CCM2

Gene Summary

Gene:CCM2; CCM2 scaffold protein
Aliases: OSM, C7orf22, PP10187
Location:7p13
Summary:This gene encodes a scaffold protein that functions in the stress-activated p38 Mitogen-activated protein kinase (MAPK) signaling cascade. The protein interacts with SMAD specific E3 ubiquitin protein ligase 1 (also known as SMURF1) via a phosphotyrosine binding domain to promote RhoA degradation. The protein is required for normal cytoskeletal structure, cell-cell interactions, and lumen formation in endothelial cells. Mutations in this gene result in cerebral cavernous malformations. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Nov 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cerebral cavernous malformations 2 protein
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Skin Abnormalities
  • Skin Cancer
  • Hemangioma, Cavernous, Central Nervous System
  • Adolescents
  • KRIT1 Protein
  • Mutation
  • Risk Assessment
  • Membrane Proteins
  • Brain
  • Genetic Testing
  • Brain Tumours
  • Tumor Suppressor Proteins
  • Chromosome 7
  • Veins
  • Subcellular Fractions
  • Exons
  • Risk Factors
  • Phenotype
  • Italy
  • Retinal Neoplasms
  • Endothelial Cells
  • Microtubule-Associated Proteins
  • RNA Splice Sites
  • Neocortex
  • Mice, Mutant Strains
  • Apoptosis Regulatory Proteins
  • Single Nucleotide Polymorphism
  • Brain Tumours
  • Genotype
  • Disease Models, Animal
  • Childhood Cancer
  • Messenger RNA
  • Magnetic Resonance Imaging
  • Severity of Illness Index
  • Carrier Proteins
  • Genetic Predisposition
  • Switzerland
  • DNA Mutational Analysis
  • Brain and CNS Tumours
  • Signal Transduction
  • Spain
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCM2 (cancer-related)

Du Q, Shi Z, Chen H, et al.
Two Novel CCM2 Heterozygous Mutations Associated with Cerebral Cavernous Malformation in a Chinese Family.
J Mol Neurosci. 2019; 67(3):467-471 [PubMed] Related Publications
Cerebral cavernous malformation (CCM) is a congenital vascular anomaly that predominantly involves the central nervous system (CNS). CCM occurs in either a sporadic or an inherited form; the latter is called familial cerebral cavernous malformation (FCCM). FCCM has an autosomal dominant transmission with incomplete penetrance and variable clinical expression that is associated with germline mutations in the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes. Herein, we disclose two novel heterozygous mutations in the CCM2 gene in a Chinese family: a deletion mutation (c.55C>T; p. R19X, 426) in exon 2 and a mutation (c.*18G>A) in the noncoding region of exon 10. Our findings provide new CCM2 gene mutation profiles and further evidence for phenotypic heterogeneity.

Tinsa F, Bel Hadj I, Riant F, et al.
A novel large deletion in CCM1 gene in a Tunisian family.
Rev Neurol (Paris). 2019; 175(3):194-197 [PubMed] Related Publications
Familial CCM is a rare entity associated with the mutation of three genes: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). We report here the first description of a Tunisian familial CCMs composed of six members. The father and two daughters were affected and symptomatic. The two other kindred were healthy. Surgical treatment was performed in only one affected patient. Molecular analysis of KRIT1, MGC4607 and PDCD10 genes identified a large KRIT1 deletion of the first ten exons. To the best of our knowledge, this large deletion has never been reported before.

Otten C, Knox J, Boulday G, et al.
Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations.
EMBO Mol Med. 2018; 10(10) [PubMed] Free Access to Full Article Related Publications
Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to

Kirchmeyer M, Servais FA, Hamdorf M, et al.
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets.
J Leukoc Biol. 2018; 104(5):987-1002 [PubMed] Related Publications
Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis. Much is known about the regulation of protein-coding genes by cytokines whereas their effects on the miRNome is less well understood. We performed a microarray screen to identify microRNAs (miRNAs) in human hepatocytes which are modulated by IL-6-type cytokines. Using samples of 2 donors, 27 and 68 miRNAs (out of 1,733) were found to be differentially expressed upon stimulation with hyper-IL-6 (HIL-6) for up to 72 h, with an overlap of 15 commonly regulated miRNAs. qPCR validation revealed that miR-146b-5p was also consistently up-regulated in hepatocytes derived from 2 other donors. Interestingly, miR-146b-5p (but not miR-146a-5p) was induced by IL-6-type cytokines (HIL-6 and OSM) in non-transformed liver-derived PH5CH8 and THLE2 cells and in Huh-7 hepatoma cells, but not in HepG2 or Hep3B hepatoma cells. We did not find evidence for a differential regulation of miR-146b-5p expression by promoter methylation, also when analyzing the TCGA data set on liver cancer samples. Inducible overexpression of miR-146b-5p in PH5CH8 cells followed by RNA-Seq analysis revealed effects on multiple mRNAs, including those encoding IRAK1 and TRAF6 crucial for Toll-like receptor signaling. Indeed, LPS-mediated signaling was attenuated upon overexpression of miR-146b-5p, suggesting a regulatory loop to modulate inflammatory signaling in hepatocytes. Further validation experiments suggest DNAJC6, MAGEE1, MPHOSPH6, PPP2R1B, SLC10A3, SNRNP27, and TIMM17B to be novel targets for miR-146b-5p (and miR-146a-5p).

