PTCH1

Gene Summary

Gene:PTCH1; patched 1
Aliases: PTC, BCNS, PTC1, PTCH, NBCCS
Location:9q22.32
Summary:This gene encodes a member of the patched family of proteins and a component of the hedgehog signaling pathway. Hedgehog signaling is important in embryonic development and tumorigenesis. The encoded protein is the receptor for the secreted hedgehog ligands, which include sonic hedgehog, indian hedgehog and desert hedgehog. Following binding by one of the hedgehog ligands, the encoded protein is trafficked away from the primary cilium, relieving inhibition of the G-protein-coupled receptor smoothened, which results in activation of downstream signaling. Mutations of this gene have been associated with basal cell nevus syndrome and holoprosencephaly. [provided by RefSeq, Aug 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein patched homolog 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (54)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
Skin, Basal Cell CarcinomaPTCH1 and Basal Cell Carcinoma (BCC) - Skin View Publications170
Basal Cell Nevus SyndromePTCH1 mutation in Basal Cell Nevus Syndrome View Publications147
MedulloblastomaPTCH1 and Medulloblastoma
In an exome sequencing study (Pugh et al, 2012) reported PTCH1 as one of 12 genes mutated at significant levels: with PTCH1 mutations in 7/92 patients (8%). In an ICGC deep sequencing study of 125 medulloblastoma tumour-normal pairs, (Jones DTW et al, 2012) reported PTCH1 in 8 (6%) of cases.
View Publications53
-PTCH1 and Cerebellar Neoplasms View Publications35
Stomach CancerPTCH1 and Stomach Cancer View Publications12
Cervical CancerPTCH1 and Cervical Cancer View Publications2

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTCH1 (cancer-related)

Zhu R, Gires O, Zhu L, et al.
TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling.
Nat Commun. 2019; 10(1):2863 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) represent a major source of treatment resistance and tumor progression. However, regulation of CSCs stemness is not entirely understood. Here, we report that TSPAN8 expression is upregulated in breast CSCs, promotes the expression of the stemness gene NANOG, OCT4, and ALDHA1, and correlates with therapeutic resistance. Mechanistically, TSPAN8 interacts with PTCH1 and inhibits the degradation of the SHH/PTCH1 complex through recruitment of deubiquitinating enzyme ATXN3. This results in the translocation of SMO to cilia, downstream gene expression, resistance of CSCs to chemotherapeutic agents, and enhances tumor formation in mice. Accordingly, expression levels of TSPAN8, PTCH1, SHH, and ATXN3 are positively correlated in human breast cancer specimens, and high TSPAN8 and ATXN3 expression levels correlate with poor prognosis. These findings reveal a molecular basis of TSPAN8-enhanced Sonic Hedgehog signaling and highlight a role for TSPAN8 in promoting cancer stemness.

Chen X, Yang F, Zhang T, et al.
MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma.
J Exp Clin Cancer Res. 2019; 38(1):99 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioma, characterized by its undesirable prognosis and poor survival rate, is a serious threat to human health and lives. MicroRNA-9 (miR-9) is implicated in the regulation of multiple tumors, while the mechanisms underlying its aberrant expression and functional alterations in human glioma are still controversial.
METHODS: Expressions of miR-9 were measured in GEO database, patient specimens and glioma cell lines. Gain- and loss-of-function assays were applied to identify the effects of miR-9 on glioma cells and HUVECs in vitro and in vivo. Potential targets of miR-9 were predicted by bioinformatics and further verified via in vitro experiments. Transcriptional regulation of miR-9 by MYC and OCT4 was determined in glioma cells.
RESULTS: MiR-9 was frequently up-regulated in glioma specimens and cells, and could significantly enhance proliferation, migration and invasion of glioma cells. In addition, miR-9 could be secreted from glioma cells via exosomes and was then absorbed by vascular endothelial cells, leading to an increase in angiogenesis. COL18A1, THBS2, PTCH1 and PHD3 were verified as the direct targets of miR-9, which could elucidate the miR-9-induced malignant phenotypes in glioma cells. MYC and OCT4 were able to bind to the promoter region of miR-9 to trigger its transcription.
CONCLUSIONS: Our results highlight that miR-9 is pivotal for glioma pathogenesis and can be treated as a potential therapeutic target for glioma.

