driver oncogenes and tumor suppressor genes (TSGs). More recently, the usage of single nucleotide polymorphism arrays provided information of copy number neutral loss of heterozygosity, thus suggesting the occurrence of somatic uniparental disomy (UPD) and uniparental polysomy (UPP) events. The aim of this study is to establish an integrative profiling of recurrent UPDs/UPPs and CNAs in sporadic CRC. Our results indicate that regions showing high frequencies of UPD/UPP mostly coincide with regions typically involved in genomic losses. Among them, chromosome arms 3p, 5q, 9q, 10q, 14q, 17p, 17q, 20p, 21q and 22q preferentially showed UPDs/UPPs over genomic losses suggesting that tumor cells must maintain the disomic state of certain genes to favor cellular fitness. A meta-analysis using over 300 samples from The Cancer Genome Atlas confirmed our findings. Several regions affected by recurrent UPDs/UPPs contain well-known TSGs, as well as novel candidates such as ARID1A, DLC1, TCF7L2 and DMBT1. In addition, VCAN, FLT4, SFRP1 and GAS7 were also frequently involved in regions of UPD/UPP and displayed high levels of methylation. Finally, sequencing and fluorescence in situ hybridization analysis of the gene APC underlined that a somatic UPD event might represent the second hit to achieve biallelic inactivation of this TSG in colorectal tumors. In summary, our data define a profile of somatic UPDs/UPPs in sporadic CRC and highlights the importance of these events as a mechanism to achieve the inactivation of TSGs.

Khakpour G, Pooladi A, Izadi P, et al.
DNA methylation as a promising landscape: A simple blood test for breast cancer prediction.
Tumour Biol. 2015; 36(7):4905-12 [PubMed] Related Publications
Breast cancer is the most common malignancy among women worldwide. Risk assessment is one of the main services delivered by cancer clinics. Biomarker analysis on different tissues including the peripheral blood can provide crucial information. One of the potential epigenetic biomarkers (epimarkers) is introduced as the peripheral blood DNA methylation pattern. This study was conducted to evaluate the potential value of peripheral blood epimarkers as an accessible tool to predict the risk of breast cancer development. WBC's DNA was the focus of several case-control studies at both genome wide and candidate gene levels to reveal epigenetic changes accounting for predisposition to breast cancer, leading to suggest that ATM, TITF1, SFRP1, NUP155, NEUROD1, ZNF217, DBC2, DOK7 and ESR1 genes and the LINE1, Alu and Sat2 DNA elements could be considered as the potential epimarkers. To address that by which mechanisms WBC's DNA methylation patterns could be linked to the propensity to breast cancer, several contemplations have been offered. Constitutional epimutation during embryonic life, and methylation changes secondary to either environmental exposures or tumor-mediated immune response, are the two main mechanisms. One can deduce that epimarkers based on their potential properties or regulatory impacts on cancer-related genes may be employed for risk prediction, prognosis, and survival inferences that are highly required for breast cancer management toward personalized medicine.

Ding SL, Yang ZW, Wang J, et al.
Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma.
World J Gastroenterol. 2015; 21(20):6317-28 [PubMed] Free Access to Full Article Related Publications
AIM: To comprehensively understand the underlying molecular events accounting for aberrant Wnt signaling activation in hepatocellular carcinoma (HCC).
METHODS: This study was retrospective. The HCC tissue specimens used in this research were obtained from patients who underwent liver surgery. The Catalogue of Somatic Mutations in Cancer (COSMIC) database was searched for the mutation statuses of CTNNB1, TP53, and protein degradation regulator genes of CTNNB1. Dual-luciferase reporter assay was performed with TOP/FOP reporters to detect whether TP53 gain-of-function (GOF) mutations could enhance the transcriptional activity of Wnt signaling. Methylation sensitive restriction enzyme-quantitative PCR was used to explore the methylation status of CpG islands located in the promoters of APC, SFRP1, and SFRP5 in HCCs with different risk factors. Finally, nested-reverse transcription PCR was performed to examine the integration of HBx in front of LINE1 element and the existence of HBx-LINE1 chimeric transcript in Hepatitis B virus-related HCC. All results in this article were analyzed with the software SPSS version 19.0 for Windows, and different groups were compared by χ(2) test as appropriate.
RESULTS: Based on the data from COSMIC database, compared with other solid tumors, mutation frequency of CTNNB1 was significantly higher in HCC (P < 0.01). The rate of CTNNB1 mutation was significantly less frequent in Hepatitis B virus-related HCC than in other etiologies (P < 0.01). Dual-luciferase reporter system and TOP/FOP reporter assays confirmed that TP53 GOF mutants were able to enhance the transcriptional ability of Wnt signaling. An exclusive relationship between the status of TP53 and CTNNB1 mutations was observed. However, according to the COSMIC database, TP53 GOF mutation is rare in HCC, which indicates that TP53 GOF mutation is not a reason for the aberrant activation of Wnt signaling in HCC. APC and AXIN1 were mutated in HCC. By using methylation sensitive restriction enzyme-quantitative PCR, hypermethylation of APC was detected in HCC with different risk factors, whereas SFRP1 and SFRP5 were not hypermethylated in any of the HCC etiologies, which indicates that the mutation of APC and AXIN1, together with the methylation of APC could take part in the overactivation of Wnt signaling. Nested-reverse transcription PCR failed to detect the integration of HBx before the LINE1 element, or the existence of an HBx-LINE1 chimeric transcript, suggesting that integration could not play a role in the aberrant activation of Wnt signaling in HCC.
CONCLUSION: In HCC, genetic/epigenetic aberration of CTNNB1 and its protein degradation regulators are the major cause of Wnt signaling overactivation.

