Gene Summary

Gene:LEF1; lymphoid enhancer binding factor 1
Aliases: LEF-1, TCF10, TCF7L3, TCF1ALPHA
Summary:This gene encodes a transcription factor belonging to a family of proteins that share homology with the high mobility group protein-1. The protein encoded by this gene can bind to a functionally important site in the T-cell receptor-alpha enhancer, thereby conferring maximal enhancer activity. This transcription factor is involved in the Wnt signaling pathway, and it may function in hair cell differentiation and follicle morphogenesis. Mutations in this gene have been found in somatic sebaceous tumors. This gene has also been linked to other cancers, including androgen-independent prostate cancer. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:lymphoid enhancer-binding factor 1
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (97)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LEF1 (cancer-related)

Yu J, Li H
The expression of FAT1 is associated with overall survival in children with medulloblastoma.
Tumori. 2017; 103(1):44-52 [PubMed] Related Publications
PURPOSE: The FAT1 gene is involved in some cancers; however, its role in medulloblastoma is less clear. This study investigated the effects of FAT1 expression on the prognosis of medulloblastoma patients.
METHODS: Whole exome sequencing was undertaken in 40 medulloblastoma patient samples. FAT1 mRNA and protein expression levels in normal and brain tumor tissues were determined by fluorescence quantitative PCR and immunohistochemistry, respectively. The association of FAT1 expression with overall survival (OS) was examined by Kaplan-Meier curve analysis with a log-rank test. Following lentiviral-mediated FAT1 knockdown using shRNA in Daoy cells, proliferation, Wnt signaling, and β-catenin protein expression were determined.
RESULTS: Eight FAT1 missense mutations were detected in 7 patients. FAT1 mRNA expression in tumors was significantly lower than in adjacent normal tissue (p = 0.043). The OS of patients with high FAT1 protein expression was significantly longer than that of patients with low FAT1 protein expression (median survival time: 24.3 vs 4.8 months, respectively; p = 0.002). shFAT1 cells had significantly higher proliferation rates than shControl cells (p≤0.028). Furthermore, the mRNA expression of LEF1, β-catenin, and cyclin D1 was significantly upregulated in shFAT1-Daoy cells (p≤0.018).
CONCLUSIONS: Low FAT1 expression was associated with poor prognosis in children with medulloblastoma. Furthermore, FAT1 may act on Wnt signaling pathway to exert its antitumor effect.

Zhou B, Wang J, Zheng G, Qiu Z
Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21.
Food Chem Toxicol. 2016; 97:375-384 [PubMed] Related Publications
Urolithins are bioactive ellagic acid-derived metabolites produced by human colonic microflora. Although previous studies have demonstrated the cytotoxicity of urolithins, the effect of urolithins on miRNAs is still unclear. In this study, the suppressing effects of methylated urolithin A (mUA) on cell viability in human prostate cancer DU145 cells was investigated. mUA induced caspase-dependent cell apoptosis, mitochondrial depolarization and down-regulation of Bcl-2/Bax ratio. The results showed that upon exposure to mUA, miR-21 expression was decreased and the expression of PTEN and Pdcd4 protein was elevated. mUA could further suppress Akt phosphorylation and increase protein expression of FOXO3a, and the effects of mUA on Akt phosphorylation and protein expression of FOXO3a were blocked by PTEN silence. Moreover, mUA suppressed the Wnt/β-catenin-mediated transcriptional activation of MMP-7 and c-Myc, and this function of mUA on MMP-7 and c-Myc was attenuated by over-expression of miR-21. In conclusion, our data suggest that mUA can suppress cell viability in DU145 cells through modulating miR-21 and its downstream series-wound targets, including PTEN, Akt and Wnt/β-catenin signaling.

Park SY, Bae JS, Cha EJ, et al.
Nuclear EpICD expression and its role in hepatocellular carcinoma.
Oncol Rep. 2016; 36(1):197-204 [PubMed] Related Publications
Regulated intramembrane proteolysis of epithelial cell adhesion molecule (EpCAM) results in shedding of the extracellular domain (EpEX) and release of the intra-cellular domain (EpICD) into the cytoplasm. Released EpICD associates with FHL2, β-catenin and Lef-1 to form a nuclear complex and triggers oncogenic signaling. This study was conducted to examine the nuclear expression of EpICD in hepatocellular carcinoma (HCC) and to assess the role of EpICD in HCC. EpICD immunoexpression was examined in 100 cases of HCC using tissue microarrays and correlated with clinicopathological parameters. We also examined the role of EpICD in HCC using EpICD cDNA transfected HCC cell line and EpCAM silenced HCC cell line by small interfering RNA (siRNA). Nuclear expression of EpICD was observed in 19 of 100 (19%) cases. Nuclear expression of EpICD significantly correlated with nuclear expression of β-catenin, and Ki-67 labeling index. In addition, nuclear expression of EpICD was associated with higher histologic grade and advanced T category. Forced overexpression of EpICD in the HCC cell significantly increased the cell proliferation, migration and invasion. The overexpression of EpICD also increased the expression levels of the active form of β-catenin and c-myc and cyclin D1. In contrast, downregulation of EpCAM by siRNA decreased the cell proliferation, migration, invasion and the expression of active form of β-catenin, c-myc and cyclin D1. Our present data suggest that EpICD plays important roles in HCC progression by modulating expression of target genes of EpCAM.