Skaro M, Nanda N, Gauthier C, et al.
Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms.
Gastroenterology. 2019; 156(6):1905-1913 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND & AIMS: Many patients with pancreatic adenocarcinoma carry germline mutations associated with increased risk of cancer. It is not clear whether patients with intraductal papillary mucinous neoplasms (IPMNs), which are precursors to some pancreatic cancers, also carry these mutations. We assessed the prevalence of germline mutations associated with cancer risk in patients with histologically confirmed IPMN.
METHODS: We obtained nontumor tissue samples from 315 patients with surgically resected IPMNs from 1997 through 2017, and we sequenced 94 genes with variants associated with cancer risk. Mutations associated with increased risk of cancer were identified and compared with individuals from the Exome Aggregation Consortium.
RESULTS: We identified 23 patients with a germline mutation associated with cancer risk (7.3%; 95% confidence interval, 4.9-10.8). Nine patients had a germline mutation associated with pancreatic cancer susceptibility (2.9%; 95% confidence interval, 1.4-5.4). More patients with IPMNs carried germline mutations in ATM (P < .0001), PTCH1 (P < .0001), and SUFU (P < .0001) compared with controls. Patients with IPMNs and germline mutations associated with pancreatic cancer were more like to have concurrent invasive pancreatic carcinoma compared with patients with IPMNs without these mutations (P < .0320).
CONCLUSIONS: In sequence analyses of 315 patients with surgically resected IPMNs, we found that almost 3% to carry mutations associated with pancreatic cancer risk. More patients with IPMNs and germline mutations associated with pancreatic cancer had concurrent invasive pancreatic carcinoma compared with patients with IPMNs without these mutations. Genetic analysis of patients with IPMNs might identify those at greatest risk for cancer.

van der Tuin K, Ventayol Garcia M, Corver WE, et al.
Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma.
Eur J Endocrinol. 2019; 180(4):235-241 [PubMed] Related Publications
Objective Gene alterations leading to activation of the MAPK pathway are of interest for targeted therapy in patients with advanced radioactive iodine refractory (RAI-R) thyroid carcinoma. Due to technical reasons gene fusion analysis in RNA isolated from formalin-fixed tumor tissues has till now been limited. The objective of the present study was to identify targetable gene rearrangements in RNA isolated from formalin-fixed RAI-R thyroid carcinomas. Design Retrospective study in 132 patients with RAI-R thyroid carcinoma (59 papillary-, 24 follicular-, 35 Hürthle cell- and 14 anaplastic thyroid carcinoma). Methods Total nucleic acid (undivided DNA and RNA) was isolated from formalin-fixed tissue. Extensive gene fusion analysis was performed in all samples that tested negative for pathogenic BRAF, NRAS, HRAS and KRAS variants. Results Seven targetable gene fusions were identified in the remaining 60 samples without known DNA variants. This includes frequently reported gene fusions such as CCDC6/RET (PTC1), PRKAR1A/RET (PTC2) and ETV6/NTRK3 , and gene fusions that are less common in thyroid cancer (TPM3/NTRK1, EML4/ALK and EML4/NTRK3). Of note, most gene fusions were detected in papillary thyroid carcinoma and MAPK-associated alterations in Hürthle cell carcinomas are rare (2/35). Conclusion Targetable gene fusions were found in 12% of RAI-R thyroid carcinoma without DNA variants and can be effectively identified in formalin-fixed tissue. These gene fusions might provide a preclinical rationale to include specific kinase inhibitors in the treatment regimen for these patients. The latter intends to restore iodine transport and/or take advantage of the direct effect on tumor cell vitality once progressive disease is seen.

Sikorska J, Gaweł D, Domek H, et al.
Podoplanin (PDPN) affects the invasiveness of thyroid carcinoma cells by inducing ezrin, radixin and moesin (E/R/M) phosphorylation in association with matrix metalloproteinases.
BMC Cancer. 2019; 19(1):85 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Podoplanin (PDPN) is a mucin-type transmembrane glycoprotein specific to the lymphatic system. PDPN expression has been found in various human tumors and is considered to be a marker of cancer. We had previously shown that PDPN expression contributes to carcinogenesis in the TPC1 papillary thyroid cancer-derived cell line by enhancing cell migration and invasiveness. The aim of this study was to determine the effect of PDPN down-regulation in another thyroid cancer-derived cell line: BcPAP.
METHODS: In order to determine the effects of PDPN on malignant features of BcPAP cells (harboring the BRAFV600E mutated allele) and TPC1 cells (carrying the RET/PTC1 rearrangement), we silenced PDPN in these cells using small interfering RNA (siRNA). The efficacy of PDPN silencing was confirmed by qRT-PCR and Western blotting. Then, we tested the motility and invasiveness of these cells (using scratch test and Transwell assay), their growth capacities F(cell cycle analysis, viability, clonogenic activity) and apoptosis assays), adhesion-independent colony-formation capacities, as well as the effect of PDPN silencing on MMPs expression and activity (zymography).
RESULTS: We found that PDPN-induced cell phenotype depended on the genetic background of thyroid tumor cells. PDPN down-regulation in BcPAP cells was negatively correlated with the migration and invasion, in contrast to TPC1 cells in which PDPN depletion resulted in enhanced migration and invasiveness. Moreover, our results suggest that in BcPAP cells, PDPN may be involved in the epithelial-mesenchymal transition (EMT) through regulating the expression of the ezrin, radixin and moesin (E/R/M) proteins, MMPs 9 and MMP2, remodeling of actin cytoskeleton and cellular protrusions. We also demonstrated that PDPN expression is associated with the MAPK signaling pathway. The inhibition of the MAPK pathway resulted in a decreased PDPN expression, increased E/R/M phosphorylation and reduced cell migration. Additionally, PDPN depleted BcPAP cells treated with inhibitors of MEK1/2 kinases (U0126) or of the BRAF V600E protein (PLX4720) had reduced motility, similar to that previously observed in TPC1 cells after PDPN knock-down.
CONCLUSIONS: Altogether, our data suggest that PDPN may play an important role in the control of invasion and migration of papillary thyroid carcinoma cells in association with the E/R/M, MMPs and MAPK kinases.