Rolvering C, Zimmer AD, Ginolhac A, et al.
The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies.
J Leukoc Biol. 2018; 104(5):969-985 [PubMed] Related Publications
Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other T

Zeineddine HA, Girard R, Saadat L, et al.
Phenotypic characterization of murine models of cerebral cavernous malformations.
Lab Invest. 2019; 99(3):319-330 [PubMed] Free Access to Full Article Related Publications
Cerebral cavernous malformations (CCMs) are clusters of dilated capillaries that affect around 0.5% of the population. CCMs exist in two forms, sporadic and familial. Mutations in three documented genes, KRIT1(CCM1), CCM2, and PDCD10(CCM3), cause the autosomal dominant form of the disease, and somatic mutations in these same genes underlie lesion development in the brain. Murine models with constitutive or induced loss of respective genes have been applied to study disease pathobiology and therapeutic manipulations. We aimed to analyze the phenotypic characteristic of two main groups of models, the chronic heterozygous models with sensitizers promoting genetic instability, and the acute neonatal induced homozygous knockout model. Acute model mice harbored a higher lesion burden than chronic models, more localized in the hindbrain, and largely lacking iron deposition and inflammatory cell infiltrate. The chronic model mice showed a lower lesion burden localized throughout the brain, with significantly greater perilesional iron deposition, immune B- and T-cell infiltration, and less frequent junctional protein immunopositive endothelial cells. Lesional endothelial cells in both models expressed similar phosphorylated myosin light chain immunopositivity indicating Rho-associated protein kinase activity. These data suggest that acute models are better suited to study the initial formation of the lesion, while the chronic models better reflect lesion maturation, hemorrhage, and inflammatory response, relevant pathobiologic features of the human disease.

Wang M, Wang M, Wang Z, et al.
Long non-coding RNA-CTD-2108O9.1 represses breast cancer metastasis by influencing leukemia inhibitory factor receptor.
Cancer Sci. 2018; 109(6):1764-1774 [PubMed] Free Access to Full Article Related Publications
Breast cancer (BC) is an aggressive malignant disease in women worldwide with a high tendency to metastasize. However, important biomarkers for BC metastasis remain largely undefined. In the present study, we identified that long non-coding RNA-CTD-2108O9.1 is downregulated in BC tissues and cells and acts as a metastatic inhibitor of BC. Mechanistic investigation determined that lncRNA-CTD-2108O9.1 represses metastasis by targeting leukemia inhibitory factor receptor (LIFR), which is designated as a metastasis suppressor in BC. Our study characterizes a significant tumor suppressor active in BC metastasis repression through the known metastasis inhibitor LIFR.

Chuerduangphui J, Ekalaksananan T, Chaiyarit P, et al.
Effects of arecoline on proliferation of oral squamous cell carcinoma cells by dysregulating c-Myc and miR-22, directly targeting oncostatin M.
PLoS One. 2018; 13(1):e0192009 [PubMed] Free Access to Full Article Related Publications
Arecoline, the major alkaloid of areca nut, is known to induce oral carcinogenesis, however, its mechanism is still needed to elucidate. This study investigated the effects of arecoline on cell viability and cell-cycle progression of oral squamous cell carcinoma (OSCC) cells as well as a relevant cellular gene expression. The results showed that a low concentration of arecoline (0.025 μg/ml) increased OSCC cell viability, proportion of cells in G2/M phase and cell proliferation. Simultaneously, it induced IL-6, STAT3 and c-Myc expression. Interestingly, c-myc promoter activity was also induced by arecoline. MiR-22 expression in arecoline-treated OSCC cells was suppressed and comparable to an upregulated c-Myc expression. In arecoline-treated OSCC cells, oncostatin M (OSM) expression was significantly upregulated and inversely correlated with miR-22 expression. Likewise, OSM expression and its post-transcriptional activity were significantly decreased in miR-22-transfected OSCC and 293FT cells. This result demonstrated that miR-22 directly targeted OSM. Interestingly, miR-22 played an important role as a tumor suppresser on suppressing cell proliferation, migration and cell-cycle progression of OSCC cells. This result suggested the effect of arecoline to promote cell proliferation and cell-cycle progression of OSCC cells might be involved in induction of c-Myc expression and reduction of miR-22 resulting in OSM upregulation.