Poindexter KM, Matthew S, Aronchik I, Firestone GL
Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.
Cell Biol Toxicol. 2016; 32(2):103-19 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a -333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation.

Hsieh TH, Hsu CY, Tsai CF, et al.
A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting β-catenin/LEF-1 signaling.
Sci Rep. 2016; 6:19156 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
The inhibition of β-catenin/LEF-1 signaling is an emerging strategy in cancer therapy. However, clinical targeted treatment of the β-catenin/LEF-1 complex remains relatively ineffective. Therefore, development of specific molecular targets is a key approach for identifying new cancer therapeutics. Thus, we attempted to synthesize a peptide (TAT-NLS-BLBD-6) that could interfere with the interaction of β-catenin and LEF-1 at nuclei in human breast cancer cells. TAT-NLS-BLBD-6 directly interacted with β-catenin and inhibited breast cancer cell growth, invasion, migration, and colony formation as well as increased arrest of sub-G1 phase and apoptosis; it also suppressed breast tumor growth in nude mouse and zebrafish xenotransplantation models, showed no signs of toxicity, and did not affect body weight. Furthermore, the human global gene expression profiles and Ingenuity Pathway Analysis software showed that the TAT-NLS-BLBD-6 downstream target genes were associated with the HER-2 and IL-9 signaling pathways. TAT-NLS-BLBD-6 commonly down-regulated 27 candidate genes in MCF-7 and MDA-MB-231 cells, which are concurrent with Wnt downstream target genes in human breast cancer. Our study suggests that TAT-NLS-BLBD-6 is a promising drug candidate for the development of effective therapeutics specific for Wnt/β-catenin signaling inhibition.

Onaindia A, Martínez N, Montes-Moreno S, et al.
CD30 Expression by B and T Cells: A Frequent Finding in Angioimmunoblastic T-Cell Lymphoma and Peripheral T-Cell Lymphoma-Not Otherwise Specified.
Am J Surg Pathol. 2016; 40(3):378-85 [PubMed] Related Publications
CD30 expression in peripheral T-cell lymphoma (PTCL) and angioimmunoblastic T-cell lymphoma (AITL) is currently of great interest because therapy targeting CD30 is of clinical benefit, but the clinical and therapeutic relevance of CD30 expression in these neoplasms still remains uncertain. The aim of this study was to better quantify CD30 expression in AITL and PTCL-not otherwise specified (NOS). The secondary objective was to determine whether CD30 cells exhibit a B-cell or a T-cell phenotype. Gene expression profiling was studied in a series of 37 PTCL cases demonstrating a continuous spectrum of TNFRSF8 expression. This prompted us to study CD30 immunohistochemical (IHC) expression and mRNA levels by reverse transcription polymerase chain reaction (RT-PCR) in a different series of 51 cases (43 AITLs and 8 PTCL-NOSs) in routine samples. Double stainings with PAX5/CD30, CD3/CD30, and LEF1/CD30 were performed to study the phenotype of CD30 cells. Most (90%) of the cases showed some level of CD30 expression by IHC (1% to 95%); these levels were high (>50% of tumoral cells) in 14% of cases. CD30 expression was not detected in 10% of the cases. Quantitative RT-PCR results largely confirmed these findings, demonstrating a moderately strong correlation between global CD30 IHC and mRNA levels (r=0.65, P=1.75e-7). Forty-four of the positive cases (98%) contained CD30-positive B cells (PAX5), whereas atypical CD30-positive T cells were detected in 42 cases (93%). In conclusion, our data show that most AITL and PTCL-NOS cases express CD30, exhibiting very variable levels of CD30 expression that may be measured by IHC or RT-PCR techniques.

Jiang Q, He M, Guan S, et al.
MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway.
Tumour Biol. 2016; 37(4):5001-11 [PubMed] Related Publications
Wnt/β-catenin signaling pathway plays a major role in the cancer metastasis. Several microRNAs (miRNAs) are contributed to the inhibition of breast cancer metastasis. Here, we attempted to find novel targets and mechanisms of microRNA-100 (miR-100) in regulating the migration and invasion of breast cancer cells. In this study, we found that miR-100 expression was downregulated in human breast cancer tissues and cell lines. The overexpression of miR-100 inhibited the migration and invasion of MDA-MB-231 breast cancer cells. Inversely, the downregulation of miR-100 increased the migration and invasion of MCF-7 breast cancer cells. Furthermore, FZD-8, a receptor of Wnt/β-catenin signaling pathway, was demonstrated a direct target of miR-100. The overexpression of miR-100 decreased the expression levels not only FZD-8 but also the key components of Wnt/β-catenin pathway, including β-catenin, metalloproteniase-7 (MMP-7), T-cell factor-4 (TCF-4), and lymphoid enhancing factor-1 (LEF-1), and increased the protein expression levels of GSK-3β and p-GSK-3β in MDA-MB-231 cells, and the transfection of miR-100 inhibitor in MCF-7 cells showed the opposite effects. In addition, the expression of miR-100 was negatively correlated with the FZD-8 expression in human breast cancer tissues. Overall, these findings suggest that miR-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway and manipulation of miR-100 may provide a promoting therapeutic strategy for cancer breast treatment.