Zhang M, Tan S, Yu D, et al.
Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway.
Toxicol Appl Pharmacol. 2019; 365:1-8 [PubMed] Related Publications
Lung cancer is a leading lethal disease with a 5-year survival rate of only 16%. Inadequate potent anti-cancer drugs appear to be a bottleneck in the treatment of lung cancer; hence, how to develop effective anti-lung cancer therapeutics is an urgent problem. In this study, we aim to explore a novel compound with potent anti-lung cancer effect and study its anti-cancer mechanisms. We found that triptonide at very low concentrations of 5-10 nM caused a marked suppression of cell proliferation and colony formation of lung cancer cells. More interestingly, triptonide also robustly inhibited the lung cancer cell formation of tumor spheres, and reduced the stemness and tumorigenicity of the sphere-forming cells. In vivo studies showed that administration of triptonide significantly inhibited the tumor growth with low toxicity. Molecular mechanistic studies revealed that triptonide significantly decreased expression of the Gli1 at both mRNA and protein levels by repressing Gli1 gene promoter activity. Additionally, triptonide reduced the levels of cancer stem cell key signaling protein sonic hedgehog (Shh), but increased the amount of Ptch1, a protein binding to SMO to diminish the Shh signal transduction, thus inhibition of the Shh-Gli1 signaling pathway. Together, our findings show that triptonide effectively inhibits lung cancer cell growth, stemness, and tumorigenicity, and support the notion that triptonide is a new Shh-Gli1 signaling inhibitor and a novel anti-lung cancer drug candidate for further developing effective lung cancer therapeutics.

Tanori M, Pannicelli A, Pasquali E, et al.
Cancer risk from low dose radiation in Ptch1
DNA Repair (Amst). 2019; 74:70-79 [PubMed] Related Publications
DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1

Gianferante DM, Rotunno M, Dean M, et al.
Whole-exome sequencing of nevoid basal cell carcinoma syndrome families and review of Human Gene Mutation Database PTCH1 mutation data.
Mol Genet Genomic Med. 2018; 6(6):1168-1180 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder with variable expression and nearly complete penetrance. PTCH1 is the major susceptibility locus and has no known hot spots or genotype-phenotype relationships.
METHODS: We evaluated 18 NBCCS National Cancer Institute (NCI) families plus PTCH1 data on 333 NBCCS disease-causing mutations (DM) reported in the Human Gene Mutation Database (HGMD). National Cancer Institute families underwent comprehensive genomic evaluation, and clinical data were extracted from NCI and HGMD cases. Genotype-phenotype relationships were analyzed using Fisher's exact tests focusing on mutation type and PTCH1 domains.
RESULTS: PTCH1 pathogenic mutations were identified in 16 of 18 NCI families, including three previously mutation-negative families. PTCH1 mutations were spread across the gene with no hot spot. After adjustment for multiple tests, a statistically significant genotype-phenotype association was observed for developmental delay and gross deletion-insertions (p = 9.0 × 10
CONCLUSION: Overall, 89% of our NCI families had a pathogenic PTCH1 mutation. The identification of PTCH1 mutations in previously mutation-negative families underscores the importance of repeated testing when new technologies become available. Additional clinical information linked to mutation databases would enhance follow-up and future studies of genotype-phenotype relationships.