Niida Y, Inoue M, Ozaki M, Takase E
Human Malformation Syndromes of Defective GLI: Opposite Phenotypes of 2q14.2 (GLI2) and 7p14.2 (GLI3) Microdeletions and a GLIA/R Balance Model.
Cytogenet Genome Res. 2017; 153(2):56-65 [PubMed] Related Publications
GLI family zinc finger proteins are transcriptional effectors of the sonic hedgehog signaling pathway. GLI regulates gene expression and repression at various phases of embryonic morphogenesis. In humans, 4 GLI genes are known, and GLI2 (2q14.2) and GLI3 (7p14.1) mutations cause different syndromes. Here, we present 2 distinctive cases with a chromosomal microdeletion in one of these genes. Patient 1 is a 14-year-old girl with Culler-Jones syndrome. She manifested short stature, cleft palate, and mild intellectual/social disability caused by a 6.6-Mb deletion of 2q14.1q14.3. Patient 2 is a 2-year-old girl with Greig cephalopolysyndactyly contiguous gene deletion syndrome. She manifested macrocephaly, preaxial polysyndactyly, psychomotor developmental delay, cerebral cavernous malformations, and glucose intolerance due to a 6.2-Mb deletion of 7p14.1p12.3 which included GLI3, GCK, and CCM2. Each patient manifests a different phenotype which is associated with different functions of each GLI gene and different effects of the chromosomal contiguous gene deletion. We summarize the phenotypic extent of GLI2/3 syndromes in the literature and determine that these 2 syndromes manifest opposite features to a certain extent, such as midface hypoplasia or macrocephaly, and anterior or posterior side of polydactyly. We propose a GLIA/R balance model that may explain these findings.

Shrivastava R, Singh V, Asif M, et al.
Oncostatin M upregulates HIF-1α in breast tumor associated macrophages independent of intracellular oxygen concentration.
Life Sci. 2018; 194:59-66 [PubMed] Related Publications
AIMS: HIF is an important transcription-regulator for adaptation to cellular stress in cells of myeloid origin. Classically, expression and activity of HIF1-α is regulated by oxygen-concentration within cell. However, there exists an alternative regulatory mechanism affecting HIF1-α levels independent of oxygen concentration particularly in inflammatory cells like macrophages. Here we report the mechanism of HIF1-α upregulation in TAMs by Oncostatin-M (OSM) independent of cellular oxygen concentration.
MAIN METHODS: THP-1 derived macrophages were treated with OSM. HIF1-α levels and interaction with pVHL were evaluated via immunoblot-analysis and Co-immunoprecipitation. Translocation of HIF1-α to nucleus was visualized using confocal-microscopy. Fold change in mRNA levels of ARG-1 and COX-2 was analyzed using RT-PCR.
KEY FINDINGS: Current study demonstrates that OSM treatment to TAMs led to an increased expression of HIF1-α under normoxic conditions via activation of mTORC2. This HIF1-α upregulation was dependent on both de novo synthesis of HIF1-α and its enhanced stability due to disruption of its binding to pVHL. Furthermore, we evaluated that OSM not only enhances the expression of HIF1-α but also increases its localization to nucleus where it acts as a transcription factor regulating expression of genes like ARG-1 and COX-2.
SIGNIFICANCE: Inflammation is a critical hallmark of cancer as tumor microenvironment is largely infiltrated with macrophages. These tumor associated macrophages (TAMs) display a M2 skewed phenotype. Many target genes of TAMs are HIF1-α responsive. These TAMs are involved in tumor progression, metastasis and angiogenesis. Targeting of HIF1-α/OSM can lead to devising of better therapeutic strategy against cancer.

Kucia-Tran JA, Tulkki V, Scarpini CG, et al.
Anti-oncostatin M antibody inhibits the pro-malignant effects of oncostatin M receptor overexpression in squamous cell carcinoma.
J Pathol. 2018; 244(3):283-295 [PubMed] Related Publications
The oncostatin M (OSM) receptor (OSMR) shows frequent gene copy number gains and overexpression in cervical squamous cell carcinomas (SCCs), associated with adverse clinical outcomes. In SCC cells that overexpress OSMR, the major ligand OSM induces multiple pro-malignant effects, including invasion, secretion of angiogenic factors, and metastasis. Here, we demonstrate, for the first time, that OSMR overexpression in SCC cells activates cell-autonomous feed-forward signalling, via further expression of OSMR and OSM and sustained STAT3 activation, despite expression of the negative regulator suppressor of cytokine signalling 3 (SOCS3). The pro-malignant effects associated with OSMR overexpression are critically mediated by JAK-STAT3 activation, which is induced by exogenous OSM and also by autocrine OSM-OSMR interactions. Importantly, specific inhibition of OSM-OSMR interactions by neutralizing antibodies significantly inhibits STAT3 activation and feed-forward signalling, leading to reduced invasion, angiogenesis, and metastasis. Our findings are supported by data from 1254 clinical SCC samples, in which OSMR levels correlated with multiple cognate genes, including OSM, STAT3, and downstream targets. These data strongly support the development of OSM-OSMR-blocking antibodies as biologically targeted therapies against SCCs of the cervix and other anatomical sites. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Yang C, Wu B, Zhong H, et al.
A novel CCM1/KRIT1 heterozygous deletion mutation (c.1919delT) in a Chinese family with familial cerebral cavernous malformation.
Clin Neurol Neurosurg. 2018; 164:44-46 [PubMed] Related Publications
BACKGROUND: Cerebral cavernous malformation (CCM) is a relatively rare congenital vascular anomaly in the central venous system. Its inherited form, familial cerebral cavernous malformation (FCCM), is an autosomal-dominant disease with incomplete penetrance. The pathogenic genes of FCCM have been mapped into three loci: CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. Till now, the genetic basis of FCCM in the Chinese population has yet to be well understood. Herein, we investigated the genetic mutation in a Chinese family with FCCM.
CASE REPORT: The proband is a 29-year-old female presenting with a 1-month history of headache. Brain magnetic resonance imaging (MRI) revealed multiple intracranial lesions, the largest one showing a popcorn-like appearance. After a 4-year conservative observation, there was no significant clinical or radiological progression. Family investigation found five of her relatives had multiple CCM lesions. DNA sequencing analysis in the proband disclosed a novel heterozygous deletion mutation (c.1919delT; p.Phe640SerfsX21) in exon 17 of the CCM1/KRIT1 gene. This mutation leads to a frameshift and is predicted to cause a premature termination codon to generate a truncated Krev interaction trapped-1 (Krit1) protein of 659 amino acids. The mutation segregated with the disease in the family.
CONCLUSION: The current study identified a novel CCM1/KRIT1 heterozygous deletion mutation (c.1919delT) associated with FCCM. Our findings expand the CCM gene mutation profiles in the Chinese population, which will be beneficial for genetic counseling.