Rambow F, Job B, Petit V, et al.
New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis.
Cell Rep. 2015; 13(4):840-53 [PubMed] Related Publications
Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

Schmitz S, Bindea G, Albu RI, et al.
Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer.
Oncotarget. 2015; 6(33):34288-99 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
PURPOSE: To investigate if cetuximab induces epithelial to mesenchymal transition (EMT) and activation of cancer associated fibroblast (CAF) in the tumors of patients with squamous cell carcinoma of the head and neck (SCCHN).
METHODS: Cetuximab was administered for two weeks prior to surgery to 20 treatment-naïve patients. Five untreated patients were included as controls. Tumor biopsies were performed at baseline and before surgery. Gene expression profiles and quantitative real-time PCR (qRT-PCR) analysis of the pre-and post-treatment biopsies were compared. To further investigate EMT and CAF, correlations between previously described EMT and CAF markers and our microarray data set were calculated.
RESULTS: Gene expression profile analyses and qRT-PCR showed that some of the genes modified by cetuximab were related to CAFs and EMT (ZNF521, CXCL12, ASPN, OLFML3, OLFM1, TWIST1, LEF1, ZEB1, FAP). We identified 2 patient clusters with different EMT and CAF characteristics. Whereas one cluster showed clear upregulation of expression of genes implicated in CAF and EMT including markers of embryologic pathways like NOTCH and Wnt, the other did not.
CONCLUSIONS: Even if EMT and CAFs are implicated in cetuximab resistance in pre-clinical models, we demonstrate for the first time that these molecular processes may occur clinically early on.

Pillai SG, Dasgupta N, Siddappa CM, et al.
Paired-like Homeodomain Transcription factor 2 expression by breast cancer bone marrow disseminated tumor cells is associated with early recurrent disease development.
Breast Cancer Res Treat. 2015; 153(3):507-17 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
The presence of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer patients is prognostic for early relapse. In the present study, we analyzed the gene expression profiles from BM cells of breast cancer patients to identify molecular signatures associated with DTCs and their relevance to metastatic outcome. We analyzed BM from 30 patients with stage II/III breast cancer by gene expression profiling and correlated expression with metastatic disease development. A candidate gene, PITX2, was analyzed for expression and phenotype in breast cancer cell lines. PITX2 was knocked down in the MDAMB231 cell lines for gene expression analysis and cell invasiveness. Expression of various signaling pathway molecules was confirmed by RT-PCR. We found that the expression of Paired-like Homeobox Transcription factor-2 (PITX2) is absent in the BM of normal healthy volunteers and, when detected in the BM of breast cancer patients, is significantly correlated with early metastatic disease development (p = 0.0062). Suppression of PITX2 expression significantly reduced invasiveness in MDAMB231 cells. Three genes-NKD1, LEF1, and DKK4-were significantly downregulated in response to PITX2 suppression. Expression of PITX2 in BM of early-stage breast cancer patients is associated with risk for early disease recurrence. Furthermore, PITX2 likely plays a role in the metastatic process through its effect on the expression of genes associated with the Wnt/beta-Catenin signaling pathway.

Hugo W, Shi H, Sun L, et al.
Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance.
Cell. 2015; 162(6):1271-85 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Clinically acquired resistance to MAPK inhibitor (MAPKi) therapies for melanoma cannot be fully explained by genomic mechanisms and may be accompanied by co-evolution of intra-tumoral immunity. We sought to discover non-genomic mechanisms of acquired resistance and dynamic immune compositions by a comparative, transcriptomic-methylomic analysis of patient-matched melanoma tumors biopsied before therapy and during disease progression. Transcriptomic alterations across resistant tumors were highly recurrent, in contrast to mutations, and were frequently correlated with differential methylation of tumor cell-intrinsic CpG sites. We identified in the tumor cell compartment supra-physiologic c-MET up-expression, infra-physiologic LEF1 down-expression and YAP1 signature enrichment as drivers of acquired resistance. Importantly, high intra-tumoral cytolytic T cell inflammation prior to MAPKi therapy preceded CD8 T cell deficiency/exhaustion and loss of antigen presentation in half of disease-progressive melanomas, suggesting cross-resistance to salvage anti-PD-1/PD-L1 immunotherapy. Thus, melanoma acquires MAPKi resistance with highly dynamic and recurrent non-genomic alterations and co-evolving intra-tumoral immunity.

Yao QM, Li PP, Liang SM, et al.
Methylprednisolone suppresses the Wnt signaling pathway in chronic lymphocytic leukemia cell line MEC-1 regulated by LEF-1 expression.
Int J Clin Exp Pathol. 2015; 8(7):7921-8 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
High dose methylprednisolone (HDMP) has been an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia (CLL), while little is known about the exact mechanisms implicated in glucocorticoid-induced cell death. To explore the mechanism of glucocorticoid-induced cell death, we investigated the effect of HDMP on canonical Wnt signaling which emerged as a key pathway implicated in the pathogenesis of CLL. In this study, the human CLL cell line MEC-1 was incubated with various concentrations of methylprednisolone. Cell proliferation activity was detected by CCK8 assay, the apoptotic effect was evaluated by TUNEL assay. Western blot was used to detect active-caspase 3, and the key proteins in Wnt signaling pathway (LEF-1, β-catenin). RT-PCR was performed to assess the mRNA levels of β-catenin, LEF-1, c-myc and cyclin D1. We observed that high concentration of methylprednisolone could suppress the proliferation activity of MEC-1 cells, promote the relative expression of active-caspase 3, and induce apoptotic cell death. Furthermore, methylprednisolone could inhibit LEF-1 protein expression, consequently down-regulate mRNA levels of c-myc and cyclin D1, but could not affect the transcription level of β-catenin and LEF-1 mRNA. The results of this study indicate that methylprednisolone can suppress Wnt signaling pathway by down-regulating LEF-1 protein expression, indicating a novel mechanism for HDMP therapy in CLL.