Biehs B, Dijkgraaf GJP, Piskol R, et al.
A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition.
Nature. 2018; 562(7727):429-433 [PubMed] Related Publications
Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)

Vulin A, Sedkaoui M, Moratille S, et al.
Severe PATCHED1 Deficiency in Cancer-Prone Gorlin Patient Cells Results in Intrinsic Radiosensitivity.
Int J Radiat Oncol Biol Phys. 2018; 102(2):417-425 [PubMed] Related Publications
PURPOSE: Gorlin syndrome (or basal-cell nevus syndrome) is a cancer-prone genetic disease in which hypersusceptibility to secondary cancer and tissue reaction after radiation therapy is debated, as is increased radiosensitivity at cellular level. Gorlin syndrome results from heterozygous mutations in the PTCH1 gene for 60% of patients, and we therefore aimed to highlight correlations between intrinsic radiosensitivity and PTCH1 gene expression in fibroblasts from adult patients with Gorlin syndrome.
METHODS AND MATERIALS: The radiosensitivity of fibroblasts from 6 patients with Gorlin syndrome was determined by cell-survival assay after high (0.5-3.5 Gy) and low (50-250 mGy) γ-ray doses. PTCH1 and DNA damage response gene expression was characterized by real-time polymerase chain reaction and Western blotting. DNA damage and repair were investigated by γH2AX and 53BP1 foci assay. PTCH1 knockdown was performed in cells from healthy donors by using stable RNA interference. Gorlin cells were genotyped by 2 complementary sequencing methods.
RESULTS: Only cells from patients with Gorlin syndrome who presented severe deficiency in PATCHED1 protein exhibited a significant increase in cellular radiosensitivity, affecting cell responses to both high and low radiation doses. For 2 of the radiosensitive cell strains, heterozygous mutations in the 5' end of PTCH1 gene explain PATCHED1 protein deficiency. In all sensitive cells, DNA damage response pathways (ATM, CHK2, and P53 levels and activation by phosphorylation) were deregulated after irradiation, whereas DSB repair recognition was unimpaired. Furthermore, normal cells with RNA interference-mediated PTCH1 deficiency showed reduced survival after irradiation, directly linking this gene to high- and low-dose radiosensitivity.
CONCLUSIONS: In the present study, we show an inverse correlation between PTCH1 expression level and cellular radiosensitivity, suggesting an explanation for the conflicting results previously reported for Gorlin syndrome and possibly providing a basis for prognostic screens for radiosensitive patients with Gorlin syndrome and PTCH1 mutations.

Shevchenko A, Durkin JR, Moon AT
Generalized basaloid follicular hamartoma syndrome versus Gorlin syndrome: A diagnostic challenge.
Pediatr Dermatol. 2018; 35(6):e396-e397 [PubMed] Related Publications
Basaloid follicular hamartoma is a relatively rare benign neoplasm of follicular origin that can be mistaken histologically for basal cell carcinoma, but hereditary forms of basaloid follicular hamartoma are associated with nevoid basal cell carcinoma syndrome, or Gorlin syndrome. The pathophysiology of basaloid follicular hamartoma development involves mutations in the patched gene, which is also causative in nevoid basal cell carcinoma syndrome. We present a mother and daughter with basaloid follicular hamartomas, with genetic testing confirming patched gene mutation in the daughter.

Po A, Abballe L, Sabato C, et al.
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks.
Int J Mol Sci. 2018; 19(8) [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (

Donner I, Katainen R, Sipilä LJ, et al.
Germline mutations in young non-smoking women with lung adenocarcinoma.
Lung Cancer. 2018; 122:76-82 [PubMed] Related Publications
OBJECTIVES: Although the primary cause of lung cancer is smoking, a considerable proportion of all lung cancers occur in never smokers. Gender influences the risk and characteristics of lung cancer and women are overrepresented among never smokers with the disease. Young age at onset and lack of established environmental risk factors suggest genetic predisposition. In this study, we used population-based sampling of young patients to discover candidate predisposition variants for lung adenocarcinoma in never-smoking women.
MATERIALS AND METHODS: We employed archival normal tissue material from 21 never-smoker women who had been diagnosed with lung adenocarcinoma before the age of 45, and exome sequenced their germline DNA.
RESULTS AND CONCLUSION: Potentially pathogenic variants were found in eight Cancer Gene Census germline genes: BRCA1, BRCA2, ERCC4, EXT1, HNF1 A, PTCH1, SMARCB1 and TP53. The variants in TP53, BRCA1, and BRCA2 are likely to have contributed to the early onset lung cancer in the respective patients (3/21 or 14%). This supports the notion that lung adenocarcinoma can be a component of certain cancer predisposition syndromes. Fifteen genes displayed potentially pathogenic mutations in at least two patients: ABCC10, ATP7B, CACNA1S, CFTR, CLIP4, COL6A1, COL6A6, GCN1, GJB6, RYR1, SCN7A, SEC24A, SP100, TTN and USH2A. Four patients showed a mutation in COL6A1, three in CLIP4 and two in the rest of the genes. Some of these candidate genes may explain a subset of female lung adenocarcinoma.