Han J, Puri RK
Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme.
J Neurooncol. 2018; 136(3):463-474 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. A variety of targeted agents are being tested in the clinic including cancer vaccines, immunotoxins, antibodies and T cell immunotherapy for GBM. We have previously reported that IL-13 receptor subunits α1 and α2 of IL-13R complex are overexpressed in GBM. We are investigating the significance of IL-13Rα1 and α2 expression in GBM tumors. In order to elucidate a possible relationship between IL-13Rα1 and α2 expression with severity and prognoses of subjects with GBM, we analyzed gene expression (by microarray) and clinical data available at the public The Cancer Genome Atlas (TCGA) database (Currently known as Global Data Commons). More than 40% of GBM samples were highly positive for IL-13Rα2 mRNA (Log2 ≥ 2) while only less than 16% samples were highly positive for IL-13Rα1 mRNA. Subjects with high IL-13Rα1 and α2 mRNA expressing tumors were associated with a significantly lower survival rate irrespective of their treatment compared to subjects with IL-13Rα1 and α2 mRNA negative tumors. We further observed that IL-13Rα2 gene expression is associated with GBM resistance to temozolomide (TMZ) chemotherapy. The expression of IL-13Rα2 gene did not seem to correlate with the expression of genes for other chains involved in the formation of IL-13R complex (IL-13Rα1 or IL-4Rα) in GBM. However, a positive correlation was observed between IL-4Rα and IL-13Rα1 gene expression. The microarray data of IL-13Rα2 gene expression was verified by RNA-Seq data. In depth analysis of TCGA data revealed that immunosuppressive genes (such as FMOD, CCL2, OSM, etc.) were highly expressed in IL-13Rα2 positive tumors, but not in IL-13Rα2 negative tumors. These results indicate a direct correlation between high level of IL-13R mRNA expression and poor patient prognosis and that immunosuppressive genes associated with IL-13Rα2 may play a role in tumor progression. These findings have important implications in understanding the role of IL-13R in the pathogenesis of GBM and potentially other cancers.

Flemming KD
Clinical Management of Cavernous Malformations.
Curr Cardiol Rep. 2017; 19(12):122 [PubMed] Related Publications
PURPOSE OF REVIEW: This study aims to review the current epidemiology and clinical management of patients with cavernous malformations (CM).
RECENT FINDINGS: Hemorrhage is the most feared complication and leads to morbidity in patients with CM. Multiple studies including three meta-analyses have provided useful estimates of hemorrhage risk, but have failed to identify a modifiable risk factor for prevention of cavernous malformation related hemorrhage. In treating the CM itself, surgical risk is weighed against the natural history. However, accumulating knowledge regarding the roles of CCM 1, 2, and 3 genes has led to the discovery of potential therapeutic targets. The risk of future hemorrhage in patients with CM is highest in those who have had previously clinical hemorrhages. Estimated risks are helpful in counseling patients and comparing to the risk of surgery. Future clinical trials of candidate medications are likely to target those patients with prior clinical hemorrhage in whom the surgical risk is deemed high.

Choi JP, Yang X, Foley M, et al.
Induction and Micro-CT Imaging of Cerebral Cavernous Malformations in Mouse Model.
J Vis Exp. 2017; (127) [PubMed] Article available free on PMC after 04/09/2019 Related Publications
Mutations in the CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation (CCM) in humans. Mouse models of CCM disease have been established by tamoxifen induced deletion of Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. An accurate and quantitative method to assess lesion burden and progression is essential to harness the full value of these animal models. Here, we demonstrate the induction of CCM disease in a mouse model and the use of the contrast enhanced X-ray micro computed tomography (micro-CT) method to measure CCM lesion burden in mouse brains. At postnatal day 1 (P1), we used 4-hydroxytamoxifen (4HT) to activate Cre recombinase activity from the Cdh5-CreErt2 transgene to cleave the floxed allele of Ccm2. CCM lesions in mouse brains were analyzed at P8. For micro-CT, iodine based Lugol's solution was used to enhance contrast in brain tissue. We have optimized the scan parameters and utilized a voxel dimension of 9.5 µm, which lead to a minimum feature size of approximately 25 µm. This resolution is sufficient to measure CCM lesion volume and number globally and accurately, and provide high-quality 3-D mapping of CCM lesions in mouse brains. This method enhances the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.