McCarthy BA, Yancopoulos S, Tipping M, et al.
A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes.
Immunol Res. 2015; 63(1-3):90-100 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is a clonal disease of B lymphocytes manifesting as an absolute lymphocytosis in the blood. However, not all lymphocytoses are leukemic. In addition, first-degree relatives of CLL patients have an ~15 % chance of developing a precursor condition to CLL termed monoclonal B cell lymphocytosis (MBL), and distinguishing CLL and MBL B lymphocytes from normal B cell expansions can be a challenge. Therefore, we selected FMOD, CKAP4, PIK3C2B, LEF1, PFTK1, BCL-2, and GPM6a from a set of genes significantly differentially expressed in microarray analyses that compared CLL cells with normal B lymphocytes and used these to determine whether we could discriminate CLL and MBL cells from B cells of healthy controls. Analysis with receiver operating characteristics and Bayesian relevance determination demonstrated good concordance with all panel genes. Using a random forest classifier, the seven-gene panel reliably distinguished normal polyclonal B cell populations from expression patterns occurring in pre-CLL and CLL B cell populations with an error rate of 2 %. Using Bayesian learning, the expression levels of only two genes, FMOD and PIK3C2B, correctly distinguished 100 % of CLL and MBL cases from normal polyclonal and mono/oligoclonal B lymphocytes. Thus, this study sets forth effective computational approaches that distinguish MBL/CLL from normal B lymphocytes. The findings also support the concept that MBL is a CLL precursor.

Zhu Y, Wang W, Wang X
Roles of transcriptional factor 7 in production of inflammatory factors for lung diseases.
J Transl Med. 2015; 13:273 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Lung disease is the major cause of death and hospitalization worldwide. Transcription factors such as transcription factor 7 (TCF7) are involved in the pathogenesis of lung diseases. TCF7 is important for T cell development and differentiation, embryonic development, or tumorogenesis. Multiple TCF7 isoforms can be characterized by the full-length isoform (FL-TCF7) as a transcription activator, or dominant negative isoform (dn-TCF7) as a transcription repressor. TCF7 interacts with multiple proteins or target genes and participates in several signal pathways critical for lung diseases. TCF7 is involved in pulmonary infection, allergy or asthma through promoting T cells differentiating to Th2 or memory T cells. TCF7 also works in tissue repair and remodeling after acute lung injury. The dual roles of TCF7 in lung cancers were discussed and it is associated with the cellular proliferation, invasion or metastasis. Thus, TCF7 plays critical roles in lung diseases and should be considered as a new therapeutic target.

Ramsdale R, Jorissen RN, Li FZ, et al.
The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma.
Sci Signal. 2015; 8(390):ra82 [PubMed] Related Publications
Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.

Lee JM, Cho KW, Kim EJ, et al.
A contrasting function for miR-137 in embryonic mammogenesis and adult breast carcinogenesis.
Oncotarget. 2015; 6(26):22048-59 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
MicroRNAs are differentially expressed in breast cancer cells and have been implicated in cancer formation, tumour invasion and metastasis. We investigated the miRNA expression profiles in the developing mammary gland. MiR-137 was expressed prominently in the developing mammary gland. When the miR-137 was over-expressed in the embryo, the mammary epithelium became thickened. Moreover, genes associated with mammary gland formation such as Tbx3 and Lef1 were not expressed. This suggests that miR-137 induces gland formation and invasion. When miR-137 was over-expressed in MDA-MB-231 cells, their ability to form tumours in adult mice was significantly reduced. These data support miR-137 decides epithelial cell behavior in the human breast cancer. It also suggests that miR-137 is a potential therapeutic target for amelioration of breast cancer progression.

Ghamlouch H, Darwiche W, Hodroge A, et al.
Factors involved in CLL pathogenesis and cell survival are disrupted by differentiation of CLL B-cells into antibody-secreting cells.
Oncotarget. 2015; 6(21):18484-503 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Recent research has shown that chronic lymphocytic leukemia (CLL) B-cells display a strong tendency to differentiate into antibody-secreting cells (ASCs) and thus may be amenable to differentiation therapy. However, the effect of this differentiation on factors associated with CLL pathogenesis has not been reported. In the present study, purified CLL B-cells were stimulated to differentiate into ASCs by phorbol myristate acetate or CpG oligodeoxynucleotide, in combination with CD40 ligand and cytokines in a two-step, seven-day culture system. We investigated (i) changes in the immunophenotypic, molecular, functional, morphological features associated with terminal differentiation into ASCs, (ii) the expression of factors involved in CLL pathogenesis, and (iii) the expression of pro- and anti-apoptotic proteins in the differentiated cells. Our results show that differentiated CLL B-cells are able to display the transcriptional program of ASCs. Differentiation leads to depletion of the malignant program and deregulation of the apoptosis/survival balance. Analysis of apoptosis and the cell cycle showed that differentiation is associated with low cell viability and a low rate of cell cycle entry. Our findings shed new light on the potential for differentiation therapy as a part of treatment strategies for CLL.