Gielen RCAM, Reinders MGHC, Koillinen HK, et al.
PTCH1 isoform 1b is the major transcript in the development of basal cell nevus syndrome.
J Hum Genet. 2018; 63(9):965-969 [PubMed] Related Publications
Basal cell nevus syndrome (BCNS) is an autosomal dominant disorder most commonly caused by a germline mutation in the PTCH1 gene. PTCH1 is known to have different isoforms with different functional properties and expression patterns among tissues. We detected a novel, pathogenic de novo mutation in PTCH1 isoform 1b (c.114delG) in a BCNS patient. Furthermore, we elucidated the specific expression pattern of PTCH1 isoforms in normal skin, BCC and peripheral blood by studying expression of different PTCH1 isoforms. Human skin showed expression of isoforms 1b and 1d, while peripheral blood additionally showed 1a and 1e expression. BCCs showed expression of all isoforms. Here we report a patient with a novel, isoform 1b specific mutation in PTCH1 and thereby distinguish PTCH1 isoform 1b as the major transcript in the development of BCNS.

Zhu D, Osuka S, Zhang Z, et al.
BAI1 Suppresses Medulloblastoma Formation by Protecting p53 from Mdm2-Mediated Degradation.
Cancer Cell. 2018; 33(6):1004-1016.e5 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Adhesion G protein-coupled receptors (ADGRs) encompass 33 human transmembrane proteins with long N termini involved in cell-cell and cell-matrix interactions. We show the ADGRB1 gene, which encodes Brain-specific angiogenesis inhibitor 1 (BAI1), is epigenetically silenced in medulloblastomas (MBs) through a methyl-CpG binding protein MBD2-dependent mechanism. Knockout of Adgrb1 in mice augments proliferation of cerebellar granule neuron precursors, and leads to accelerated tumor growth in the Ptch1

Veenstra VL, Dingjan I, Waasdorp C, et al.
Patched-2 functions to limit Patched-1 deficient skin cancer growth.
Cell Oncol (Dordr). 2018; 41(4):427-437 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
PURPOSE: Basal cell carcinoma (BCC) is one of the most common skin cancers, and is typically driven by an aberrantly activated Hedgehog (Hh) pathway. The Hh pathway is regulated by interactions between the Patched-1 (Ptch1) and Smoothened (Smo) receptors. Smo is an activating receptor and is subject to inhibition by Ptch1. Following ligand binding to Ptch1, its inhibitory action is relieved and pathway activation occurs. This receptor interaction is pivotal to restraining uncontrolled cellular growth. Both receptors have been found to be frequently mutated in BCCs. Ptch2 is a Ptch1 paralog that exhibits overlapping functions in both normal development and tissue homeostasis. As yet, its contribution to cancer growth is poorly defined. Here we set out to assess how Ptch2 inhibits BCC growth.
METHODS: We used several in vitro readouts for transcriptional and chemotactic Hh signaling in BCC-derived ASZ001 cells, and a novel xenograft model to assess in vivo BCC tumor growth. Gene editing by TALEN was used to untangle the different Ptch2-dependent responses to its ligand sonic hedgehog (Shh).
RESULTS: We first defined the signaling competence of Ptch2 in Ptch1-deficient ASZ001 cells in vitro, and found that Ptch2 ligand binding drives their migration rather than eliciting a transcriptional response. We found that subsequent targeting of Ptch2 abrogated the chemotaxic effect. Next, we tested the contribution of Ptch2 to in vivo tumor growth using a xenograft model and found that reduced Ptch function results in increased tumor growth, but that selective pressure appatently acts against complete Ptch2 ablation.
CONCLUSIONS: We conclude that like Ptch1, Ptch2 exerts a tumor-suppressive function in BCC cells, and that after targeting of both paralogs, ligand-independent activation of the Hh pathway contributes to tumor growth.

Waszak SM, Northcott PA, Buchhalter I, et al.
Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.
Lancet Oncol. 2018; 19(6):785-798 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines.
METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MB
FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MB
INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MB
FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.

Burns MA, Liao ZW, Yamagata N, et al.
Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.
Leukemia. 2018; 32(10):2126-2137 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease.

Reinders MG, van Hout AF, Cosgun B, et al.
New mutations and an updated database for the patched-1 (PTCH1) gene.
Mol Genet Genomic Med. 2018; 6(3):409-415 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Basal cell nevus syndrome (BCNS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCCs), maxillary keratocysts, and cerebral calcifications. BCNS most commonly is caused by a germline mutation in the patched-1 (PTCH1) gene. PTCH1 mutations are also described in patients with holoprosencephaly.
METHODS: We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). We included 117 new PTCH1 variations, in addition to 331 previously published unique PTCH1 mutations. These new mutations were found in 141 patients who had a positive PTCH1 mutation analysis in either the VU University Medical Centre (VUMC) or Maastricht University Medical Centre (MUMC) between 1995 and 2015.
RESULTS: The database contains 331 previously published unique PTCH1 mutations and 117 new PTCH1 variations.
CONCLUSION: We have established a locus-specific database for the PTCH1 gene using the Leiden Open Variation Database (LOVD). The database provides an open collection for both clinicians and researchers and is accessible online at http://www.lovd.nl/PTCH1.