Rinaldi C, Bramanti P, Scimone C, et al.
Relevance of CCM gene polymorphisms for clinical management of sporadic cerebral cavernous malformations.
J Neurol Sci. 2017; 380:31-37 [PubMed] Related Publications
Cerebral cavernous malformations (CCMs) are clusters of capillaries in the brain that may cause focal deficits or seizures in affected patients. They occur in both sporadic and inherited autosomal dominant form. Germline mutations in CCM1, CCM2 and CCM3 were identified in familial cases. Over the past 13years we performed sequencing and MLPA of the CCM genes in all sporadic and familial CCM cases coming from some hospital clinics of Neurology and Neurosurgery of Messina and other Italian cities. Our results showed that CCM sporadic patients, negative for previously reported CCM gene causative mutations, always carried known CCM polymorphisms. Previously, we reported polymorphisms in CCM2 gene associated with an increase in risk for CCM. Here, we undertook a case-control study to investigate the possible association of others polymorphisms (c.485+65 C/G, c.989+63 C/G, c.1980 A/G in CCM1 gene, c.472+127 C/T in CCM2 and c.150 G/A in CCM3) with CCMs. The five polymorphisms were characterized in 64 sporadic patients and in 90 healthy controls by ASO-PCR. Statistically significant differences in frequencies between patients and controls were found for c.485+65C/G, c.1980 A/G and c.472+127C/T polymorphisms. For c.485+65C/G polymorphism, a higher frequency of mutated allele (G) was found in patients group (9%) than in controls (2%) (p=0.0041); for c.1980 A/G polymorphism, we found a frequency of mutated allele (G) higher in the control group (25%) compared to that of patients (8%) (p=0.0396). Same trend was observed for c.472+127C/T polymorphism (T allele frequency=34% and 6% in control group and patients, respectively; p=0.0001). Polymorphisms c.485+65C/G, c.1980 A/G and c.472+127C/T were associated with an increased risk of CCM as indicated by odds ratio values. Furthermore, c.1980 A/G and c.472+127C/T polymorphisms were associated with less severe CCM symptomatology. Identification of these polymorphisms in CCM sporadic patient may represent a useful tool for clinicians to determine prognosis, scheduled periodic checks and appropriate treatment strategy.

Wang S, Zhang C, Zhang Z, et al.
Transcriptome analysis in primary colorectal cancer tissues from patients with and without liver metastases using next-generation sequencing.
Cancer Med. 2017; 6(8):1976-1987 [PubMed] Article available free on PMC after 04/09/2019 Related Publications
Colorectal cancer (CRC) is the third most common cancer worldwide and liver metastases are the leading cause of death in patients with CRC. In this study, we performed next-generation sequencing profiling on primary colorectal tumor tissues obtained from three CRC patients with liver metastases and three CRC patients without liver metastases to identify differentially expressed genes (DEGs) that might be responsible for the metastases process. After filtering 2690 DEGs, comprising 996 upregulated and 1694 downregulated RNAs, 22 upregulated and 73 downregulated DEGs were identified. Gene ontology (GO) and pathway analyses were performed to determine the underlying mechanisms. Single-organism process (biological process), cell (cellular component), and binding (molecular function) were the most related terms in the GO analysis. We selected the top 13 upregulated and top 12 downregulated genes by fold change to verify their differential expression using quantitative real-time reverse transcription PCR (qRT-PCR) and immunohistochemistry (IHC). The validation showed that three most significantly upregulated DEGs were HOXD10, UGT2A3, and SLC13A2, whereas the five most significantly downregulated DEGs were SPP1, CXCL8, MMP3, OSM, and CXCL6, respectively. These aberrantly expressed genes may play pivotal roles in promoting or inhibiting metastases. Further studies are required to determine the functions of DEGs to promote the diagnosis of metastases and provide novel chemotherapy targets.

Shien K, Papadimitrakopoulou VA, Ruder D, et al.
JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non-Small Cell Lung Cancer.
Mol Cancer Ther. 2017; 16(10):2234-2245 [PubMed] Article available free on PMC after 04/09/2019 Related Publications
Molecularly targeted drugs have yielded significant therapeutic advances in oncogene-driven non-small cell lung cancer (NSCLC), but a majority of patients eventually develop acquired resistance. Recently, the relation between proinflammatory cytokine IL6 and resistance to targeted drugs has been reported. We investigated the functional contribution of IL6 and the other members of IL6 family proinflammatory cytokine pathway to resistance to targeted drugs in NSCLC cells. In addition, we examined the production of these cytokines by cancer cells and cancer-associated fibroblasts (CAF). We also analyzed the prognostic significance of these molecule expressions in clinical NSCLC samples. In NSCLC cells with acquired resistance to targeted drugs, we observed activation of the IL6-cytokine pathway and STAT3 along with epithelial-to-mesenchymal transition (EMT) features. In particular, IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner. The cross-talk between NSCLC cells and CAFs also preferentially activated the OSM/STAT3 pathway via a paracrine mechanism and decreased sensitivity to targeted drugs. The selective JAK1 inhibitor filgotinib effectively suppressed STAT3 activation and OSMR expression, and cotargeting inhibition of the oncogenic pathway and JAK1 reversed resistance to targeted drugs. In the analysis of clinical samples,

Rath M, Jenssen SE, Schwefel K, et al.
High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.
Eur J Med Genet. 2017; 60(9):479-484 [PubMed] Related Publications
Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare.