Jia M, Zhao HZ, Shen HP, et al.
Overexpression of lymphoid enhancer-binding factor-1 (LEF1) is a novel favorable prognostic factor in childhood acute lymphoblastic leukemia.
Int J Lab Hematol. 2015; 37(5):631-40 [PubMed] Related Publications
INTRODUCTION: Lymphoid enhancer-binding factor-1 (LEF1) is a target gene and central mediator of the Wnt signaling pathway. High LEF1 expression has been reported as a prognostic marker in several types of hematologic malignancies of adult patients.
METHODS: In this study, LEF1 expression was analyzed by real-time polymerase chain reaction (PCR) in 122 children with newly diagnosed ALL treated on the China NPCAC97 protocols. Patients' samples were dichotomized at the median value of control group and divided into LEF1(low) and LEF1(high) groups.
RESULTS: The LEF1 mRNA levels in patients with ALL were significantly higher than those of normal controls, and the LEF1 levels were dramatically decreased following induction therapy. In addition, LEF1(high) patients had lower white blood cell (WBC) count at diagnosis and lower minimal residual disease (MRD) levels at the time of complete remission as compared to LEF1(low) patients. Finally, our studies showed that high LEF1 expression is associated with favorable CR rate and overall survival (OS) in childhood ALL (5-year OS: LEF1(high) 92% vs. LEF1(low) 73%, P = 0.009). High LEF1 level was associated with a favorable relapse-free survival in standard-risk patients and also related to a better OS within the subgroup of patients with BCR-ABL-negative ALL.
CONCLUSION: Overexpression of LEF1 is a favorable prognostic factor in childhood ALL. The prognostic impact of LEF1 may assist treatment stratification and suggest the need of alternative regimens.

Song L, Liu D, Wang B, et al.
miR-494 suppresses the progression of breast cancer in vitro by targeting CXCR4 through the Wnt/β-catenin signaling pathway.
Oncol Rep. 2015; 34(1):525-31 [PubMed] Related Publications
Breast cancer is the most common cancer among women with a high mortality worldwide, which is mainly due to tumor invasion and metastasis. Previous studies have reported that microRNA-494 (miR-494) is downregulated in breast cancer cells. The present study investigated the role of miR-494 in the progression of breast cancer and the underlying mechanisms. The levels of miR-494 were analyzed in several breast cancer cell lines by quantitative reverse transcription PCR (qRT-PCR). The miR-494 mRNA levels were significantly lower in the malignant breast cancer cells than the level in the non-malignant normal breast epithelial cells. miR-494 mimic transfection upregulated the expression levels of E-cadherin, yet downregulated N-cadherin, vimentin and α-smooth muscle actin (α-SMA) in the breast cancer cells. As expected, the expression of these markers in breast cancer cells transfected with miR-494 inhibitors exhibited the opposite variation trend. MTT and Transwell assays showed that cell proliferation and invasion were both significantly suppressed by miR-494 mimics, and were significantly promoted by miR-494 inhibitors. The protein expression level of chemokine (C-X-C motif) receptor 4 (CXCR4) in the breast cancer cells was significantly inhibited by miR-494 mimics, and enhanced by miR-494 inhibitors. Yet, the mRNA level of CXCR4 was barely affected by miR-494 mimics or inhibitors. Dual-luciferase assay confirmed that miR-494 directly interacted with the 3'-untranslated region of CXCR4 mRNA by dual-luciferase assay. The miR-494 mimics also significantly inhibited the transcription levels of β-catenin, LEF1, CD44 and cyclin-D1, which was similar to the effect of siRNA targeted to CXCR4. In conclusion, miR-494 suppresses the progression of breast cancer through the Wnt/β-catenin signaling pathway, which is mediated by CXCR4.

Guo X, Zhang R, Liu J, et al.
Characterization of LEF1 High Expression and Novel Mutations in Adult Acute Lymphoblastic Leukemia.
PLoS One. 2015; 10(5):e0125429 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Aberrant activation of the Wnt pathway plays a pathogenetic role in tumors and has been associated with adverse outcome in acute lymphoblastic leukemia (ALL). Lymphoid enhancer binding factor 1 (LEF1), a key mediator of Wnt signaling, has been linked to leukemic transformation, and LEF1 mutations have been identified in T-ALL. Here we found LEF1 is highly expressed in 25.0% adult ALL patients and LEF1 high expression was associated with high-risk leukemia factors (high WBC, Philadelphia chromosome positive, complex karyotype), shorter event-free survival (EFS), and high relapse rates in patients with B-ALL. LEF1 high expression is also associated with high mutation rate of Notch1 and JAK1 in T-ALL. We identified 2 novel LEF1 mutations (K86E and P106L) in 4 of 131 patients with ALL, and those patients with high-risk ALL (high WBC, complex karyotype). These results suggest a role for LEF1 mutations in leukemogenesis. We further explored the effect of the mutations on cell proliferation and found both mutations significantly promoted the proliferation of ALL cells. We also observed the effect of LEF1 and its mutations on the transcription of its targets, c-MYC and Cyclin D1. We found LEF1 increased the promoter activity of its targets c-MYC and Cyclin D1, and LEF1 K86E and P106L mutants further significantly enhanced this effect. We also observed that the c-MYC and Cyclin D1 mRNA levels were significantly increased in patients with LEF1 high expression compared with those with low expression. Taken together, our findings indicate high LEF1 expression and mutation are associated with high-risk leukemia and our results also revealed that LEF1 high expression and/or gain-of-function mutations are involved in leukemogenesis of ALL.