Kalmár A, Péterfia B, Hollósi P, et al.
Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples.
Pathol Oncol Res. 2015; 21(4):1149-56 [PubMed] Related Publications
We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from "recent", collected within 6 months, and "archived", collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18 μg DNA; Q: 3.00 ± 4.04 μg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91 μg DNA; Q: 11.51 ± 7.50 μg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.

Xie J, Zhang Y, Hu X, et al.
Norcantharidin inhibits Wnt signal pathway via promoter demethylation of WIF-1 in human non-small cell lung cancer.
Med Oncol. 2015; 32(5):145 [PubMed] Related Publications
Wingless-type (Wnt) family of secreted glycoproteins is a group of signal molecules implicated in oncogenesis. Abnormal activation of Wnt signal pathway is associated with a variety of human cancers, including non-small cell lung cancer (NSCLC). Wnt antagonists, such as the secreted frizzled-related protein (SFRP) family, Wnt inhibitory factor-1 (WIF-1) and cerberus, inhibit Wnt signal pathway by directly binding to Wnt molecules. Norcantharidin (NCTD) is known to possess anticancer activity but less nephrotoxicity than cantharidin. In this study, we found that NCTD inhibited cell proliferation, induced apoptosis, arrested cell cycle and suppressed cell invasion/migration in vitro. Additionally, Wnt signal pathway transcription was also suppressed. NCTD treatment blocked cytoplasmic translocation of beta-catenin into the nucleus. Alterations of apoptosis-related proteins, such as Bax, cleaved caspase-3 (pro-apoptotic) and Bcl-2 (anti-apoptotic), had been detected. Furthermore, the expression levels of WIF-1 and SFRP1 were significantly increased in NCTD-treated groups compared with negative control (NC) groups. Abnormal methylation was observed in NC groups, while NCTD treatment promoted WIF-1 demethylation. The present study revealed that NCTD activated WIF-1 via promoter demethylation, inhibiting the canonical Wnt signal pathway in NSCLC, which may present a new therapeutic target in vivo.

Gregory KJ, Schneider SS
Estrogen-mediated signaling is differentially affected by the expression levels of Sfrp1 in mammary epithelial cells.
Cell Biol Int. 2015; 39(7):873-9 [PubMed] Related Publications
Estrogen has been implicated in breast cancer risk for a variety of reasons including its role in stimulating mammary cell division. Secreted frizzled-related proteins (SFRPs) are a family of Wnt signaling antagonists. Loss of Sfrp1 in mice results in focal ductal epithelial hyperplasias and in humans, loss of SFRP1 is associated with early changes in premalignant breast lesions as well as poor overall survival in patients with early stage breast cancer. Considering that SFRP1 expression is further reduced in ER positive breast cancers when compared with ER negative breast cancers, we chose to determine whether loss of Sfrp1 alters ER signaling. Immunohistochemical analysis revealed that loss of Sfrp1 significantly increased the number of PR and BrdU positve cells in the mammary gland. We further demonstrate that down stream actions of ER-mediated signaling, including cellular proliferation and PR transcription, are elevated in estradiol treated explant cultures derived from Sfrp1(-/-) mice. Additionally, we show that Control explant cultures treated with estradiol exhibit an increase in the mRNA levels of Sfrp1. Finally, we establish that in human mammary epithelial cells with either SFRP1 knocked down (TERT-siSFRP1) and rescued SFRP1 expression (MCF7-SFRP1), estrogen signaling is augmented. Modulation of ER activity appears to be through a mechanism dependent upon Wnt/β-catenin activity. Taken together, our data suggest an important control mechanism by which estrogen signaling is tempered in normal cells and indicates why loss of SFRP1 in early lesions might be a causal change leading to enhanced estrogen-mediated proliferation.