Belousova OB, Okishev DN, Ignatova TM, et al.
Hereditary Multiple Cerebral Cavernous Malformations Associated with Wilson Disease and Multiple Lipomatosis.
World Neurosurg. 2017; 105:1034.e1-1034.e6 [PubMed] Related Publications
We report on a patient with 2 Mendelian diseases-symptomatic multiple familial cerebral cavernous malformations (FCCMs) and Wilson disease. Genetic analysis revealed single nucleotide polymorphisms in genes CCM2 and CCM3, associated with cavernous malformations, and homozygote mutation in the ATP7B gene, responsible for Wilson disease. FCCMs were symptomatic in 3 generations. The patient also had multiple lipomatosis, which is suggested to be a familial syndrome. In recent years there has been an increasing amount of publications linking FCCMs with other pathology, predominantly with extracranial and intracranial mesenchymal anomalies. The present study is the description of an unusual association between 2 independent hereditary diseases of confirmed genetic origin-a combination that has not been described previously.

Cox EM, Bambakidis NC, Cohen ML
Pathology of cavernous malformations.
Handb Clin Neurol. 2017; 143:267-277 [PubMed] Related Publications
Cavernous malformations (CMs) are low-pressure angiographically occult lesions, composed of blood-filled sinusoidal locules known as "caverns." Although these lesions were once believed to be congenital in nature, there is compelling evidence to support de novo formation of CMs as well. They can occur as sporadic lesions or be inherited in an autosomal-dominant phenotype in familial forms of the disease. The pathophysiology of CMs is commonly believed to be due to abnormal vascular pathology. Three genes, CCM1, CCM2, and CCM3, have been extensively studied for their role in vascular pathology, resulting in abnormal angiogenesis and compromising the structural integrity of vessel endothelial cell. The expression of growth factors has been researched to gain insight into the dynamic behavior of CM lesions. Gross and microscopic images are utilized in this chapter to illustrate the pathologic findings of these lesions. Ultrastructural analysis demonstrates the aberrations in CM endothelial cells and structural integrity that may provide better understanding into how and why these lesions have a propensity to hemorrhage.

Sun Y, Kuek V, Qiu H, et al.
The emerging role of NPNT in tissue injury repair and bone homeostasis.
J Cell Physiol. 2018; 233(3):1887-1894 [PubMed] Related Publications
Nephronectin (NPNT), a highly conserved extracellular matrix protein, plays an important role in regulating cell adhesion, differentiation, spreading, and survival. NPNT protein belongs to the epidermal growth factor (EGF)-like superfamily and exhibits several common structural determinants; including EGF-like repeat domains, MAM domain (Meprin, A5 Protein, and Receptor Protein-Tyrosine Phosphatase µ), RGD motif (Arg-Gly-Asp) and a coiled-coil domain. It regulates integrins-mediated signaling pathways via the interaction of its RGD motif with integrin α8β1. Recent studies revealed that NPNT is involved in kidney development, renal injury repair, atrioventricular canal differentiation, pulmonary function, and muscle cell niche maintenance. Moreover, NPNT regulates osteoblast differentiation and mineralization, as well as osteogenic angiogenesis. Altered expression of NPNT has been linked with the progression of certain types of cancers, such as spontaneous breast tumor metastasis and malignant melanoma. Interestingly, NPNT gene expression can be regulated by a range of external factors such as tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), oncostatin M (OSM), bone morphogenic protein 2 (BMP2), Wnt3a, Vitamin D

Chandrika G, Natesh K, Ranade D, et al.
Mammalian target of rapamycin inhibitors, temsirolimus and torin 1, attenuate stemness-associated properties and expression of mesenchymal markers promoted by phorbol-myristate-acetate and oncostatin-M in glioblastoma cells.
Tumour Biol. 2017; 39(3):1010428317695921 [PubMed] Related Publications
The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway is crucial for tumor survival, proliferation, and progression, making it an attractive target for therapeutic intervention. In glioblastoma, activated mammalian target of rapamycin promotes invasive phenotype and correlates with poor patient survival. A wide range of mammalian target of rapamycin inhibitors are currently being evaluated for cytotoxicity and anti-proliferative activity in various tumor types but are not explored sufficiently for controlling tumor invasion and recurrence. We recently reported that mammalian target of rapamycin inhibitors-rapamycin, temsirolimus, torin 1, and PP242-suppressed invasion and migration promoted by tumor necrosis factor-alpha and phorbol-myristate-acetate in glioblastoma cells. As aggressive invasion and migration of tumors are associated with mesenchymal and stem-like cell properties, this study aimed to examine the effect of mammalian target of rapamycin inhibitors on these features in glioblastoma cells. We demonstrate that temsirolimus and torin 1 effectively reduced the constitutive as well as phorbol-myristate-acetate/oncostatin-M-induced expression of mesenchymal markers (fibronectin, vimentin, and YKL40) and neural stem cell markers (Sox2, Oct4, nestin, and mushashi1). The inhibitors significantly abrogated the neurosphere-forming capacity induced by phorbol-myristate-acetate and oncostatin-M. Furthermore, we demonstrate that the drugs dephosphorylated signal transducer and activator transcription factor 3, a major regulator of mesenchymal and neural stem cell markers implicating the role of signal transducer and activator transcription factor 3 in the inhibitory action of these drugs. The findings demonstrate the potential of mammalian target of rapamycin inhibitors as "stemness-inhibiting drugs" and a promising therapeutic approach to target glioma stem cells.