Kim AL, Back JH, Chaudhary SC, et al.
SOX9 Transcriptionally Regulates mTOR-Induced Proliferation of Basal Cell Carcinomas.
J Invest Dermatol. 2018; 138(8):1716-1725 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Currently available smoothened targeted therapies in patients with basal cell nevus syndrome are associated with substantial tumor recurrence and clinical resistance. Strategies bypassing smoothened and/or identifying additional downstream components of the Hedgehog pathway could provide novel antitumor targets with a better therapeutic index. Sry-related high mobility group box 9 (SOX9) is a Hedgehog/glioma-associated oncogene homolog-regulated transcription factor known to be overexpressed in basal cell carcinomas (BCCs). A sequence motif search for SOX9-responsive elements identified three motifs in the promoter region of mammalian target of rapamycin (mTOR). In murine BCC cells, SOX9 occupies the mTOR promoter and induces its transcriptional activity. Short hairpin RNA (shRNA)-mediated knockdown of SOX9, as well as smoothened inhibition by itraconazole and vismodegib, reduces mTOR expression and the phosphorylation of known downstream mTOR targets. These effects culminate in diminishing the proliferative capacity of BCC cells, demonstrating a direct mechanistic link between the Hedgehog and mTOR pathways capable of driving BCC growth. Furthermore, rapamycin, a pharmacologic mTOR inhibitor, suppressed the growth of UV-induced BCCs in Ptch1

Durmaz CD, Evans G, Smith MJ, et al.
A Novel PTCH1 Frameshift Mutation Leading to Nevoid Basal Cell Carcinoma Syndrome.
Cytogenet Genome Res. 2018; 154(2):57-61 [PubMed] Related Publications
Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a rare multisystemic autosomal dominant disorder typically presenting with cutaneous basal cell carcinomas, multiple keratocysts, and skeletal anomalies. NBCCS is caused by heterozygous mutations in the PTCH1 gene in chromosome 9q22, in the PTCH2 gene in 1p34, or the SUFU gene in 10q24.32. Here, we report on an 18-month-old boy presenting with medulloblastoma, frontal bossing, and multiple skeletal anomalies and his father who has basal cell carcinomas, palmar pits, macrocephaly, bifid ribs, calcification of falx cerebri, and a history of surgery for odontogenic keratocyst. These clinical findings were compatible with the diagnosis of NBCCS, and a novel mutation, c.1249delC; p.Gln417Lysfs*15, was found in PTCH1 causing a premature stop codon.

Tan IL, Wojcinski A, Rallapalli H, et al.
Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation.
Proc Natl Acad Sci U S A. 2018; 115(13):3392-3397 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (

Musani V, Ozretić P, Trnski D, et al.
Potential hot spot for de novo mutations in PTCH1 gene in Gorlin syndrome patients: a case report of twins from Croatia.
Croat Med J. 2018; 59(1):20-24 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
We describe a case of twins with sporadic Gorlin syndrome. Both twins had common Gorlin syndrome features including calcification of the falx cerebri, multiple jaw keratocysts, and multiple basal cell carcinomas, but with different expressivity. One brother also had benign testicular mesothelioma. We propose this tumor type as a possible new feature of Gorlin syndrome. Gorlin syndrome is a rare autosomal dominant disorder characterized by both developmental abnormalities and cancer predisposition, with variable expression of various developmental abnormalities and different types of tumors. The syndrome is primarily caused by mutations in the Patched 1 (PTCH1) gene, although rare mutations of Patched 2 (PTCH2) or Suppressor of Fused (SUFU) genes have also been found. Neither founder mutations nor hot spot locations have been described for PTCH1 in Gorlin syndrome patients. Although de novo mutations of the PTCH1 gene occur in almost 50% of Gorlin syndrome cases, there are a few recurrent mutations. Our twin patients were carriers of a de novo mutation in the PTCH1 gene, c.3364_3365delAT (p.Met1122ValfsX22). This is, to our knowledge, the first Gorlin syndrome-causing mutation that has been reported four independent times in distant geographical locations. Therefore, we propose the location of the described mutation as a potential hot spot for mutations in PTCH1.