Karrman K, Castor A, Behrendtz M, et al.
Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A.
J Hematol Oncol. 2015; 8:42 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
BACKGROUND: Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that arises in a multistep fashion through acquisition of several genetic aberrations, subsequently giving rise to a malignant, clonal expansion of T-lymphoblasts. The aim of the present study was to identify additional as well as cooperative genetic events in T-ALL.
METHODS: A population-based pediatric T-ALL series comprising 47 cases was investigated by SNP array and deep sequencing analyses of 75 genes, in order to ascertain pathogenetically pertinent aberrations and to identify cooperative events.
RESULTS: The majority (92%) of cases harbored copy number aberrations/uniparental isodisomies (UPIDs), with a median of three changes (range 0-11) per case. The genes recurrently deleted comprised CDKN2A, CDKN2B, LEF1, PTEN, RBI, and STIL. No case had a whole chromosome UPID; in fact, literature data show that this is a rare phenomenon in T-ALL. However, segmental UPIDs (sUPIDs) were seen in 42% of our cases, with most being sUPID9p that always were associated with homozygous CDKN2A deletions, with a heterozygous deletion occurring prior to the sUPID9p in all instances. Among the 75 genes sequenced, 14 (19%) were mutated in 28 (72%) of 39 analyzed cases. The genes targeted are involved in signaling transduction, epigenetic regulation, and transcription. In some cases, NOTCH1 mutations were seen in minor subclones and lost at relapse; thus, such mutations can be secondary events.
CONCLUSIONS: Deep sequencing and SNP array analyses of T-ALL revealed lack of wUPIDs, a high proportion of sUPID9p targeting CDKN2A, NOTCH1 mutations in subclones, and recurrent mutations of genes involved in signaling transduction, epigenetic regulation, and transcription.

Tandon B, Swerdlow SH, Hasserjian RP, et al.
Chronic lymphocytic leukemia/small lymphocytic lymphoma: another neoplasm related to the B-cell follicle?
Leuk Lymphoma. 2015; 56(12):3378-86 [PubMed] Related Publications
Although there has been increased attention paid to the critical nature of nodal involvement in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), the B-cell compartment it is most closely related to and its relationship to the follicle remain uncertain. A clinicopathologic investigation of 60 extramedullary biopsies of LEF1+ CLL/SLL, including 29 cases with perifollicular/follicular (PF/F) growth, was therefore performed. A subset of PF/F cases demonstrated inner mantle zone preservation or intra-mantle zone growth. All PF/F and 16/31 other cases contained CD21+ follicular dendritic cells. No cytogenetic, IGHV mutational or gene usage differences were seen between PF/F and diffuse cases. PF/F cases were more often kappa positive (p<0.03) and had fewer involved nodal sites (p=0.0004). These findings suggest that at least a subset of bona fide CLL/SLL is related to the follicle, most likely the outer mantle zone, and that at least a subset of the diffuse cases may represent "later" disease.

Lee YS, Kim JK, Ryu SW, et al.
Integrative meta-analysis of multiple gene expression profiles in acquired gemcitabine-resistant cancer cell lines to identify novel therapeutic biomarkers.
Asian Pac J Cancer Prev. 2015; 16(7):2793-800 [PubMed] Related Publications
In molecular-targeted cancer therapy, acquired resistance to gemcitabine is a major clinical problem that reduces its effectiveness, resulting in recurrence and metastasis of cancers. In spite of great efforts to reveal the overall mechanism of acquired gemcitabine resistance, no definitive genetic factors have been identified that are absolutely responsible for the resistance process. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets for cancer cell lines with acquired gemcitabine resistance, using the R-based RankProd algorithm, and were able to identify a total of 158 differentially expressed genes (DEGs; 76 up- and 82 down-regulated) that are potentially involved in acquired resistance to gemcitabine. Indeed, the top 20 up- and down-regulated DEGs are largely associated with a common process of carcinogenesis in many cells. For the top 50 up- and down-regulated DEGs, we conducted integrated analyses of a gene regulatory network, a gene co-expression network, and a protein-protein interaction network. The identified DEGs were functionally enriched via Gene Ontology hierarchy and Kyoto Encyclopedia of Genes and Genomes pathway analyses. By systemic combinational analysis of the three molecular networks, we could condense the total number of DEGs to final seven genes. Notably, GJA1, LEF1, and CCND2 were contained within the lists of the top 20 up- or down-regulated DEGs. Our study represents a comprehensive overview of the gene expression patterns associated with acquired gemcitabine resistance and theoretical support for further clinical therapeutic studies.