Yang C, Nicholas VH, Zhao J, et al.
A Novel CCM1/KRIT1 Heterozygous Nonsense Mutation (c.1864C>T) Associated with Familial Cerebral Cavernous Malformation: a Genetic Insight from an 8-Year Continuous Observational Study.
J Mol Neurosci. 2017; 61(4):511-523 [PubMed] Related Publications
Cerebral cavernous malformation (CCM) is a congenital vascular abnormality that predominantly affects the central nervous system, but that sometimes encroaches other vital tissues, including the retina, skin, and even liver. The familial form of CCM (FCCM) is considered to be an autosomal dominant disease with incomplete penetrance and variable expression, which is often attributed to mutations in three genes: CCM1, CCM2, and CCM3. We screened a Chinese family diagnosed with FCCM by using Sanger sequencing. A 29-year-old male proband with cutaneous angiomas was pathologically diagnosed but presented with an atypical form of CCM as revealed by magnetic resonance imaging (MRI) findings, prompting further clinical evaluation and genetic analyses of him and his immediate family. We performed continuous observation over an 8-year period using MRI gradient echo imaging and susceptibility-weighted imaging of these individuals. Sanger sequencing of the CCM1, CCM2, and CCM3 genes identified a novel heterozygous nonsense nucleotide transition (c.1864C>T; p.Gln622X) in exon 17 of the CCM1/KRIT1 gene; this mutation was predicted to cause a premature stop codon (TAG) at nucleotides 1864 to 1866 to generate a truncated Krev interaction trapped 1 (Krit1) protein of 621 amino acids. During this long-term observational study, one of the enrolled family members with neurological deficits progressed to a stage indicative of brain surgery. This study provides a new CCM gene mutation profile, which highlights the significance of genetic counseling for individuals suspected of having this condition.

Kar S, Bali KK, Baisantry A, et al.
Genome-Wide Sequencing Reveals MicroRNAs Downregulated in Cerebral Cavernous Malformations.
J Mol Neurosci. 2017; 61(2):178-188 [PubMed] Related Publications
Cerebral cavernous malformations (CCM) are vascular lesions associated with loss-of-function mutations in one of the three genes encoding KRIT1 (CCM1), CCM2, and PDCD10. Recent understanding of the molecular mechanisms that lead to CCM development is limited. The role of microRNAs (miRNAs) has been demonstrated in vascular pathologies resulting in loss of tight junction proteins, increased vascular permeability and endothelial cell dysfunction. Since the relevance of miRNAs in CCM pathophysiology has not been elucidated, the primary aim of the study was to identify the miRNA-mRNA expression network associated with CCM. Using small RNA sequencing, we identified a total of 764 matured miRNAs expressed in CCM patients compared to the healthy brains. The expression of the selected miRNAs was validated by qRT-PCR, and the results were found to be consistent with the sequencing data. Upon application of additional statistical stringency, five miRNAs (let-7b-5p, miR-361-5p, miR-370-3p, miR-181a-2-3p, and miR-95-3p) were prioritized to be top CCM-relevant miRNAs. Further in silico analyses revealed that the prioritized miRNAs have a direct functional relation with mRNAs, such as MIB1, HIF1A, PDCD10, TJP1, OCLN, HES1, MAPK1, VEGFA, EGFL7, NF1, and ENG, which are previously characterized as key regulators of CCM pathology. To date, this is the first study to investigate the role of miRNAs in CCM pathology. By employing cutting edge molecular and in silico analyses on clinical samples, the current study reports global miRNA expression changes in CCM patients and provides a rich source of data set to understand detailed molecular machinery involved in CCM pathophysiology.