Wasserman JD, Sabbaghian N, Fahiminiya S, et al.
DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma.
J Clin Endocrinol Metab. 2018; 103(5):2009-2015 [PubMed] Related Publications
Context: Papillary thyroid carcinoma (PTC) is a common malignancy in adolescence and is molecularly and clinically distinct from adult PTC. Mutations in the DICER1 gene are associated with thyroid abnormalities, including multinodular goiter and differentiated thyroid carcinoma.
Objective: In this study, we sought to characterize the prevalence of DICER1 variants in pediatric PTC, specifically in tumors without conventional PTC oncogenic alterations.
Patients: Patients (N = 40) who underwent partial or total thyroidectomy and who were <18 years of age at the time of surgery were selected.
Design: The 40 consecutive thyroidectomy specimens (30 malignant, 10 benign) underwent genotyping for 17 PTC-associated variants, as well as full sequencing of the exons and exon-intron boundaries of DICER1.
Results: Conventional alterations were found in 12 of 30 (40%) PTCs (five BRAFV600E, three RET/PTC1, four RET/PTC3). Pathogenic DICER1 variants were identified in 3 of 30 (10%) PTCs and in 2 of 10 (20%) benign nodules, all of which lacked conventional alterations and did not recur during follow-up. DICER1 alterations thus constituted 3 of 18 (16.7%) PTCs without conventional alterations. The three DICER1-mutated carcinomas each had two somatic DICER1 alterations, whereas two follicular-nodular lesions arose in those with germline DICER1 mutations and harbored characteristic second somatic RNase IIIb "hotspot" mutations.
Conclusions: DICER1 is a driver of pediatric thyroid nodules, and DICER1-mutated PTC may represent a distinct class of low-risk malignancies. Given the prevalence of variants in children, we advocate for inclusion of DICER1 sequencing and gene dosage determination in molecular analysis of pediatric thyroid specimens.

Asevedo Campos de Resende T, de Fátima Bernardes V, Carolina da Silva J, et al.
Loss of heterozygosity of MIR15A/MIR16-1, negative regulators of the antiapoptotic gene BCL2, is not common in odontogenic keratocysts.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 125(4):313-316 [PubMed] Related Publications
OBJECTIVES: The odontogenic keratocyst (OKC) is an aggressive odontogenic cyst that has a high recurrence rate. Apart from PTCH1 mutations, few molecular alterations are described in OKCs. Low expression of microRNAs (miRNAs) miR-15a and/or miR-16-1 in association with increased expression of their target, Bcl-2, have been previously found in OKC. In humans, MIR15A and MIR16-1 are clustered at chromosome position 13 q14, and loss of heterozygosity (LOH) at this locus occurs in different tumors. We aimed to determine whether deletion at 13 q14 is a potential mechanism leading to miR-15a/16-1 aberrant expression in OKC.
METHODS: Genomic DNA was extracted from 15 formalin-fixed, paraffin-embedded microdissected OKC cases. The polymorphic DNA markers D13S272 and D13S273 on chromosome 13 q14.3, around MIR15A/MIR16-1, were amplified by polymerase chain reaction. LOH was examined by capillary electrophoresis DNA-fragment analysis.
RESULTS: The D13S272 marker had no LOH in 12 informative cases, whereas 2 out of 9 informative cases (22%) had LOH at the D13S273 marker.
CONCLUSIONS: An LOH event at MIR15A/MIR16-1 locus is not common in OKC. The mechanism underlying the regulation of miR-15a and miR-16-1 expression in OKC remains to be determined.

Rahman MM, Hazan A, Selway JL, et al.
A Novel Mechanism for Activation of GLI1 by Nuclear SMO That Escapes Anti-SMO Inhibitors.
Cancer Res. 2018; 78(10):2577-2588 [PubMed] Related Publications
Small-molecule inhibitors of the Hedgehog (HH) pathway receptor Smoothened (SMO) have been effective in treating some patients with basal cell carcinoma (BCC), where the HH pathway is often activated, but many patients respond poorly. In this study, we report the results of investigations on PTCH1 signaling in the HH pathway that suggest why most patients with BCC respond poorly to SMO inhibitors. In immortalized human keratinocytes, PTCH1 silencing led to the generation of a compact, holoclone-like morphology with increased expression of SMO and the downstream HH pathway transcription factor GLI1. Notably, although siRNA silencing of SMO in PTCH1-silenced cells was sufficient to suppress GLI1 activity, this effect was not phenocopied by pharmacologic inhibition of SMO, suggesting the presence of a second undefined pathway through which SMO can induce GLI1. Consistent with this possibility, we observed increased nuclear localization of SMO in PTCH1-silenced cells as mediated by a putative SMO nuclear/nucleolar localization signal [N(o)LS]. Mutational inactivation of the N(o)LS ablated this increase and suppressed GLI1 induction. Immunohistologic analysis of human and mouse BCC confirmed evidence of nuclear SMO, although the pattern was heterogeneous between tumors. In PTCH1-silenced cells, >80% of the genes found to be differentially expressed were unaffected by SMO inhibitors, including the putative BCC driver gene CXCL11. Our results demonstrate how PTCH1 loss results in aberrant regulation of SMO-independent mechanisms important for BCC biology and highlights a novel nuclear mechanism of SMO-GLI1 signaling that is unresponsive to SMO inhibitors.