Litvinov IV, Netchiporouk E, Cordeiro B, et al.
The Use of Transcriptional Profiling to Improve Personalized Diagnosis and Management of Cutaneous T-cell Lymphoma (CTCL).
Clin Cancer Res. 2015; 21(12):2820-9 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
PURPOSE: Although many patients with mycosis fungoides presenting with stage I disease enjoy an indolent disease course and normal life expectancy, about 15% to 20% of them progress to higher stages and most ultimately succumb to their disease. Currently, it is not possible to predict which patients will progress and which patients will have a stable disease. Previously, we conducted microarray analyses with RT-PCR validation of gene expression in biopsy specimens from 60 patients with stage I-IV cutaneous T-cell lymphoma (CTCL), identified three distinct clusters based upon transcription profile, and correlated our molecular findings with 6 years of clinical follow-up.
EXPERIMENTAL DESIGN: We test by RT-PCR within our prediction model the expression of about 240 genes that were previously reported to play an important role in CTCL carcinogenesis. We further extend the clinical follow-up of our patients to 11 years. We compare the expression of selected genes between mycosis fungoides/Sézary syndrome and benign inflammatory dermatoses that often mimic this cancer.
RESULTS: Our findings demonstrate that 52 of the about 240 genes can be classified into cluster 1-3 expression patterns and such expression is consistent with their suggested biologic roles. Moreover, we determined that 17 genes (CCL18, CCL26, FYB, T3JAM, MMP12, LEF1, LCK, ITK, GNLY, IL2RA, IL26, IL22, CCR4, GTSF1, SYCP1, STAT5A, and TOX) are able to both identify patients who are at risk of progression and also distinguish mycosis fungoides/Sézary syndrome from benign mimickers.
CONCLUSIONS: This study, combined with other gene expression analyses, prepares the foundation for the development of personalized molecular approach toward diagnosis and treatment of CTCL.

Zhao Z, Ma X, Sung D, et al.
microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest.
RNA Biol. 2015; 12(5):538-54 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
microRNA-449a (miR-449a) has been identified to function as a tumor suppressor in several types of cancers. However, the role of miR-449a in neuroblastoma has not been intensively investigated. We recently found that the overexpression of miR-449a significantly induces neuroblastoma cell differentiation, suggesting its potential tumor suppressor function in neuroblastoma. In this study, we further investigated the mechanisms underlying the tumor suppressive function of miR-449a in neuroblastoma. We observed that miR-449a inhibits neuroblastoma cell survival and growth through 2 mechanisms--inducing cell differentiation and cell cycle arrest. Our comprehensive investigations on the dissection of the target genes of miR-449a revealed that 3 novel targets- MFAP4, PKP4 and TSEN15 -play important roles in mediating its differentiation-inducing function. In addition, we further found that its function in inducing cell cycle arrest involves down-regulating its direct targets CDK6 and LEF1. To determine the clinical significance of the miR-449a-mediated tumor suppressive mechanism, we examined the correlation between the expression of these 5 target genes in neuroblastoma tumor specimens and the survival of neuroblastoma patients. Remarkably, we noted that high tumor expression levels of all the 3 miR-449a target genes involved in regulating cell differentiation, but not the target genes involved in regulating cell cycle, are significantly correlated with poor survival of neuroblastoma patients. These results suggest the critical role of the differentiation-inducing function of miR-449a in determining neuroblastoma progression. Overall, our study provides the first comprehensive characterization of the tumor-suppressive function of miR-449a in neuroblastoma, and reveals the potential clinical significance of the miR-449a-mediated tumor suppressive pathway in neuroblastoma prognosis.

Taskesen E, Staal FJ, Reinders MJ
An integrated approach of gene expression and DNA-methylation profiles of WNT signaling genes uncovers novel prognostic markers in acute myeloid leukemia.
BMC Bioinformatics. 2015; 16 Suppl 4:S4 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
BACKGROUND: The wingless-Int (WNT) pathway has an essential role in cell regulation of hematopoietic stem cells (HSC). For Acute Myeloid Leukemia (AML), the malignant counterpart of HSC, currently only a selective number of genes of the WNT pathway are analyzed by using either gene expression or DNA-methylation profiles for the identification of prognostic markers and potential candidate targets for drug therapy. It is known that mRNA expression is controlled by DNA-methylation and that specific patterns can infer the ability to differentiate biological differences, thus a combined analysis using all WNT annotated genes could provide more insight in the WNT signaling.
APPROACH: We created a computational approach that integrates gene expression and DNA promoter methylation profiles. The approach represents the continuous gene expression and promoter methylation profiles with nine discrete mutually exclusive scenarios. The scenario representation allows for a refinement of patient groups by a more powerful statistical analysis, and the construction of a co-expression network. We focused on 268 WNT annotated signaling genes that are derived from the molecular signature database.
RESULTS: Using the scenarios we identified seven prognostic markers for overall survival and event-free survival. Three genes are novel prognostic markers; two with favorable outcome (PSMD2, PPARD) and one with unfavorable outcome (XPNPEP). The remaining four genes (LEF1, SFRP2, RUNX1, and AXIN2) were previously identified but we could refine the patient groups. Three AML risk groups were further analyzed and the co-expression network showed that only the good risk group harbors frequent promoter hypermethylation and significantly correlated interactions with proteasome family members.
CONCLUSION: Our results provide novel insights in WNT signaling in AML, we discovered new and previously identified prognostic markers and a refinement of the patient groups.

Mertens-Walker I, Lisle JE, Nyberg WA, et al.
EphB4 localises to the nucleus of prostate cancer cells.
Exp Cell Res. 2015; 333(1):105-15 [PubMed] Related Publications
The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.