Wang H, Pan Y, Zhang Z, et al.
A Novel KRIT1/CCM1 Gene Insertion Mutation Associated with Cerebral Cavernous Malformations in a Chinese Family.
J Mol Neurosci. 2017; 61(2):221-226 [PubMed] Related Publications
Familial cerebral cavernous malformation (FCCM) is a vascular malformation disorder that closely associated with three identified genes: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Here, we present a Chinese family affected by FCCM due to a novel KRIT1/CCM1 insertion mutation. The proband was hospitalized for sudden unconsciousness and underwent surgical treatment. The section of lesions showed classical cavernous-dilated vessels without intervening brain parenchyma, and hemosiderin-laden macrophages were accumulated in the surrounding tissue. In addition, magnetic resonance imaging (MRI) showed severe multiple cerebral cavernous malformation (CCM) lesions in cerebrum, brainstem, and cerebellum in other affected subjects. Especially, for the proband's mother, hundreds of lesions were presented, and a few lesions were found in the expanded lateral ventricle (Evans' index =0.33). Moreover, she showed the similar symptoms of hydrocephalus, including headache, dizziness, and diplopia. It was extremely rare in previous reports. To date, the genetic alterations leading to FCCM in Chinese population remain largely unknown. We investigated genetic defects of this family. Sequence analyses disclosed a novel heterozygous insertion mutation (c.1896_1897insT; p.Pro633SerfsTer22) in KRIT1/CCM1. Moreover, our real-time PCR results revealed that the mRNA level of KRIT1/CCM1 were significantly decreased in FCCM subjects (CCM family =0.42 ± 0.20 vs. healthy control =1.01 ± 0.16, P = 0.004). It indicated that this mutation could cause KRIT1/CCM1 functional mRNA deficiency. It may be closely related with the pathogenesis of FCCM. Our findings provided a new gene mutation profile which will be of great significance in early diagnosis and appropriate clinical surveillance of FCCM patients.

Bottai G, Diao L, Baggerly KA, et al.
Integrated MicroRNA-mRNA Profiling Identifies Oncostatin M as a Marker of Mesenchymal-Like ER-Negative/HER2-Negative Breast Cancer.
Int J Mol Sci. 2017; 18(1) [PubMed] Article available free on PMC after 04/09/2019 Related Publications
MicroRNAs (miRNAs) simultaneously modulate different oncogenic networks, establishing a dynamic system of gene expression and pathway regulation. In this study, we analyzed global miRNA and messenger RNA (mRNA) expression profiles of 17 cell lines representing different molecular breast cancer subtypes. Spearman's rank correlation test was used to evaluate the correlation between miRNA and mRNA expression. Hierarchical clustering and pathway analysis were also performed. Publicly available gene expression profiles (

Coleman N
Virus and Host Events in Squamous Carcinogenesis.
Keio J Med. 2016; 65(4):78 [PubMed] Related Publications
Our group investigates early and late stages in the development of squamous cell carcinomas (SCCs), in order to identify new approaches to diagnosis and therapy. The principal themes are:1. Transcriptional deregulation of high-risk human papillomavirus (HRHPV)We study mechanisms of HRHPV transcriptional deregulation and competitive cell selection during SCC progression, focussing on the causes and effects of integration of HPV16 into the host genome. We showed that HPV16 integration does not necessarily lead to a competitive growth advantage or increased levels of virus oncogenes. Selection of individual cells is determined through multiple layers of epigenetic regulation of the integrated virus genome. We are currently studying whether the epigenetic landscape of integrated HPV16 reflects that of the host genome at the integration site and/or sites of long-range chromatin interactions of the virus DNA. This work may ultimately identify targets for epigenetic therapies in SCCs containing integrated HRHPV.2. The oncostatin-M receptor (OSMR) in metastasisThe cell-surface oncostatin-M receptor (OSMR) has emerged as an exciting therapeutic target in SCCs. Both copy number gain and over-expression of OSMR have a strong adverse prognostic effect in SCCs. Carcinoma cells that over-expressed OSMR were more sensitive to the major ligand OSM, which induced multiple pro-malignant effects, including epithelial-mesenchymal transition, increased metastasis and the ability to induce pro-malignant changes in cells from the tumour microenvironment (TME). We are now studying the effectiveness of OSM:OSMR blockade on the growth and metastasis of SCC cells in vivo, as well as effects on the TME in immunocompetent hosts.(Presented at the 1923th Meeting, August 10, 2016).

Scimone C, Bramanti P, Alafaci C, et al.
Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.
J Mol Neurosci. 2017; 61(2):189-198 [PubMed] Related Publications
Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.

de Vos IJ, Vreeburg M, Koek GH, van Steensel MA
Review of familial cerebral cavernous malformations and report of seven additional families.
Am J Med Genet A. 2017; 173(2):338-351 [PubMed] Related Publications
Cerebral cavernous malformations are vascular anomalies of the central nervous system characterized by clusters of enlarged, leaky capillaries. They are caused by loss-of-function mutations in KRIT1, CCM2, or PDCD10. The proteins encoded by these genes are involved in four partially interconnected signaling pathways that control angiogenesis and endothelial permeability. Cerebral cavernous malformations can occur sporadically, or as a familial autosomal dominant disorder (FCCM) with incomplete clinical and neuroradiological penetrance and great inter-individual variability. Although the clinical course is unpredictable, symptoms typically present during adult life and include headaches, focal neurological deficits, seizures, and potentially fatal stroke. In addition to neural lesions, extraneural cavernous malformations have been described in familial disease in several tissues, in particular the skin. We here present seven novel FCCM families with neurologic and cutaneous lesions. We review histopathological and clinical features and provide an update on the pathophysiology of cerebral cavernous malformations and associated cutaneous vascular lesions. © 2016 Wiley Periodicals, Inc.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCM2, Cancer Genetics Web: http://www.cancer-genetics.org/CCM2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999