Rogler A, Kendziorra E, Giedl J, et al.
Functional analyses and prognostic significance of SFRP1 expression in bladder cancer.
J Cancer Res Clin Oncol. 2015; 141(10):1779-90 [PubMed] Related Publications
PURPOSE: We previously showed that the Wnt-signaling antagonist SFRP1 (secreted frizzled-related protein 1) is a promising marker in bladder cancer. The aim of this study was to validate the prognostic role and analyze the functional significance of SFRP1.
METHODS: Four bladder cancer cell lines (RT112, RT4, J82 and BFTC905) and one urothelial cell line (UROtsa) were used for functional characterization of SFRP1 expression. Effects on viability, proliferation and wound healing were investigated, and canonical Wnt-pathway activity as well as Wnt-signaling target gene expression was analyzed. Additionally, tissue micro-arrays from two different bladder tumor cohorts were evaluated for SFRP1 expression, and associations with survival and histopathological parameters were analyzed.
RESULTS: The cell lines RT112, RT4, J82 and UROtsa showed SFRP1 expression. In BFTC905, SFRP1 expression was inhibited by promoter hypermethylation. Wnt-pathway activity was absent in all cell lines and independent from SFRP1 expression. RT112 and BFTC905 were used for further functional characterization. SFRP1 overexpression resulted in decreased viability and migration in BFTC905 cells. Knockdown of SFRP1 expression in RT112 cells resulted only in marginal effects. In bladder tumors, SFRP1 expression was associated with lower tumor grade, but not with progression in patients with papillary bladder cancer. SFRP1 expressing papillary bladder cancer tumors also demonstrated a tendency to longer overall survival.
CONCLUSIONS: SFRP1 is reducing malignant potential of BFTC905 cells, but not by regulation of canonical Wnt-signaling pathway. Other pathways, like non-canonical Wnt or the MAPK pathway, could be activated via SFRP1-expression loss. In bladder tumors, SFRP1 has the potential to predict outcome for a subset of papillary bladder tumors.

Valdez BC, Li Y, Murray D, et al.
Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: Enhancement of cytotoxicity with epigenetic modulators.
Exp Hematol. 2015; 43(6):448-61.e2 [PubMed] Free Access to Full Article Related Publications
Clofarabine (Clo), fludarabine (Flu), and busulfan (Bu) combinations are efficacious in hematopoietic stem cell transplantation for myeloid leukemia. We sought to determine whether the more affordable drug cladribine (Clad) can provide a viable alternative to Clo, with or without panobinostat (Pano) and 5-aza-2'-deoxycytidine (DAC). Both Clad+Flu+Bu and Clo+Flu+Bu combinations showed synergistic cytotoxicity in KBM3/Bu250(6), HL60, and OCI-AML3 cell lines. Cell exposure to these drug combinations resulted in 60%-80% inhibition of proliferation; activation of the ATM pathway; increase in histone modifications; decrease in HDAC3, HDAC4, HDAC5 and SirT7 proteins; decrease in mitochondrial membrane potential; activation of apoptosis and stress signaling pathways; and downregulation of the AKT pathway. These drug combinations activated DNA-damage response and apoptosis in primary cell samples from AML patients. At lower concentrations of Clad/Clo, Flu, and Bu, inclusion of Pano and DAC enhanced cell killing, increased histone modifications and DNA demethylation, and increased the levels of P16/INK4a, P15/INK4b and P21/Waf1/Cip1 proteins. The observed DNA demethylating activity of Clad and Clo may complement DAC activity; increase demethylation of the gene promoters for SFRP1, DKK3, and WIF1; and cause degradation of β-catenin in cells exposed to Clad/Clo+Flu+Bu+DAC+Pano. The overlapping activities of Clad/Clo+Flu+Bu, Pano, and DAC in DNA-damage formation and repair, histone modifications, DNA demethylation, and apoptosis may underlie their synergism. Our results provide a basis for supplanting Clo with Clad and for including epigenetic modifiers in the pre-hematopoietic stem cell transplantation conditioning regimen for myeloid leukemia patients.

Yang Y, Xing Y, Liang C, et al.
Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis.
Tumour Biol. 2015; 36(7):5571-9 [PubMed] Related Publications
This study aimed to screen potential microRNAs (miRNAs) and genes related to human primary breast cancer. The gene and miRNA expression profile data of GSE19783 was obtained from Gene Expression Omnibus. The matched messenger RNA (mRNA) and miRNA expression profiles of 100 human primary breast cancer samples were chosen for further analysis. The miRNA-gene regulatory modules were screened via iterative multiplicative updating algorithm. The potential functions of genes in modules were predicted by functional and pathway enrichment analysis; meanwhile, the potential functions of miRNAs were predicted by functional enrichment analysis. Furthermore, miRNA-miRNA functional synergistic network and miRNA-miRNA co-regulatory network were constructed. Totally, 16 miRNA-gene modules were screened, containing 222 miRNA-gene interactions. The genes in these modules were mainly related to breast cancer. Genes in module 6 (e.g., SFRP1) were enriched in cell junction assembly; genes in module 8 and 12 (e.g., ESR1 and ERBB4) were significantly implicated in mammary gland alveolus and lobule development. Meanwhile, genes in module 12 (e.g., ERBB4) were enriched in the pathway of endocytosis. Besides, several miRNAs (e.g., miR-375) were enriched in inflammatory cell apoptotic process; some other miRNAs (e.g., miR-139-5p and miR-9) were enriched in response to vitamin D. Additionally, miR-139-5p with several other miRNAs (e.g., miR-9) co-regulated SFRP1; miR-375, miR-592, and miR-135a co-regulated ESR1 and ERBB4. Some miRNAs (e.g., miR-139-5p and miR-9) and their target gene SFRP1, as well as several other miRNAs (e.g., miR-375, miR-592, and miR-135a) and their target genes (e.g., ESR1 and ERBB4), might be crucial in the pathogenesis of primary breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SFRP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999