Sim YC, Kim GH, Choi SW, Ahn KM
Novel PTCH1 Gene Mutation in Nevoid Basal Cell Carcinoma Syndrome.
J Craniofac Surg. 2018; 29(3):e252-e255 [PubMed] Related Publications
The purpose of this study was to report clinical characteristics, surgical results, and new PTCH1 gene mutations in nevoid basal cell carcinoma syndrome (NBCCS). Five patients were referred to the Department of Oral and Maxillofacial Surgery from local dental clinics between 2006 and 2016 to treat multiple keratocystic odontogenic tumors (KOTs). The cystic lesions were enucleated and peripheral ostectomy was performed to obtain safety margin. Recurrence and/or de novo development of KOT were assessed. Gene analysis using peripheral blood was performed in all patients to identify the mutation of PTCH1 gene. Three patients showed familial history of first-degree relatives. Of the major criteria, all patients presented KOT but only 1 patient had basal cell carcinoma. Of the minor criteria, 4 of the 5 patients presented macrocephaly and hypertelorism. During follow-up periods, all patients showed recurrence and/or de novo development of KOT in the jaw bone. Mutation analysis of PTCH1 gene showed 3 frameshifts (c.817_818ins(T), c.1226_1227ins(A), and c.2748del(C)), 1 splicing (c.1504-2A>T), and 1 missense (c.385T>C) mutation. Mutations were found in exon 1, 6, 9, 17, and intron 10. Regular follow-up is necessary because recurrence rate of KOT was very high. To help early diagnosis, it is essential to routinely perform genetic testing to detect PTCH1 gene mutations among patients with NBCCS.

Palacios-Álvarez I, González-Sarmiento R, Fernández-López E
Gorlin Syndrome.
Actas Dermosifiliogr. 2018; 109(3):207-217 [PubMed] Related Publications
Gorlin syndrome is a rare autosomal dominant disease caused by mutations in the sonic hedgehog signaling pathway. Of particular importance is the PTCH1 gene. The disease is characterized by the development of multiple basal cell carcinomas at young ages. These tumors may present with other skin manifestations such as palmoplantar pits and with extracutaneous manifestations such as odontogenic keratocysts and medulloblastoma. Although the dermatologist may be key for recognizing clinical suspicion of the syndrome, a multidisciplinary team is usually necessary for diagnosis, treatment, and follow-up. Skin treatment may be complicated due to the large number of basal cell carcinomas and the extent of involvement. In recent years, new drugs that inhibit targets in the sonic hedgehog pathway have been developed. Although these agents appear promising options for patients with Gorlin syndrome, their efficacy is limited by adverse effects and the development of resistance.

Castro-Mujica MDC, Barletta-Carrillo C, Poterico JA, et al.
[Nevoid basal-cell carcinoma syndrome (Gorlin Syndrome): report of two cases and review of the literature].
Rev Peru Med Exp Salud Publica. 2017 Oct-Dec; 34(4):744-750 [PubMed] Related Publications
Gorlin syndrome (GS) is a genetic disorder with an autosomal dominant inheritance pattern, with complete penetrance and variable expressivity. GS is caused by germline mutations in the genes PTCH1 or SUFU, which are components of the Sonic hedgehog molecular pathway. GS is characterized by the presence of multiple nevoid basal cell carcinomas, odontogenic cysts, calcification of the brain sickle, and lesions in the palms and soles. This study is the first to report cases in Peru of patients with GS who underwent genetic evaluation and counseling. We present two GS cases that meet the clinical criteria for the syndrome and review the literature.

Pilkington S, McKinley LH, Miller RA
Pediatric nevoid basal cell carcinoma syndrome.
Cutis. 2017; 100(6):423-426 [PubMed] Related Publications
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare, autosomal-dominant, cancer-predisposing, multisystem disorder. The clinical manifestations of NBCCS include multiple basal cell carcinomas (BCCs), odontogenic keratocysts, palmar or plantar pits, and calcification of the falx cerebri. We present a case of an 11-year-old boy with Fitzpatrick skin type V who presented with multiple facial lesions and a history of maxillary keratocysts. Skin biopsy was consistent with pigmented BCC of the right nasolabial fold. Further clinical workup revealed multiple pigmented BCCs, palmoplantar pits, and calcification of the tentorium. Genetic testing revealed a heterozygous mutation in the patched 1 gene, PTCH

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTCH, Cancer Genetics Web: http://www.cancer-genetics.org/PTCH.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999