Kwon AY, Kim GI, Jeong JY, et al.
VAV3 Overexpressed in Cancer Stem Cells Is a Poor Prognostic Indicator in Ovarian Cancer Patients.
Stem Cells Dev. 2015; 24(13):1521-35 [PubMed] Article available free on PMC after 07/04/2017 Related Publications
Ovarian carcinoma is a highly lethal malignancy due to frequent relapse and drug resistance. Cancer stem cells (CSCs) are thought to contribute significantly to disease relapse and drug resistance. In this study, a subpopulation of CSCs of ovarian carcinoma was isolated and the genes differentially expressed in these cells were identified to characterize CSCs and to find candidate biomarkers. Ovarian carcinoma cells from patients were primarily cultured, and spheroid-forming cells (SFCs) were isolated. The characteristic genes of SFCs were identified through cDNA microarray and validation by quantitative real-time polymerase chain reaction and immunohistochemistry, and the association of their expression with clinicopathologic parameters was analyzed. GSC (4.26-fold), VAV3 (7.05-fold), FOXA2 (12.06-fold), LEF1 (17.26-fold), COMP (21.33-fold), GRIN2A (9.36-fold), CD86 (23.14-fold), PYY (4.18-fold), NKX3-2 (10.35-fold), and PDK4 (74.26-fold) were significantly upregulated in SFCs compared with parental cancer cells. With validation for human ovarian carcinomas, LEF1, PYY, NKX3-2, and WNT3A were significantly upregulated in chemoresistant cancers compared with chemosensitive cancers. Overexpression of LEF1, VAV3, and NKX3-2 was significantly associated with distant metastasis by immunohistochemistry. VAV3 overexpression was an independent poor survival indicator (hazard ratio=15.27, P<0.05) by multivariate Cox analysis. The further functional assay revealed that VAV3 knockdown regulated CSC activation and ovarian cancer cell proliferation and sensitized paclitaxel (PTX)-resistant cancer cells to PTX treatment. Taken together, we identified by high-throughput analysis of CSCs that VAV3 overexpression is a novel biomarker for poor prognosis and survival in ovarian carcinoma.

Xu J, Chen Y, Huo D, et al.
β-catenin regulates c-Myc and CDKN1A expression in breast cancer cells.
Mol Carcinog. 2016; 55(5):431-9 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
We previously reported that the Wnt pathway is preferentially activated in basal-like breast cancer. However, the mechanisms by which the Wnt pathway regulates down-stream targets in basal-like breast cancer, and the biological significance of this regulation, are poorly understood. In this study, we found that c-Myc is highly expressed in the basal-like subtype by microarray analyses and immunohistochemical staining. After silencing β-catenin using siRNA, c-Myc expression was decreased in non-basal-like breast cancer cells. In contrast, c-Myc mRNA and protein expression were up-regulated in the basal-like breast cancer cell lines. Decreased c-Myc promoter activity was observed after inhibiting β-catenin by siRNA in non-basal-like breast cancer cells; however, inhibition of β-catenin or over-expression of dominant-negative LEF1 had no effect on c-Myc promoter activity in basal-like breast cancer cell lines. In addition, CDKN1A mRNA and p21 protein expression were significantly increased in all breast cancer cell lines upon β-catenin silencing. Interestingly, inhibiting β-catenin expression alone did not induce apoptosis in breast cancer cell lines despite c-Myc regulation, but we observed a modest increase of cells in the G1 phase of the cell cycle and decrease of cells in S phase upon β-catenin silencing. Our findings suggest that the regulation of c-Myc in breast cancer cells is dependent on the molecular subtype, and that β-catenin-mediated regulation of c-Myc and p21 may control the balance of cell death and proliferation in breast cancer.

Liang J, Li Y, Daniels G, et al.
LEF1 Targeting EMT in Prostate Cancer Invasion Is Regulated by miR-34a.
Mol Cancer Res. 2015; 13(4):681-8 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
UNLABELLED: The microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA), is implicated in epithelial-mesenchymal transition (EMT) and cancer stem cells. Lymphoid enhancer-binding factor-1 (LEF1) is a key transcription factor in the Wnt signaling pathway, and has been suggested to be involved in regulation of cell proliferation and invasion. Here, the molecular mechanism of miR-34a and LEF1 in cooperatively regulating prostate cancer cell invasion is described. Molecular profiling analysis of miRNA levels in prostate cancer cells revealed a negative correlation between miR-34a and LEF1 expression, and the downregulation of LEF1 by miR-34a was confirmed by luciferase assays. Furthermore, miR-34a specifically repressed LEF1 expression through direct binding to its 3'-untranslated regions (3'-UTR). miR-34a modulated the levels of LEF1 to regulate EMT in prostate cancer cells. Functionally, miR-34a negatively correlated with the migration and invasion of prostate cancer cells through LEF1. An analysis of miR-34a expression levels in matched human tumor and benign tissues demonstrated consistent and statistically significant downregulation of miR-34a in primary prostate cancer specimens. These data strongly suggest that miR-34a/LEF1 regulation of EMT plays an important role in prostate cancer migration and invasion.
IMPLICATIONS: The miR-34a-LEF1 axis represents a potential molecular target for novel therapeutic strategies in prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LEF1, Cancer Genetics Web: http://www.cancer-genetics.org/LEF1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999